• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic impact on heat and mass transfer utilizing nonofluid in an annulus between a superellipse obstacle and a cavity with periodic side-wall temperature and concentration

    2021-11-13 05:36:08AbdelraheemAlyandNouraAlsedais
    Communications in Theoretical Physics 2021年11期

    Abdelraheem M Alyand Noura Alsedais

    1 Department of Mathematics,King Khalid University,Abha 62529,Saudi Arabia

    2 Department of Mathematics,F(xiàn)aculty of Science,South Valley University,Qena 83523,Egypt

    3Department of Mathematical Sciences,College of Science,Princess Nourah Bint Abdulrahman University,Riyadh,Saudi Arabia

    Abstract The magnetic impacts upon the transport of heat and mass of an electrically conducting nanofluid within an annulus among an inner rhombus with convex and outer cavity with periodic temperature/concentration profiles on its left wall are assessed by the ISPH method.The right wall has Tc andCc ,flat walls are adiabatic,and the temperature and concentration of the left wall are altered sinusoidally with time.The features of the heat and mass transfer and fluid flow through an annulus are assessed across a wide scale of Hartmann number Ha,Soret numberSr,oscillation amplitude A,Dufour number Du,nanoparticles parameterφ,oscillation frequency f,Rayleigh number Ra,and radius of a superellipsea at Lewis numberLe= 20,magnetic field’s angleγ = 45° ,Prandtl numberPr= 6.2,a superellipse coefficient n= 3 /2,and buoyancy parameter N= 1.The results reveal that the velocity’s maximum reduces by70.93% as Ha boosts from 0 to 50,and by 66.24%as coefficienta boosts from0.1 to0.4.Whilst the velocity’s maximum augments by 83.04% asSr increases from 0.6 to 2 plus a decrease in Du from 1 to 0.03.The oscillation amplitude A,and frequency f are significantly affecting the nanofluid speed,and heat and mass transfer inside an annulus.Increasing the parameters A and f is augmenting the values of mean Nusselt number Nu and mean Sherwood number Sh.Increasing the radius of a superellipsea enhances the values of and

    Keywords: Dufour number,ISPH method,nanofluid,Soret number,rhombus,magnetic field

    Nomenclature

    Greek symbols

    Subscripts

    1.Introduction

    The research of the magnetic impacts has received a lot of consideration in engineering due to its wide range of uses for instance polymer and metallurgical industries,where hydromagnetic practices are employed.Lo[1]studied the magnetic impacts on a buoyancy-driven flow in an enclosure.Oztop et al [2] investigated the MHD natural convection from two semi-circular heaters inside an enclosure.The magnetic field is employed in controlling heat and fluid flow.Knowledge of the magnetic influences on the heat transfer process and flow actions inside enclosures occupied by electrically conducting fluids has become increasingly important [3—10].Recently,fluid dynamics researchers have shown a strong interest in the development of natural/mixed convection in nanofluid-filled cavities owing to their applications in various disciplines.Sherement and Pop [11] utilized the Buongiorno model to examine the natural convection in a porous cavity occupied by a nanofluid.In a heated closed rectangular enclosure,Alina and Lorenzini[12]studied the thermal behavior of ZnO-water nanofluid.Using the Lattice Boltzmann Method,Nemati et al[13] and Zhou and Yan [14] investigated natural convection through MHD flow in a cavity.The magnetic field is found to minimize cavity circulation.Mehmood et al[15]examine the magnetic impacts and thermal radiation on mixed convection of a nanofluid in a square porous cavity.More studies can be found in [16—27].

    There are a considerable number of studies that consider natural convection in different cavities including the inserted bodies.Natural convection caused by a hot inner circular cylinder inside a cold outer enclosure is calculated numerically by Kim et al[28].Sheikholeslami et al[29]investigated natural convection in a circular cavity including a sinusoidal cylinder.Jabbar et al[30]investigated natural convection in a sinusoidal enclosure having a circular cylinder.Aly [31]examined the double-diffusion in a porous enclosure contained nanofluid over two circular cylinders.Pop et al [32]studied the transmission of thermo-gravitational convection in a differentially heated chamber involving an adiabatic solid body.Sheremet et al [33] studied the thermo-gravitational of Al2O3—SiO2/H2O in a porous space holding a heat-conducting body.Bhattacharyya et al [34] examined heat and mass transport in a porous channel under the influences of Dufour,Soret,and inclined magnetic field.Kumar et al[35]explained the impacts of magnetite nanofluid over a rotating disk with considering chemical reaction and magnetic field.Shanker et al [36] checked partial velocity slip on MHD convective flow over a stretching surface.The topic of the nonuniform temperature profiles is occurring in several industrial applications,for instance,solar energy collection,building thermal isolations,energy storage,and cooling of electronic elements[37—42].

