• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A quantum search algorithm of twodimensional convex hull

    2021-11-13 05:36:52ChengWangandRiGuiZhou
    Communications in Theoretical Physics 2021年11期

    Cheng Wang and Ri-Gui Zhou

    1 College of Information Engineering,Shanghai Maritime University,Shanghai,201306,China

    2 Research Center of Intelligent Information Processing and Quantum Intelligent Computing,Shanghai,201306,China

    Abstract Despite the rapid development of quantum research in recent years,there is very little research in computational geometry.In this paper,to achieve the convex hull of a point set in a quantum system,a quantum convex hull algorithm based on the quantum maximum or minimum searching algorithm(QUSSMA)is proposed.Firstly,the novel enhanced quantum representation of digital images is employed to represent a group of point set,and then the QUSSMA algorithm and vector operation are used to search the convex hull of the point set.In addition,the algorithm is simulated and compared with the classical algorithm.It is concluded that the quantum algorithm accelerates the classical algorithm when the Mp value of the convex hull point is under a certain condition.

    Keywords: quantum algorithm,convex hull,computational geometry,quantum searching

    1.Introduction

    In 1982,Feynman proposed the first new computational model,named quantum computer[1].With the continuous development of quantum computers,many scholars have proposed many algorithms,among which Deutsch’s quantum [2],Shor algorithm[3]and Grover algorithm[4]are especially researched and applied by scholars.In recent decades,the development of quantum computing has been very rapid.Scholars from all walks of life have transplanted classical problem methods to quantum mechanics,such as quantum images,quantum machine learning,etc.For example,quantum images are currently a relatively active field in quantum computing and quantum information processing.Its concept was first proposed by Russian scholar Vlasov in 1997 [5].After more than 20 years of development,quantum image processing has made great progress in quantum image representation [6–8],quantum image morphology operations[9,10],quantum image scaling[11–13],etc.In terms of quantum machine learning,Harrow proposed the HHL algorithm [14] in 2009,and Rebentrost proposed the quantum support vector machine QSVM algorithm [15].Based on the HHL algorithm model to achieve the exponential acceleration of the classic algorithm under certain conditions,the quantum principal component analysis QPCA algorithm proposed by Lloyd et al in 2014[16].After that,quantum machine learning ushered in a research boom,with various algorithms emerging in an endless stream,various classifications,regression[17,18],clustering,neural networks [19],deep learning,reinforcement learning,and recommendation systems applied to quantum versions,etc.

    However,there are very few quantum studies in computational geometry.The term‘computational geometry’was used in different academic fields in the 1970s,such as pattern recognition,free-form curve and surface design,and algorithm design and analysis of discrete geometric problems.After more than 30 years of rapid development,its research content has continued to expand,involving convex hulls,Voronoi,triangulation,polygon subdivision,set search,intersection,visibility calculation,path planning,collision detection and many other contents.In 2010,MARCO and JEFFREY proposed a paper on quantum computational geometry,which put forward a general optical quantum multi-object search algorithm [20] based on Grover algorithm.The algorithm can achieve very good results in the face of solutions with multiple problems and further elaborates the application of the algorithm in computational geometry.In the meantime,it has inspired the future research on the geometry of quantum computing.

    In this paper,we study the two-dimensional convex hull problem in computational geometry and explore how to implement the quantum convex hull algorithm(QCHA)in thecase of quantum mechanics.Section 2 briefly introduces the related works,including definition of two-dimensional convex hull,classical convex hull algorithm and quantum maximum or minimum searching algorithm (QUSSMA).The process of QCHA is presented in section 3.The analysis of the complexity of the algorithm and the comparison with the complexity of the classic algorithm are in section 4.The conclusions are drawn in section 5.The concrete notations used hereafter are shown in table 1.

    Table 1.The definitions of variables.

    2.Related works

    2.1.Definition of convex hull and classic algorithm

    Convex hull is one of the important objects of computational geometry research,and it is also a very common geometric structure.For example,we can use the convex hullsandof two objectsO1andO2,and then determine whetherO1andO2collide by whether the convex hulls ?1and ?2intersect.Another example is when the shapes of objects are matched,the convex hulls can establish the convex defect tree of the object,and then use the convex defect tree to analyze the similarity of the two objects [21].

    Before understanding convex hull,it is important to know what a convex polygon is.From an intuitive point of view,a convex polygon is a polygon without any depression.The regular triangles,regular quadrilaterals,regular pentagons,etc,are all convex polygons.The convex hull of a set of points is the union of all possible convex combinations of all points in the set.In order to better understand the meaning of convex hull,the 2D convex hull is defined from different aspects:

    (i) The convex hull of the point set S in the n-dimensional space is the union of the convex combination of alln+1 points in the point set S.For example,in a twodimensional space,the convex hull of a point set S is the union of all triangles covered by any three vertices in S.

    (ii) The convex hull of the point set S is the intersection of all convex sets containing S.

    (iii) The convex hull of the point set S is the intersection of all half spaces containing S.

    (iv) The convex hull of a point set S containing a finite number of points on the plane is the smallest convex polygon P containing S.The smallest meaning is that there is no polygon P′,makingP?P′ ?S.

    (v) The convex hull of a point set S containing a finite number of points on the plane is a convex polygon with the smallest area on the plane containing these points.

    (vi) The convex hull of a point set S containing a finite number of points on the plane is a convex polygon with the smallest perimeter surrounding these points on the plane.

    In the two-dimensional Euclidean space,the convex hull can be imagined as a rubber ring just wrapped.At present,the classical convex hull algorithm has experienced decades of development.The first algorithm proposed is the extreme edge method.,which has three levels of loop nesting,and the complexity of each level of loop isO(n) ,so that the total time complexity reachesO(n)3.In order to further improve the efficiency of the algorithm,Chand and Kapur proposed the gift-wrapping algorithm in 1970[22].The principle of the algorithm is just as easy to understand as its name.First,find an extreme pointP,1and rotate the horizontal lineL1through the extreme pointP1anticlockwise.In the process of rotation,the point with the minimum rotation angle θ on the lineL1is the next convex hull pointP2.Then,takeP1andP2as a new line for the next round of rotation,and find the next convex hull pointP3according to the previous provisions.The schematic diagram is shown in figure 1.

    Figure 1.Gift wrapping algorithm.

    After that,the same operation is used for subsequent operations,and finally the convex hull is obtained.Compared with the previous three-layer loop nesting method,the time complexity of the gift-wrapping method has been greatly improved.Its time complexity isO(nh) ,and h is the number of edges of the convex hull.When the worst case is infinite number of convex hull edges,the time complexity of the algorithm isO(n)2.Subsequently,an algorithm independently proposed by several scholars in the late 1970s was called Quick Hull[23]by Preparata and Shamos because it was very similar to the quick sort algorithm.The core idea of the algorithm is to only focus on the points near the convex hull,and gradually discard the points inside the convex hull.Figure 2 shows this algorithm that first takes two pointsP3andP4at the bottom left and top right.The connectionL2composed ofP3andP4can combine the entire convex hull.It is divided into upper convex hull and lower convex hull,and the upper and lower convex hulls can be obtained by the convex hull recursive process of the next level.

    Figure 2.Quick sort algorithm.

    The last classic convex hull algorithm was proposed by Graham in 1972 [24] and was shown in figure 3.The basic idea of the algorithm is to assume that a pointOis found inside the convex hull.Let theOpoint be the center point of polar coordinates.Then connect each point in the point set toO,calculate the polar angleθof the point,and then sort these points in order of angle from small to large.Afterwards,starting from an extreme pointPias the initial point,the adjacent pointsPi+1andPi+2can be connected in turn to obtain the convex hull.Other algorithms have been proposed in the following years,(e.g.divide-and-conquer,incremental algorithms) but the lower limit of their time complexity is stillO(nlog2n).

    2.2.Quantum maximum or minimum searching algorithm

    Among quantum algorithms,there are many articles about search algorithm.The beginning of quantum search algorithm is Grover search algorithm [25]proposed by Grover in 1996,and then scholars have explored the improvement and modification of Grover search algorithm.Eli Biham team proposed an improved version of Grover algorithm with arbitrary initial state amplitude [26],The arbitrary phase rotation and phase matching proposed by Long’s group extends the original Grover operator to the search algorithm with 100%success rate [27–29].Durr and Hoyer proposed a quantum algorithm DHA [30],which is used to search for the minimum value.However,with the increase of the number of iterations,the accuracy rate of DHA algorithm drops exponentially,and the lower limit of accuracy rate can only reach 1/2,and the initial copies needed by DHA algorithm need(log2N)2.According to the above defects of DHA,in 2020,Chen’s group proposed a quantum algorithm QUMMSA[31]to search the maximum and minimum value with low failure rate,and the improved Grover algorithm proposed by Long’s group is used in this paper.Let us review the QUMMSA algorithm below:

    Step 1:Randomly choose a data value from D as the reference valued.0

    Step 2:Map D to the initial state∣ψ〉.

    Step 3:Exploit quantum searching algorithm and obtain its resultd,1a data value of D.

    Step 4:Ifd1≤d0,quantum searching algorithm is performed successfully,then updated0withd1as a new reference value.Otherwise,repeat steps 2–3.

    Step 5:Repeat steps 2–4.

    The quantum search algorithm used in the third step of the above steps is the Grover–Long algorithm.The advantage of the Grover–Long algorithm is that it can perform phase flip at any angle,and the deflection angle can be obtained according to the relationship between the database size and the mark solution.As shown in equation(1),Φ represents the required deflection angle,sinM represents the number of solutions,N represents the size of the database,and J represents the number of loops performed.So,knowing the above parameters,the deflection angleΦ is easy to obtain.When the exact value of the angle of each deflection is known,the final result will not be the same as the classic Grover algorithm,which will cause the accuracy decline due to the excessive deflection angle.

    The algorithm also makes two optimizations: one is that in Grover–Long algorithm,the parameter of deflection angle is incorrect,which will cause failure rate.The most important thing to calculate the parameter is to know the database size N and the number M to be solved,which is often unknown in the actual operation.Therefore,in order to solve this problem,the sample estimation method is introduced to approximate the original parameters.The specific estimation method is given in Chen’s paper[31],the following is a brief of this method.First,one parameter α is used to estimate M/N,it is easy to know the range of M/N is (0,1].However,sinced0varies with the number of main loops,M also correspondingly varies withd0,we should make α always close to M/N in all main loops of QUMMSA.The changing trend of M/N should be considered as a function.the probability of choosing a value x from the real database D is p(x),as shown in formula (2).So when database size becomes infinity,the changing trend of M/N is the same as the real cumulative distribution function P(x) as show in formula (3).