    The periodic changes in the electronic components’current are providing time changes in their surface temperature.This paper treats the magnetic influences on the heat and mass transfer of an electrically conducting nanofluid inside an annulus.The regulating equations of the continuity,momentum,energy,and mass in the dimensionless form are solved by the ISPH method.The main outcomes after studying the impacts of the relevant parameters on the nanofluid flow and lineaments of the heat and mass transfer are:

    · The increase in the Hartmann numberHa,nanoparticles parameterφ,and radius of a superellipseais slowing down the nanofluid speed in an annulus.

    · The values ofandare augmenting as nanoparticles parameterφ,Rayleigh numberRa,amplitudeA,and frequencyfare increasing.

    · IncreasingSrwith minimizingDuis improving the strength of the concentration distributions in an annulus,and accordinglyis strongly decreasing.

    2.Mathematical analysis

    Figure 1 describes the preliminary geometry and its particles model.In an outer cavity,the horizontal walls are presumed to be adiabatic,right wall is held atTcandCc,and the left wall is altered with sinusoidal temperature/concentration in a time.

    Figure 1.Geometry of the problem.

    The equation of the superellipse is:

    wheren,aandbare positive numbers,and their values are taken asn= 3 /2,anda=bis varied throughout the computations.Hence,the superellipse shape is taken as a rhombus with convex corners.The flow assumptions are:

    · The Boussinesq approximation is utilized,in which density variations are ignored except via the gravity term.

    · The inclined magnetic field (B0) used with an incline angleγalongx-yaxis with ignoring the viscous dissipation and Joule heating impacts.

    · One phase model is employed for nanofluid modeling.

    · The fluid flow is laminar,incompressible,and transitional.

    The governing equations are [43,44]:

    The dimensionless quantities:

    After substitute equation(7)in(2)—(6),the dimensionless equations are:

    2.1.Dimensionless boundary conditions

    Cavity’s right‐wall,and an inner blockageU=0,

    V= 0,θ= 0 = Φ,

    Mean Sherwood number:

    Mean Nusselt number:

    2.2.Nanofluid thermophysical properties

    In this study,the water is a base fluid and copper (Cu) is the nanoparticles.The physical attributes of the copper and H2O are shown in table 1.

    The density,specific heat,and thermal conductivity of a nanofluid [47—50],are:

    Table 1.Physical attributes of copper (Cu) and H2O [45,46].

    The Brinkman model for effective dynamic viscosity of a nanofluid [51]:

    Electrical conductivity of a nanofluid:

    3.ISPH formulation

    The ISPH method employs a quintic kernel functionW:

    whereq=rij/h.The description off(ri) in SPH estimation:

    The renormalization factorξi[43,44,52] is:

    The first derivative is:

    3.1.Solving steps

    The projection method [53] is employed in the ISPH method as:

    The projected velocities are:

    Pressure Poisson equation:

    The updated velocities are:

    The thermal and concentration equations are:

    The positions are:

    The shifting technique is:

    3.2.Validation of the ISPH method

    The comparison between numerical and experimental results from Paroncini and Corvaro [54] and the ISPH results are introduced in figure 2.The comparison showed the agreement of the ISPH results compared to the experimental and numerical results [54].Further,there are numerous validation examinations during the earlier studies of the ISPH method[43,44,52,55].

    Figure 2.Isotherms of the numerical and experimental results of [54] and the ISPH results.

    4.Results and discussion

    Results are processed for a large scale of parameters.The frequency and amplitude of the temperature/concentration are varied over(5≤f≤100) and (0.5 ≤A≤2) ,respectively.Hartmann number,nanoparticles parameter,Soret number,Rayleigh number,Dufour number,and radius of a superellipseaare varied as (0 ≤Ha≤50) ,(0≤φ≤0.05),(0.6 ≤Sr≤2),(103≤Ra≤105),(0.03 ≤Du≤1) ,and(0.03 ≤a≤1) ,respectively.All over the computations,buoyancy parameter isN=1,magnetic field’s angle isγ= 45° ,Lewis numberLe=20,a superellipse coefficientn=3 / 2,and Prandtl numberPr=6.2.