    The second optimization is when to end the loop.If you do not set a proper limit for jumping out of the loop,the redundancy of the main loop will affect the success rate of the search results.Because each solution is obtained with equal probability by Grover–Long algorithm,the number of solutions will be reduced by half on average,after one main loop.Therefore,the mathematical expectation of main loops to find the minimum islog2n,in theory.Regardinglog2nmain loops as the interrupt condition of QUMMSA is unreasonable,since it is difficult to know whether the final result is the minimum value or a minor value when the number of main loops reacheslog2n.Therefore,in order to minimize the number of main loops,we set it to break out of the loop whend1=d0for c (a constant) consecutive times.

    3.Quantum convex hull algorithm (QCHA)

    3.1.Quantum representation of point set

    To deal with points by quantum mechanics,the information of point set should be stored in quantum state first.The preparation process for QCHA will be described as follow.

    In view of the large number of point sets,it is impossible to use one single qubit to represent one single point,so the representation of quantum image is reasonable.The representation method used in this paper is novel enhanced quantum representation (NEQR) model [7].Equation (4)show the representation of a gray-scale image with size of 2G×2G.

    where∣f(Y,X)〉 ∈ {0 ,1,...,2q-1} represents the gray value,and∣YX〉 represents the position information of the pixel.

    For NEQR model,it is not need to know the gray value in QCHA algorithm,but only know whether there is a point at the current pixel position.Therefore,the NEQR model can be simplified,that is,∣f(Y,X)〉can be represented by only one qubit.When∣f(Y,X)〉 = ∣1〉 ,it indicates that there is a point in the current pixel position.If it is equal to∣0〉 ,it does not exist.The equation is as follows:

    So,in this case just 1 +2Gqubits are used to represent a point set.TakingG= 1 as an example,a 2 × 2 point set image and its NEQR representation are show in figure 4.

    Figure 4.A 2 × 2 point set image,and it’s NEQR representation,in which the white square represents a point.

    In order to determine the size of G when the data size is N,since the size of NEQR model is2G×2G,we should let 2G×2Ggreater than N so that contain all points in one NEQR model.Therefore,it is calculated that G should be greater than

    3.2.Design of QCHA

    So far,the steps of representing a set of classical points with quantum information have been completed.In order to facilitate the subsequent operation,the first step is to find an extreme point in the point set.And according to the properties of extreme points,extreme points must be convex envelope points,that is,in two-dimensional space,they are usually the largest and smallest points on the X-axis or Y-axis coordinates.If there are points of the same size on the X-axis (Yaxis) coordinates,then the largest or smallest point on the Yaxis(X-axis)can be determined as extreme points.Therefore,it is necessary to use the maximum or minimum search algorithm to find the extreme point.Here,the QUSSMA algorithm described above can be used to search.The steps are as follows:

    Step 1:Randomly select a point and record its X-axis coordinate asv0.

    Step 2:Map the points in the point concentration to the initial state

    Step 3:Use Grover–Long search algorithm to search,measure a piece of datav.1

    Step 4:Ifv1<v0,the retrieval is successful,thenv0=v1,otherwise repeat the second and third steps.

    Step 5:Repeat steps 2–4 (loop log2n+ctimes then break).

    Output:The pointp0that corresponds the minimum valuev0is the extreme point.

    Note that extreme points are not unique.The above steps are to find the smallest extreme point.If you want to find the largest extreme point on the plane point set,then replace the judgment conditionv1<v0withv1>v0in the step 4.Since the extreme pointp0is obtained,it is easy to construct the solution to the subsequent convex hull points.At present,the work we have completed is to represent the classic point set with the NEQR model,and then use QUMMSA to find the extreme points.In the next step,assume that there is an operation C that can use the extreme pointp0as the base point to search the next convex hull point.When the next convex hull pointp1is found,then the line formed byp1and the base pointp0is one of the convex hull edges,and thenp1is used as the next base point to perform the C operation cycle.Finally,the entire convex hull can be found.The whole step can be as follows:

    Step 1:Convert the scatter graph stored in classical information into a quantum state by NEQR model.

    Step 2:Use the minimum search algorithm to find the pointp0with the smallest coordinate in the point set,that is,one of the points on the convex hull.

    Step 3:Copyp0to k.

    Step 4:Take pointp0as the input value to enter C for iteration operation,find the next pointp1of the convex hull edge and store it in the register,and judge whetherp1and k are the same point,if they are equal,jump out of the whole step,otherwise assignp1top0then continue the loop.

    Step 5:Read the value in the register,and the edge composed of its sequence is the convex hull.

    The QCHA is used to find the points on the edge of the convex hull,and every time a point is found,it will be stored in the classical register in order.The final order of these points is the result which is wanted.Note that the reason for judging whetherp1and k are the same in the step 4 is that the ending condition of the loop is the last found point should be the same as the initial extreme pointp0,so that forming a closed loop.Therefore,a judgment statement needs to be added in each loop to judge whether the point is the initial extreme point.

    3.3.Design of operation C

    The design of operation C is one of the key points of QCHA algorithm.The previous convex point can get the latter convex point through the iteration of C operation.The convex hull edge is a closed loop composed of convex hull points,which is solved through continuous loops.Finally,the last convex hull point is found which is the same as the first point,so that the order of their composition is the complete convex hull edge.The purpose of operation C is to find the relationship between the current input convex hull point and the next one.Here we find the angle relationship between the baseline where the current convex hull point is located (the baseline will be explained later) and the lines connecting the current convex hull point and other points to be searched.The line with the smallest angle formed with the baseline,then the point to be searched on this line is the next convex hull point.The relationship between the included angles can be expressed by vectors.The horizontal direction of the current point can be used as a basis vector(the baseline is the line where this vector is),and the vector can be set asA=(1 ,0) .The vectors formed by the points to be searched and the current convex hull point can be a vector groupB={(x-X,y-Y)}(X,Y is the coordinate value of the point to be searched,and x,y is the value of the current convex hull point).After the vectorization process,the two vectors are calculated using equation (6) to obtaincosθ,and then the maximum value search algorithm is used to find the maximum value ofcosθ.The point of the vector corresponding to cosθis the wanted convex hull point

    Note that in the second round of operation,the chosen basis vector is not the unit vector in the horizontal direction of the convex hull point in the first round,but the vector thatp0points top1.Because in this way,all the point sets will be on the side of the line where the vector is located.When performing the equation(4),the angle range represented bycosθwill only be in the range of 0–π,so the largestcosθvalue can be found to represent the vector with the smallest angle to be correct.The selection of the basis vector for all subsequent rounds is the same as the second round.The selection of the basis vector for the ith round is to select the vector from the convex hull pointpi-1to the direction ofpias the baseline for operation.

    4.Simulation and time complexity analysis

    4.1.Simulation

    Here,since physical quantum computers are not currently under our control,we perform simulations on classical computers.The realization of all quantum schemes in the simulation is designed by linear algebra of complex vectors.The unitary matrix is used as the unitary transformation,and MATLAB 9.8.0(r2020a)is used for calculation.We randomly selected 10 000 random points on the two-dimensional coordinates for the experiment.The final simulation effect is shown in the figure 5,where the red wire frame is convex hull.

    Figure 5.The simulation of QCHA.

    4.2.Time complexity analysis

    The time complexity of QCHA consists of two parts:the time required to search for the first extreme point,and the time for subsequent convex hull point queries.The first extreme point mainly uses QUMMSA algorithm,whose time complexity R is by following equation

    The time of convex point found by the subsequent QCHA algorithm can be determined by theO( 1) time required to construct vector group and need R time required to find the maximum cosine value through QUSSMA algorithm.

    Therefore,the time complexity of the convex point isMpRwhen there areMpconvex points.After adding the complexity of the two parts,total complexity T as show in equation (7)

    This time complexity is greatly improved compared to the lower limit of the classic algorithm.As shown in the figure 6,the time complexity of QCHA algorithm will change with the change ofMpvalue,and the time complexity of some positions is better than that of the optimal classical algorithm,as shown in figure 6(a).However,when the number of convex hull pointsMpis fixed and the total number of point set is very large,QCHA shows its great advantages,as shown in figure 6(b).

    Figure 6.(a)The red line represents the change of +(l og2 N)2 )with Mp from with 0 to 100,blue line is Nlog 2 N.(b)M=100,The maximum number of database points is 10 000.

    In order to know more accurately what the value ofMpis,the performance of QCHA is faster than the classical optimal algorithm,and the corresponding calculations are shown in equation (8)

    5.Conclusion and discussion

    In this paper,a search algorithm is proposed to solve convex hull in quantum state.Firstly,we use the modified NEQR model to express the classical point set information as quantum information.Secondly,the QUMMSA algorithm is used to solve the key extreme points.Finally,we design a C operation to solve the subsequent convex hull points.The performance of the algorithm is better than classical algorithm whenWe hope that our research can make contribution to the direction of quantum computational geometry and further break the speed limit in the classical world.Although our proposed algorithm can break through the lower limit of the classical algorithm in part,we still need to explore whether the speed of the algorithm can continue to be improved without restrictions.Next,our team will continue to explore.

    Acknowledgments

    This work is supported by the Shanghai Science and Technology Project in 2020 under Grant No.20040501500.

    Conflict of interest

    The authors declare that there is no conflict of interest.

    Authors’ contributions

    Cheng Wang and Ri-Gui Zhou conceived the theory and designed the algorithm.Cheng Wang wrote the paper and contributed algorithm analysis.