    Figure 3 shows the influences of nanoparticle’s parameterφon a nanofluid velocity,and deployments of temperature and concentration in an annulus atγ= 45° ,N=1,n=3 /2,a=0.35,Ra=104,A= 0.5,f=5,Sr=1,Du=0.12,andHa=10.For addition of the nanoparticles,the first remark is a decline in the velocity’s maximum by 17.49% asφgets from 0 until 0.05.Physically,adding nanoparticles serves an extra effective viscosity of a nanofluid.The second remark is that an extra value ofφdeclines the temperature and enhances the concentration within an annulus between a cavity and an inner superellipse.Figure 4 shows the reliance ofandon the time and nanoparticle’s parameters atγ= 45° ,N=1,n= 3 /2,a=0.35,Ra=104,A= 0.5,f=5,Sr= 1,Du=0.12,andHa=10.It is noted that a significant enhancement is existing in the values ofandfor higher nanoparticle’s parameterφ.

    Figure 3.The influences of nanoparticle’s parameterφ on nanofluid velocity,and deployments of temperature and concentration at γ = 45° ,N = 1,n =3 /2,a = 0.35,Ra =10 4,A = 0.5,f =5,Sr = 1,Du =0.12,andHa =10.

    Figure 4.The values of and below the influences of the nanoparticle’s parameter at γ = 45° ,N = 1,n =3 /2,a = 0.35,Ra =10 4,A = 0.5,f =5,Sr = 1,Du =0.12,andHa =10.

    The sequences of the velocity,temperature,and concentration contours are plotted at various Hartmann numberHaatγ= 45° ,N= 1,n=3 /2,a= 0.35,Ra=104,A= 0.5,f=5,Sr= 1,Du=0.12,andφ= 0.06 are shown in figure 5.Physically,the extra Lorentz forces of a magnetic field are produced at a higher Hartmann number.As a result,the velocity’s maximum reduces by 70.93%according to an increase inHafrom 0 to 50.In figures 5(b)—(c),there is a little reduction in the temperature and concentration contours within an annulus as the Hartmann number increases.Further,figure 6 presents the dependence ofandon the Hartmann number atγ= 45° ,N= 1,n=3 /2,a= 0.35,Ra=104,A=0.5,f=5,Sr= 1,Du=0.12,andφ= 0.06.It is clear that an increment on the Hartmann number reduces the values ofandwhich highlighting the Lorentz forces’controls on the convection flow.

    Figure 5.The influences of the Hartmann number on nanofluid velocity,and deployments of temperature and concentration at γ = 45° ,N=1,n = 3 /2,a =0.35,Ra =10 4,A = 0.5,f =5,Sr = 1,Du =0.12,andφ = 0.06.

    Figure 6.The values of and below the influences of the Hartmann number at γ = 45° ,N = 1,n =3 /2,a = 0.35,Ra =10 4,A = 0.5,f =5,Sr = 1,Du =0.12,andφ = 0.06.

    Figure 7.The influences of coefficient a for a superellipse on nanofluid velocity,and deployments of temperature and concentration at γ = 45° ,N = 1,n =3 /2,Ha = 10,Ra =10 4,A = 0.5,f =5,Sr = 1,Du =0.12,andφ = 0.06.

    Figure 7 introduces the impacts of a superellipse radiusaon the nanofluid velocity,and deployments of temperature and concentration in an annulus atγ= 45° ,N=1,n=3 /2,Ha= 10,Ra=104,A= 0.5,f=5,Sr=1,Du=0.12,andφ= 0.06.As the lengthacontrols the radius of an inner superellipse-blockage,an increment inafrom0.1 to0.4,the velocity’s maximum lessens by 66.24% and the temperature and concentration contours are reducing within an annulus.Physically,the inner superellipse represents a blockage for the convection flow,and consequently,as the area of a superellipse increase by an increment ina,the nanofluid movement and the deployments of the temperature and concentration are shrinking within the area between a cavity and an inner blockage.The impacts of the radius of a superellipseaon the values ofandare shown in figure 8.It is noted that an expansion in the radiusaaugments the values ofand.

    Figure 8.The values of and below the influences of the radius of a superellipse a at γ = 45° ,N = 1,n =3 /2,Ha = 10,Ra =10 4,A = 0.5,f =5,Sr = 1,Du =0.12,andφ = 0.06.

    Figures 9 and 10 show the impacts of combination values of the Soret—Dufour parameters(Sr and Du)on the nanofluid velocity,and deployments of temperature and concentration in an annulus as well asandatγ= 45° ,N=1,n= 3 /2,a=0.35,Ha= 10,Ra=104,A= 0.5,f=5,andφ= 0.06.In figure 9(a),the velocity’s maximum increases by 83.04% asSrincreases from 0.6 to 2 with a decrease inDufrom 1 to 0.03.In figures 9(b)—(c),according to an increase inSr(or a decrease inDu),there are slight changes in the temperature and a clear decrease in the concentration within an annulus.In figure 10,is slightly enhanced andis strongly decreased asSrincreases with a decrease inDu.Physically,Soret number is a mass alter of a temperature difference and Dufour number is a heat alter from the concentration difference.The combinations ofSrandDucan be found are referred in [31,56,57].