    精品人妻视频免费看| 亚洲av男天堂| 波多野结衣巨乳人妻| 久久久久九九精品影院| 亚洲欧洲国产日韩| 国产伦一二天堂av在线观看| 国产综合懂色| 一个人免费在线观看电影| 久久热精品热| 国产亚洲精品久久久久久毛片| 亚洲精华国产精华液的使用体验 | 成年版毛片免费区| 久久精品夜色国产| 久久精品国产亚洲av香蕉五月| 波多野结衣高清无吗| 久久鲁丝午夜福利片| 天堂网av新在线| 亚洲欧美精品综合久久99| 久99久视频精品免费| 亚洲精品日韩av片在线观看| 黄色一级大片看看| 精品久久久久久久人妻蜜臀av| 亚洲人成网站在线播| 麻豆乱淫一区二区| 麻豆成人午夜福利视频| 春色校园在线视频观看| 一夜夜www| АⅤ资源中文在线天堂| 哪个播放器可以免费观看大片| 神马国产精品三级电影在线观看| 熟女电影av网| 看免费成人av毛片| 日本在线视频免费播放| 特大巨黑吊av在线直播| 在现免费观看毛片| 性色avwww在线观看| 欧美zozozo另类| 色哟哟·www| 久久久久久久久久黄片| 精品久久久久久久久亚洲| av在线观看视频网站免费| 日本黄大片高清| 人人妻人人澡人人爽人人夜夜 | 小说图片视频综合网站| 大又大粗又爽又黄少妇毛片口| 精品久久久久久成人av| 欧美色视频一区免费| av国产免费在线观看| 特大巨黑吊av在线直播| 亚洲精品久久国产高清桃花| 久久人人爽人人爽人人片va| 亚洲乱码一区二区免费版| 在线天堂最新版资源| 99久久九九国产精品国产免费| 国产在线男女| 久久久精品大字幕| 又爽又黄a免费视频| 日韩一区二区三区影片| 国产老妇伦熟女老妇高清| 69人妻影院| 激情 狠狠 欧美| 久久精品影院6| 久久中文看片网| 日日撸夜夜添| 少妇丰满av| 久久精品国产自在天天线| 黄片wwwwww| 日韩欧美 国产精品| 亚洲人成网站在线播放欧美日韩| 天天一区二区日本电影三级| 欧美+日韩+精品| 熟妇人妻久久中文字幕3abv| 一级毛片aaaaaa免费看小| 国产亚洲av片在线观看秒播厂 | 99久久成人亚洲精品观看| 精品日产1卡2卡| 极品教师在线视频| 免费看日本二区| 欧美另类亚洲清纯唯美| 别揉我奶头 嗯啊视频| 亚洲av不卡在线观看| 亚洲成人久久爱视频| 最近2019中文字幕mv第一页| 人妻少妇偷人精品九色| 日本欧美国产在线视频| 久久九九热精品免费| 久久午夜福利片| 能在线免费看毛片的网站| 欧美xxxx黑人xx丫x性爽| 亚洲七黄色美女视频| 日韩成人av中文字幕在线观看| 一级毛片久久久久久久久女| 久久久久久国产a免费观看| 天堂√8在线中文| 精品久久久久久久久av| 久久久久久大精品| 成人漫画全彩无遮挡| 久久综合国产亚洲精品| 欧美性感艳星| 日本爱情动作片www.在线观看| 91久久精品国产一区二区三区| 免费看美女性在线毛片视频| 天美传媒精品一区二区| 午夜亚洲福利在线播放| 99在线视频只有这里精品首页| 在线观看美女被高潮喷水网站| 日本爱情动作片www.在线观看| 岛国在线免费视频观看| 久久韩国三级中文字幕| 一区二区三区免费毛片| 美女cb高潮喷水在线观看| 一本久久中文字幕| 亚洲最大成人手机在线| 春色校园在线视频观看| 国内精品宾馆在线| 国产成人aa在线观看| 能在线免费观看的黄片| 国产片特级美女逼逼视频| 亚洲欧美日韩高清专用| 国产真实乱freesex| 亚洲人与动物交配视频| 狂野欧美白嫩少妇大欣赏| 国产精品一二三区在线看| 99热这里只有精品一区| 老师上课跳d突然被开到最大视频| 国产色爽女视频免费观看| 青春草视频在线免费观看| 99久久精品一区二区三区| 久久亚洲国产成人精品v| 日韩国内少妇激情av| 夫妻性生交免费视频一级片| 亚洲国产高清在线一区二区三| 色综合色国产| 波野结衣二区三区在线| 免费av不卡在线播放| 小说图片视频综合网站| 不卡一级毛片| 国内少妇人妻偷人精品xxx网站| 天天躁夜夜躁狠狠久久av| 久久久久久九九精品二区国产| 在线a可以看的网站| 老熟妇乱子伦视频在线观看| 日本-黄色视频高清免费观看| 99久久久亚洲精品蜜臀av| 91在线精品国自产拍蜜月| 久久久成人免费电影| 一区福利在线观看| 成人三级黄色视频| 97人妻精品一区二区三区麻豆| 亚洲成人中文字幕在线播放| 久久精品国产清高在天天线| 国产精品人妻久久久影院| 亚洲内射少妇av| 亚洲欧美日韩卡通动漫| 欧美成人一区二区免费高清观看| 午夜福利视频1000在线观看| 国产精品美女特级片免费视频播放器| 日韩一区二区三区影片| 国产日本99.免费观看| 如何舔出高潮| 日本在线视频免费播放| 国产色爽女视频免费观看| 99久久人妻综合| 亚洲天堂国产精品一区在线| 精品久久久久久久久久久久久| 国产欧美日韩精品一区二区| 内射极品少妇av片p| 日韩国内少妇激情av| 黄色日韩在线| .国产精品久久| 欧美精品一区二区大全| 亚洲精品久久久久久婷婷小说 | 国产在视频线在精品| 国产大屁股一区二区在线视频| 久久人妻av系列| 麻豆一二三区av精品| 国产免费男女视频| 欧美日韩综合久久久久久| 亚洲精品自拍成人| 日本色播在线视频| 我的女老师完整版在线观看| 嫩草影院精品99| 毛片一级片免费看久久久久| 午夜老司机福利剧场| 欧美成人一区二区免费高清观看| 成人性生交大片免费视频hd| 又爽又黄无遮挡网站| 日韩欧美国产在线观看| 久久久久久久久中文| 国产精品一区二区三区四区免费观看| 男人舔女人下体高潮全视频| 一级毛片电影观看 | 又粗又硬又长又爽又黄的视频 | 久久午夜亚洲精品久久| 色视频www国产| 国产综合懂色| 欧美日本视频| 国产精品一区二区在线观看99 | av在线天堂中文字幕| 最近手机中文字幕大全| 久久99热6这里只有精品| 高清在线视频一区二区三区 | 能在线免费看毛片的网站| 精品无人区乱码1区二区| 亚洲欧美精品综合久久99| 国产成人精品一,二区 | 18禁在线播放成人免费| 97热精品久久久久久| 国产美女午夜福利| 欧美高清性xxxxhd video| 欧美最黄视频在线播放免费| 国产毛片a区久久久久| 色哟哟哟哟哟哟| 精品久久久久久久久亚洲| 久久久久久久午夜电影| 99久久无色码亚洲精品果冻| 熟女人妻精品中文字幕| 日本三级黄在线观看| 日韩大尺度精品在线看网址| 九草在线视频观看| 国内少妇人妻偷人精品xxx网站| eeuss影院久久| 成年女人永久免费观看视频| 欧美成人一区二区免费高清观看| 可以在线观看的亚洲视频| 欧美高清性xxxxhd video| 日韩欧美在线乱码| 国产老妇女一区| av在线观看视频网站免费| 国产一区亚洲一区在线观看| 日日干狠狠操夜夜爽| 国产成人aa在线观看| 国产精品永久免费网站| 91精品一卡2卡3卡4卡| 高清午夜精品一区二区三区 | 男人的好看免费观看在线视频| 久久精品夜色国产| 国产成人a区在线观看| 国产伦一二天堂av在线观看| ponron亚洲| 日韩制服骚丝袜av| 国产视频首页在线观看| 午夜福利视频1000在线观看| 极品教师在线视频| 美女被艹到高潮喷水动态| 亚洲中文字幕日韩| 2021天堂中文幕一二区在线观| 久久人人爽人人爽人人片va| a级毛片免费高清观看在线播放| 偷拍熟女少妇极品色| 毛片女人毛片| 蜜桃久久精品国产亚洲av| av专区在线播放| av福利片在线观看| 亚洲欧美精品专区久久| 欧美精品国产亚洲| 欧美激情在线99| 国产精品一二三区在线看| 天堂影院成人在线观看| 赤兔流量卡办理| 成人亚洲欧美一区二区av| 又粗又爽又猛毛片免费看| 菩萨蛮人人尽说江南好唐韦庄 | 日韩欧美 国产精品| 草草在线视频免费看| 日韩成人av中文字幕在线观看| 久99久视频精品免费| 亚洲第一电影网av| 国产精品国产高清国产av| 村上凉子中文字幕在线| 国产精品日韩av在线免费观看| 精品久久久久久久末码| 国产v大片淫在线免费观看| 久久这里有精品视频免费| 在线a可以看的网站| 搡女人真爽免费视频火全软件| 免费看美女性在线毛片视频| 亚洲欧美中文字幕日韩二区| 色尼玛亚洲综合影院| 国产午夜精品论理片| 日本-黄色视频高清免费观看| 亚洲欧美成人综合另类久久久 | 爱豆传媒免费全集在线观看| 日本免费a在线| 夜夜夜夜夜久久久久| 久久久精品大字幕| 日本成人三级电影网站| 国产亚洲5aaaaa淫片| 欧美bdsm另类| 日本熟妇午夜| a级毛色黄片| 国产精品,欧美在线| 日韩,欧美,国产一区二区三区 | 国产精品一二三区在线看| 99热这里只有是精品50| 国产成人精品久久久久久| 乱人视频在线观看| 成人性生交大片免费视频hd| 最近最新中文字幕大全电影3| 看十八女毛片水多多多| 亚洲成人精品中文字幕电影| 综合色av麻豆| 亚洲国产色片| 亚洲欧美日韩高清在线视频| 女同久久另类99精品国产91| 久久99热这里只有精品18| 日日干狠狠操夜夜爽| 麻豆av噜噜一区二区三区| 久久久久久久久中文| 国产精品一区二区性色av| 