    Figure 9.The influences of the Soret and Dufour parameters on nanofluid velocity,and deployments of temperature and concentration at γ = 45° ,N = 1,n =3 /2,a = 0.35,Ha =10,Ra = 10 4,A = 0.5,f =5,andφ = 0.06.

    Figure 10.The values of and below the influences of Soret and Dufour numbers at γ = 45° ,N=1,n =3 /2,a = 0.35,Ha =10,Ra =10 4,A = 0.5,f =5,andφ = 0.06.

    Figures 11 and 12 show the influences of the Rayleigh numberRaon the nanofluid velocity,and deployments of temperature and concentration in an annulus as well asandatγ= 45° ,N= 1,n=3 /2,a= 0.35,Ha=10,A= 0.5,f=5,Sr= 1,Du=0.12,andφ= 0.06.In figure 11,asRapowers,the intensity of the velocity field boosts clearly and the temperature and concentration are improved from almost straight lines to the parallel lines across an annulus over a superellipse blockage.In figure 12,an increment inRaprovides a clear increment in the values ofand.Physically,increasingRapowers the buoyancy force which accelerates the nanofluid movements and enhances the heat/mass transport within an annulus.

    Figure 11.The influences of Ra on nanofluid velocity,and deployments of temperature and concentration at γ = 45° ,N=1,n = 3 /2,a =0.35,Ha =10,A = 0.5,f =5,Sr = 1,Du =0.12,andφ = 0.06.

    Figure 12.The values of and below the influences of the Ra at γ = 45° ,N=1,n = 3 /2,a =0.35,Ha =10,A = 0.5,f =5,Sr = 1,Du =0.12,andφ = 0.06.

    Figures 13—15 present the influences of the amplitudeAand frequencyfof the temperature and concentration oscillation on the nanofluid velocity,temperature and concentration within an annulus atγ= 45° ,N= 1,n=3 /2,a=0.35,Ha=10,Ra=104,Sr= 1,Du=0.12,andφ=0.06.In figure 13,it is remarked that as an amplitudeAraises from 0.5 to 2,the velocity’s maximum increases by 66.23%atf=5,whilst it decreases by 42% atf=50,and by 68.18%atf=100.In figures 14 and 15,it is observed that atf=5,the intensity of the temperature and concentration within an annulus is boosting extremely asAincreases from 0.5 to 2,whilst atf=50 or 100,the intensity of the temperature and concentration is decreasing asAincreases from 0.5 to 2.The fluctuations of the results are relevant to the definition of a sine wave for the periodic boundary condition of temperature and concentration in a left wall.Figure 16 shows a 3D-plot ofandbelow the influences of the amplitude and frequency of the temperature and concentration oscillation atγ= 45° ,N= 1,n=3 /2,a= 0.35,Ha=10,Ra=104,Sr=1,Du=0.12,andφ= 0.06.The values ofandare increasing as both of amplitudeAand frequencyfare increasing and it has seen whenf=50 andA=2,the highest values ofandare obtained.

    Figure 13.The influences of the amplitude and frequency of the temperature and concentration oscillation on the velocity field at γ = 45° ,N=1,n = 3 /2,a =0.35,Ha =10,Ra =10 4,Sr = 1,Du =0.12,andφ = 0.06.

    Figure 14.The influences of the amplitude and frequency of the temperature and concentration oscillation on the temperature at γ = 45° ,N = 1,n = 3 /2,a = 0.35,Ha =10,Ra = 10 4,Sr = 1,Du =0.12,andφ = 0.06.

    Figure 15.The influences of the amplitude and frequency of the temperature and concentration oscillation on the concentration at γ = 45° ,N = 1,n =3 /2,a = 0.35,Ha =10,Ra =10 4,Sr = 1,Du =0.12,andφ = 0.06.

    Figure 16.3D-plot of and below the influences of the amplitude and frequency of the temperature and concentration oscillation at γ = 45° ,N=1,n = 3 /2,a =0.35,Ha =10,Ra =10 4,Sr = 1,Du =0.12,andφ = 0.06.

    5.Conclusion

    The transport of heat and mass of an oscillating concentration and temperature in the left-side of an annulus between an inner rhombus with convex corners and an outer cavity is numerically investigated.The annulus is occupied by a nanofluid and is influenced by a magnetic field,thermo-diffusion,and diffusion-thermo.The implications of the pertinent parameters like oscillation amplitude,oscillation frequency,Hartmann number,nanoparticles parameter,Soret number,Rayleigh number,Dufour number,and radius of a superellipseaon the nanofluid flow and features of the heat and mass transmission have been discussed.It is remarked that the velocity’s maximum reduces by70.93%asHaraises from 0 to 50,by 66.24% as a radius of a superellipseaexpands from0.1 to0.4.AsAraises from 0.5 to 2,the velocity’s maximum declines by42% atf= 50,and by 68.18%atf= 100.Whilst the velocity’s maximum boosts by 66.23%atf= 5 asAincreases from 0.5 to 2,and by 83.04%asSrboosts from 0.6 to 2 with a decrease inDufrom 1 to 0.03.As an oscillation amplitudeAincreases from 0.5 to 2,the strength of the temperature and concentration is extremely boosting at an oscillation frequencyf=5,and decreasing atf=50 or 100.The values ofandare increasing as amplitudeAand frequencyfare increasing.The highest values ofandare obtained atf=50 andA=2.BoostingSrwith lower inDu,leads to the followings: the temperature distributions have little changes,the strength of the concentration distributions is augmented,is slightly enhanced,andis strongly decreased.

    Acknowledgments

    The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University,Abha,Saudi Arabia,for funding this work through the Research Group Project under Grant Number(RGP.2/144/42).This research was funded by the Deanship of Scientific Research at Princess Nourah Bint Abdulrahman University through the Fast-track Research Funding Program.