99久久中文字幕三级久久日本| 99riav亚洲国产免费| 国产在视频线在精品| 大香蕉久久网| 最新中文字幕久久久久| av卡一久久| 亚洲不卡免费看| 婷婷精品国产亚洲av| 男人舔女人下体高潮全视频| 国产精品精品国产色婷婷| 国产麻豆成人av免费视频| 欧美变态另类bdsm刘玥| 边亲边吃奶的免费视频| 亚洲自偷自拍三级| 国产老妇伦熟女老妇高清| 美女被艹到高潮喷水动态| 两个人的视频大全免费| 一级毛片电影观看 | 国产成人91sexporn| 性色avwww在线观看| 99热这里只有是精品50| 国产成人精品久久久久久| 亚洲熟妇中文字幕五十中出| 99久国产av精品国产电影| 精品久久久久久久久久久久久| 99久久九九国产精品国产免费| 欧美日韩精品成人综合77777| 两个人视频免费观看高清| 精品久久久久久成人av| www.av在线官网国产| 久久精品夜夜夜夜夜久久蜜豆| 女人十人毛片免费观看3o分钟| 亚洲人成网站在线播| 三级男女做爰猛烈吃奶摸视频| 草草在线视频免费看| 男人的好看免费观看在线视频| 成人美女网站在线观看视频| 国产高潮美女av| 欧美性猛交黑人性爽| 成人性生交大片免费视频hd| 中国美白少妇内射xxxbb| 少妇人妻一区二区三区视频| 亚洲av熟女| 中文在线观看免费www的网站| 国产精品久久久久久久电影| av又黄又爽大尺度在线免费看 | 久久久久久伊人网av| 一本久久精品| av在线老鸭窝| 国产精品一区二区性色av| 久久中文看片网| 国产精品一区www在线观看| 国产精品电影一区二区三区| 天天躁夜夜躁狠狠久久av| av在线天堂中文字幕| 国产免费一级a男人的天堂| av国产免费在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产v大片淫在线免费观看| 三级经典国产精品| 国产精品久久久久久精品电影| 久久国内精品自在自线图片| 午夜精品一区二区三区免费看| 12—13女人毛片做爰片一| or卡值多少钱| 美女高潮的动态| 九草在线视频观看| 久久精品夜夜夜夜夜久久蜜豆| 好男人视频免费观看在线| 老女人水多毛片| 午夜福利在线观看免费完整高清在 | 美女脱内裤让男人舔精品视频 | 插阴视频在线观看视频| 国产欧美日韩精品一区二区| 日产精品乱码卡一卡2卡三| 69人妻影院| 日韩欧美国产在线观看| 国内少妇人妻偷人精品xxx网站| 免费大片18禁| 女的被弄到高潮叫床怎么办| 在线a可以看的网站| 又粗又硬又长又爽又黄的视频 | 大又大粗又爽又黄少妇毛片口| 成人三级黄色视频| 国模一区二区三区四区视频| 精品久久久久久久久久免费视频| 一进一出抽搐gif免费好疼| 国产精品一区二区三区四区久久| 欧美xxxx性猛交bbbb| 91精品一卡2卡3卡4卡| 国产真实伦视频高清在线观看| 综合色丁香网| 精品99又大又爽又粗少妇毛片| 亚洲经典国产精华液单| 亚洲自偷自拍三级| 日韩 亚洲 欧美在线| 成人高潮视频无遮挡免费网站| 美女黄网站色视频| 欧美xxxx性猛交bbbb| 日韩,欧美,国产一区二区三区 | 男女下面进入的视频免费午夜| 久久九九热精品免费| 欧美一级a爱片免费观看看| 成人毛片60女人毛片免费| 床上黄色一级片| 免费在线观看成人毛片| 亚洲色图av天堂| АⅤ资源中文在线天堂| 一级av片app| 亚洲经典国产精华液单| 国产成年人精品一区二区| 精品欧美国产一区二区三| 特级一级黄色大片| 男女做爰动态图高潮gif福利片| 亚洲欧美日韩无卡精品| 亚州av有码| 最近的中文字幕免费完整| 99视频精品全部免费 在线| 亚洲欧美日韩卡通动漫| 嘟嘟电影网在线观看| 欧美一级a爱片免费观看看| 国产蜜桃级精品一区二区三区| 晚上一个人看的免费电影| 97人妻精品一区二区三区麻豆| 国产麻豆成人av免费视频| 12—13女人毛片做爰片一| 美女cb高潮喷水在线观看| 亚洲三级黄色毛片| 久久人人爽人人爽人人片va| 99热这里只有是精品50| 久久99热这里只有精品18| 特大巨黑吊av在线直播| 亚洲精品久久国产高清桃花| 国产精品久久视频播放| 啦啦啦啦在线视频资源| av.