    ORCID iDs

    亚洲欧洲国产日韩| 纯流量卡能插随身wifi吗| 亚洲第一av免费看| 色网站视频免费| 成人黄色视频免费在线看| 男女边吃奶边做爰视频| 久久久久精品性色| 赤兔流量卡办理| 永久免费av网站大全| 久久久久久伊人网av| 91精品国产国语对白视频| 亚洲精品中文字幕在线视频 | h视频一区二区三区| 插逼视频在线观看| 亚洲av.av天堂| 国产高清有码在线观看视频| 干丝袜人妻中文字幕| 精品视频人人做人人爽| 亚洲激情五月婷婷啪啪| 久久久久人妻精品一区果冻| 国产黄色视频一区二区在线观看| 日韩电影二区| 欧美三级亚洲精品| 有码 亚洲区| 久久久色成人| 人妻 亚洲 视频| 亚洲精品aⅴ在线观看| 亚洲精品色激情综合| 性色avwww在线观看| 九九爱精品视频在线观看| 亚洲欧美日韩东京热| 国产一区二区三区av在线| 成人18禁高潮啪啪吃奶动态图 | 又粗又硬又长又爽又黄的视频| 日韩欧美精品免费久久| 国产高清三级在线| 人妻夜夜爽99麻豆av| 成人国产av品久久久| 久久99热这里只有精品18| av在线播放精品| 国产精品伦人一区二区| 黄色配什么色好看| 草草在线视频免费看| 少妇猛男粗大的猛烈进出视频| 特大巨黑吊av在线直播| av福利片在线观看| 亚洲精品色激情综合| 美女内射精品一级片tv| 毛片一级片免费看久久久久| 大话2 男鬼变身卡| 纵有疾风起免费观看全集完整版| 久久久亚洲精品成人影院| av国产免费在线观看| 一本—道久久a久久精品蜜桃钙片| 国产欧美另类精品又又久久亚洲欧美| 视频区图区小说| 少妇人妻久久综合中文| 有码 亚洲区| 免费大片18禁| 六月丁香七月| 久久久久网色| 成人一区二区视频在线观看| 欧美xxⅹ黑人| 大码成人一级视频| av女优亚洲男人天堂| 欧美97在线视频| 亚洲欧美一区二区三区黑人 | 久久人人爽av亚洲精品天堂 | 在线观看一区二区三区| 少妇猛男粗大的猛烈进出视频| 久久久久久久大尺度免费视频| 国产成人freesex在线| 91aial.com中文字幕在线观看| 偷拍熟女少妇极品色| 成年免费大片在线观看| 麻豆成人av视频| 国产精品国产三级专区第一集| 国产亚洲最大av| 51国产日韩欧美| 欧美高清成人免费视频www| 男女边摸边吃奶| 国产视频首页在线观看| 国产精品久久久久久精品古装| 尾随美女入室| 深夜a级毛片| 97在线视频观看| 亚洲av免费高清在线观看| tube8黄色片| 精品熟女少妇av免费看| 成人影院久久| 蜜桃亚洲精品一区二区三区| 国产成人精品福利久久| 一本—道久久a久久精品蜜桃钙片| 我要看黄色一级片免费的| tube8黄色片| 免费观看在线日韩| 成人影院久久| 99久久人妻综合| 久久女婷五月综合色啪小说| 日韩大片免费观看网站| 亚洲人与动物交配视频| 免费大片黄手机在线观看| 看非洲黑人一级黄片| 人人妻人人添人人爽欧美一区卜 | 亚洲精品aⅴ在线观看| 搡女人真爽免费视频火全软件| 卡戴珊不雅视频在线播放| 嘟嘟电影网在线观看| 大香蕉久久网| 亚洲av福利一区| 水蜜桃什么品种好| 日韩,欧美,国产一区二区三区| 日韩中字成人| 夜夜骑夜夜射夜夜干| 尤物成人国产欧美一区二区三区| 中文天堂在线官网| 夫妻午夜视频| 少妇人妻精品综合一区二区| 日韩国内少妇激情av| 日本av免费视频播放| 久久97久久精品| 国产久久久一区二区三区| 美女脱内裤让男人舔精品视频| 亚洲综合色惰| 国产成人aa在线观看| 久久毛片免费看一区二区三区| 一区二区三区乱码不卡18| 国产深夜福利视频在线观看| 91久久精品电影网| 色视频在线一区二区三区| 亚洲国产成人一精品久久久| 三级国产精品欧美在线观看| 一级毛片久久久久久久久女| 国产在线一区二区三区精| 一个人看的www免费观看视频| 3wmmmm亚洲av在线观看| 久久午夜福利片| av在线老鸭窝| 亚洲欧美精品专区久久| 美女福利国产在线 | 男的添女的下面高潮视频| 又粗又硬又长又爽又黄的视频| 国产黄色视频一区二区在线观看| 国产伦理片在线播放av一区| 一区二区av电影网| 中文字幕精品免费在线观看视频 | 有码 亚洲区| 国产精品99久久99久久久不卡 | 国产日韩欧美亚洲二区| 精品国产一区二区三区久久久樱花 | 少妇丰满av| 美女福利国产在线 | av在线观看视频网站免费| 久久综合国产亚洲精品| 老女人水多毛片| 夫妻性生交免费视频一级片| 一级片'在线观看视频| 亚洲精品成人av观看孕妇| 熟女av电影| 亚洲欧美精品专区久久| 少妇猛男粗大的猛烈进出视频| 亚洲图色成人| 交换朋友夫妻互换小说| 丰满迷人的少妇在线观看| 如何舔出高潮| 人人妻人人澡人人爽人人夜夜| 成人国产麻豆网| 午夜福利视频精品| 一级爰片在线观看| 国产 一区精品| 久久韩国三级中文字幕| 中文字幕久久专区| 在线观看免费日韩欧美大片 | 亚州av有码| 大香蕉97超碰在线| 国产av一区二区精品久久 | 亚洲高清免费不卡视频| 联通29元200g的流量卡| 国产真实伦视频高清在线观看| 卡戴珊不雅视频在线播放| 观看免费一级毛片| 日日啪夜夜撸| 亚洲aⅴ乱码一区二区在线播放| 九九爱精品视频在线观看| av天堂中文字幕网| 亚洲内射少妇av| 亚洲欧美中文字幕日韩二区| 久久婷婷青草| 亚洲成人中文字幕在线播放| 亚洲欧美清纯卡通| 中国美白少妇内射xxxbb| 少妇人妻一区二区三区视频| 亚洲成人手机| 亚洲av中文字字幕乱码综合| 婷婷色综合大香蕉| 国语对白做爰xxxⅹ性视频网站| h视频一区二区三区| 在线观看免费日韩欧美大片 | 男女国产视频网站| 男人狂女人下面高潮的视频| h日本视频在线播放| 一级毛片 在线播放| 我要看黄色一级片免费的| 人妻 亚洲 视频| 精品人妻视频免费看| 亚洲,一卡二卡三卡| 亚洲精品一区蜜桃| 免费av不卡在线播放| 日韩中文字幕视频在线看片 | 欧美日韩在线观看h| av卡一久久| 丝袜喷水一区| 街头女战士在线观看网站| 亚洲四区av| 久热这里只有精品99| freevideosex欧美| 美女内射精品一级片tv| 欧美+日韩+精品| 少妇人妻 视频| 在现免费观看毛片| 人妻制服诱惑在线中文字幕| 99久久中文字幕三级久久日本| 人妻少妇偷人精品九色| 精品少妇黑人巨大在线播放| 精品午夜福利在线看| 亚洲欧美日韩另类电影网站 | 黑人猛操日本美女一级片| 免费看av在线观看网站| 亚洲国产高清在线一区二区三| 日韩av免费高清视频| 日韩亚洲欧美综合| 十八禁网站网址无遮挡 | av一本久久久久| 纯流量卡能插随身wifi吗| 亚洲欧美精品自产自拍| 在线观看免费高清a一片| 国产日韩欧美在线精品| 精华霜和精华液先用哪个| 国产在视频线精品| 人人妻人人爽人人添夜夜欢视频 | 午夜激情久久久久久久| 久久精品国产亚洲网站| av天堂中文字幕网| 欧美另类一区| 精品人妻一区二区三区麻豆| 国产极品天堂在线| 春色校园在线视频观看| 看十八女毛片水多多多| 大片电影免费在线观看免费| 蜜桃久久精品国产亚洲av| 午夜福利网站1000一区二区三区| 日本爱情动作片www.在线观看| 久久久a久久爽久久v久久| 午夜福利在线在线| 婷婷色综合www| 高清视频免费观看一区二区| 国产高清国产精品国产三级 | 亚洲av福利一区| 美女高潮的动态| 老司机影院毛片| 久久久精品94久久精品| 亚洲精品乱码久久久v下载方式| 91久久精品电影网| 国产精品久久久久成人av| 麻豆成人av视频| 日韩中文字幕视频在线看片 | 我的女老师完整版在线观看| 国产欧美日韩一区二区三区在线 | 久久久久国产网址| 一级毛片电影观看| tube8黄色片| 亚洲av成人精品一二三区| 国产精品99久久99久久久不卡 | 麻豆成人av视频| 各种免费的搞黄视频| 亚洲成人一二三区av| 久久人妻熟女aⅴ| 久久青草综合色| 美女中出高潮动态图| 欧美日韩精品成人综合77777| 久久久久网色| 99精国产麻豆久久婷婷| 精品久久久久久久末码| 日韩,欧美,国产一区二区三区| 一级a做视频免费观看| 亚洲图色成人| 一区二区av电影网| 纯流量卡能插随身wifi吗| 亚洲精品日韩在线中文字幕| 国产淫片久久久久久久久| 国产白丝娇喘喷水9色精品| 国产精品爽爽va在线观看网站| 国产亚洲av片在线观看秒播厂| 黄片无遮挡物在线观看| 狂野欧美白嫩少妇大欣赏| av天堂中文字幕网| 国产av国产精品国产| 秋霞伦理黄片| 国产国拍精品亚洲av在线观看| 老熟女久久久| 3wmmmm亚洲av在线观看| 热re99久久精品国产66热6| 国产成人精品久久久久久| 欧美zozozo另类| 免费看不卡的av| 麻豆国产97在线/欧美| 狠狠精品人妻久久久久久综合| 久久久亚洲精品成人影院| 亚洲,一卡二卡三卡| 九九爱精品视频在线观看| 久久久欧美国产精品| av黄色大香蕉| 一级毛片黄色毛片免费观看视频| 一本色道久久久久久精品综合| 久久国内精品自在自线图片| 在线观看人妻少妇| 日韩一本色道免费dvd| 啦啦啦视频在线资源免费观看| 在线观看人妻少妇| 日本与韩国留学比较| 天天躁日日操中文字幕| 久久这里有精品视频免费| 少妇被粗大猛烈的视频| 久久国内精品自在自线图片| 精品久久久噜噜| 久久久午夜欧美精品| 国产精品久久久久久av不卡| 在线观看一区二区三区激情| 日产精品乱码卡一卡2卡三| 精品久久久久久久末码| videos熟女内射| av在线观看视频网站免费| 少妇猛男粗大的猛烈进出视频| 久久婷婷青草| 