在线天堂| а√天堂www在线а√下载| 国产大屁股一区二区在线视频| 午夜福利在线在线| 99久国产av精品国产电影| 成人高潮视频无遮挡免费网站| АⅤ资源中文在线天堂| 国产91av在线免费观看| ponron亚洲| 国产精品久久视频播放| 国产午夜精品一二区理论片| 日韩制服骚丝袜av| 少妇熟女欧美另类| 全区人妻精品视频| 校园人妻丝袜中文字幕| 精品久久久噜噜| 成人国产麻豆网| 精品无人区乱码1区二区| 在线天堂最新版资源| 校园人妻丝袜中文字幕| 亚洲在线观看片| 婷婷色综合大香蕉| 热99re8久久精品国产| 高清午夜精品一区二区三区 | 美女高潮的动态| 精品一区二区三区人妻视频| 日本爱情动作片www.在线观看| 成人欧美大片| 色综合亚洲欧美另类图片| 国产69精品久久久久777片| 我的老师免费观看完整版| 亚洲精品影视一区二区三区av| 亚洲,欧美,日韩| 床上黄色一级片| 天堂影院成人在线观看| 亚洲欧美日韩无卡精品| 简卡轻食公司| 在线观看免费视频日本深夜| 观看美女的网站| 国产av麻豆久久久久久久| www.色视频.com| 日本黄色片子视频| 国产爱豆传媒在线观看| 天天躁夜夜躁狠狠久久av| 国产精品精品国产色婷婷| 精品久久久噜噜| 丰满的人妻完整版| 免费看av在线观看网站| 欧美精品一区二区大全| 日韩高清综合在线| 亚洲,欧美,日韩| 国产一区二区激情短视频| 天堂影院成人在线观看| www日本黄色视频网| 秋霞在线观看毛片| 全区人妻精品视频| 69av精品久久久久久| 久久亚洲国产成人精品v| 亚洲国产欧洲综合997久久,| 国产精品永久免费网站| 97人妻精品一区二区三区麻豆| 麻豆成人午夜福利视频| 欧美最新免费一区二区三区| 91在线精品国自产拍蜜月| 亚洲成av人片在线播放无| 99在线人妻在线中文字幕| 级片在线观看| 久久精品夜夜夜夜夜久久蜜豆| 色视频www国产| 男人舔奶头视频| 亚洲欧美中文字幕日韩二区| 高清午夜精品一区二区三区 | 国产精品乱码一区二三区的特点| 久久久久久大精品| 午夜精品一区二区三区免费看| 99久久精品热视频| 人妻久久中文字幕网| 日韩欧美精品v在线| 在线免费观看不下载黄p国产| 国产精品久久久久久久电影| 日日摸夜夜添夜夜爱| 天天一区二区日本电影三级| 成人漫画全彩无遮挡| 少妇的逼水好多| 床上黄色一级片| 亚洲在线自拍视频| 97超视频在线观看视频| 国内久久婷婷六月综合欲色啪| 18禁黄网站禁片免费观看直播| 国产视频内射| 只有这里有精品99| 人妻少妇偷人精品九色| 全区人妻精品视频| 亚洲婷婷狠狠爱综合网| 三级经典国产精品| 色播亚洲综合网| 特级一级黄色大片| 我要看日韩黄色一级片| 国产欧美日韩精品一区二区| 波多野结衣高清作品| 99热这里只有是精品50| 国产精品免费一区二区三区在线| 校园春色视频在线观看| 少妇人妻一区二区三区视频| a级毛色黄片| 久久99精品国语久久久| 久99久视频精品免费| 国产一级毛片七仙女欲春2| 久久九九热精品免费| 久久精品91蜜桃| 18禁裸乳无遮挡免费网站照片| 国产精品一区二区三区四区免费观看| 18禁在线播放成人免费| 亚洲,欧美,日韩| 超碰av人人做人人爽久久| 97超碰精品成人国产| 嫩草影院精品99| 国产亚洲精品av在线| 噜噜噜噜噜久久久久久91| 免费av观看视频| 成人漫画全彩无遮挡| kizo精华| 少妇裸体淫交视频免费看高清| 久久精品国产亚洲av涩爱 | 大又大粗又爽又黄少妇毛片口| 国产国拍精品亚洲av在线观看| 欧美一级a爱片免费观看看| 久久人人爽人人爽人人片va| av专区在线播放| 淫秽高清视频在线观看| 国产精品人妻久久久久久| 我要看日韩黄色一级片| 亚洲性久久影院| 欧美日韩乱码在线| 欧美激情久久久久久爽电影| 欧美成人a在线观看| 成人亚洲欧美一区二区av| 男插女下体视频免费在线播放| 亚洲欧美精品自产自拍| 99在线视频只有这里精品首页| 国产女主播在线喷水免费视频网站 | 亚洲av电影不卡..在线观看| 国产不卡一卡二| 国产乱人偷精品视频| 久久中文看片网| 成人美女网站在线观看视频| 久久人人爽人人爽人人片va| a级一级毛片免费在线观看| 色哟哟·www| 日韩欧美在线乱码| 久久综合国产亚洲精品| 成人高潮视频无遮挡免费网站| 成人午夜高清在线视频| 人人妻人人澡人人爽人人夜夜 | 国产精品野战在线观看| 色综合站精品国产| 亚洲性久久影院| 亚洲国产精品成人综合色| h日本视频在线播放| 亚洲高清免费不卡视频| 高清午夜精品一区二区三区 | 亚洲中文字幕日韩| 好男人在线观看高清免费视频| 日韩人妻高清精品专区| 夜夜夜夜夜久久久久| 国产一区二区在线观看日韩| 免费黄网站久久成人精品| 久久精品国产清高在天天线| 国产色婷婷99| 国产一区二区三区在线臀色熟女|