欧美亚洲 丝袜 人妻 在线| 欧美zozozo另类| 日本欧美视频一区| 日本-黄色视频高清免费观看| 精品一区在线观看国产| av线在线观看网站| 欧美日韩一区二区视频在线观看视频在线| 亚洲内射少妇av| 国产中年淑女户外野战色| 欧美激情国产日韩精品一区| 色婷婷av一区二区三区视频| 国产黄色视频一区二区在线观看| 免费大片黄手机在线观看| 黑人高潮一二区| 韩国高清视频一区二区三区| 久久国产精品大桥未久av | 亚洲av在线观看美女高潮| 亚洲经典国产精华液单| 九色成人免费人妻av| 免费看av在线观看网站| av天堂中文字幕网| 男女边吃奶边做爰视频| 特大巨黑吊av在线直播| 香蕉精品网在线| 大陆偷拍与自拍| 国产精品精品国产色婷婷| 乱码一卡2卡4卡精品| 男的添女的下面高潮视频| 超碰av人人做人人爽久久| 亚洲精品一区蜜桃| 亚洲精品乱码久久久久久按摩| 啦啦啦中文免费视频观看日本| 亚洲图色成人| 国产女主播在线喷水免费视频网站| 在线观看美女被高潮喷水网站| 老熟女久久久| 中文字幕av成人在线电影| 美女xxoo啪啪120秒动态图| 成年av动漫网址| 精品人妻视频免费看| 国产乱来视频区| 日韩一本色道免费dvd| 亚洲av免费高清在线观看| 肉色欧美久久久久久久蜜桃| 欧美成人a在线观看| 国产精品一区二区三区四区免费观看| 国产高清有码在线观看视频| 高清视频免费观看一区二区| 在线观看美女被高潮喷水网站| 97超碰精品成人国产| 日本猛色少妇xxxxx猛交久久| 日韩视频在线欧美| 九色成人免费人妻av| 精品一区二区三卡| 国产亚洲91精品色在线| 国产成人精品一,二区| 一级毛片 在线播放| 精品亚洲乱码少妇综合久久| 99久久精品热视频| 日日啪夜夜爽| 亚洲自偷自拍三级| 联通29元200g的流量卡| 欧美精品国产亚洲| 成人综合一区亚洲| 有码 亚洲区| 国产又色又爽无遮挡免| 美女xxoo啪啪120秒动态图| 欧美高清成人免费视频www| 一级毛片电影观看| 18+在线观看网站| 日韩av免费高清视频| 国产在线男女| 99九九线精品视频在线观看视频| 国产又色又爽无遮挡免| 美女xxoo啪啪120秒动态图| 尾随美女入室| 91精品国产国语对白视频| 色综合色国产| 精品久久久久久久末码| 99精国产麻豆久久婷婷| 一区二区三区乱码不卡18| 亚洲欧美精品自产自拍| 欧美精品亚洲一区二区| 国产精品偷伦视频观看了| 晚上一个人看的免费电影| av国产免费在线观看| 国产91av在线免费观看| 久久久久视频综合| a级一级毛片免费在线观看| 日韩强制内射视频| www.av在线官网国产| av卡一久久| 九九在线视频观看精品| 熟女人妻精品中文字幕| 久久99蜜桃精品久久| 国产精品伦人一区二区| 成人国产麻豆网| 97在线人人人人妻| 日韩av免费高清视频| 赤兔流量卡办理| 99九九线精品视频在线观看视频| 性高湖久久久久久久久免费观看| 亚洲国产最新在线播放| 成人毛片60女人毛片免费| 最近2019中文字幕mv第一页| 一区二区三区精品91| 成人二区视频| 日日撸夜夜添| 美女中出高潮动态图| 国产视频首页在线观看| 内射极品少妇av片p| 国产成人免费无遮挡视频| 国产av码专区亚洲av| 色婷婷久久久亚洲欧美| 2022亚洲国产成人精品| 久久久久久久国产电影| 99热网站在线观看| 99久久精品一区二区三区| 舔av片在线| 精品酒店卫生间| 18禁裸乳无遮挡免费网站照片| 免费观看av网站的网址| 久久精品国产亚洲网站| 亚洲天堂av无毛| 国产精品伦人一区二区| 国产精品av视频在线免费观看| 内地一区二区视频在线| 亚洲一级一片aⅴ在线观看| 国产淫语在线视频| 丰满迷人的少妇在线观看| 九草在线视频观看| 亚洲av免费高清在线观看| 男女啪啪激烈高潮av片| 久久精品久久久久久久性| 国产精品av视频在线免费观看| 少妇精品久久久久久久| 噜噜噜噜噜久久久久久91| 久久久久久久久久成人| 嫩草影院入口| av网站免费在线观看视频| 国产亚洲一区二区精品| 日本wwww免费看| 一个人免费看片子| 国产精品爽爽va在线观看网站| 国产欧美亚洲国产| 最近手机中文字幕大全| 午夜日本视频在线| 中文字幕亚洲精品专区| 国产亚洲91精品色在线| 国产伦理片在线播放av一区| 国产av精品麻豆| 美女福利国产在线 | 少妇裸体淫交视频免费看高清| 亚洲,欧美,日韩| 男男h啪啪无遮挡| 身体一侧抽搐| 国产乱来视频区| 最黄视频免费看| 国产乱人偷精品视频| 多毛熟女@视频| 亚洲,欧美,日韩| 毛片一级片免费看久久久久| 日本-黄色视频高清免费观看| 久久精品国产亚洲网站| 久久精品久久久久久噜噜老黄| 中文在线观看免费www的网站| 大片电影免费在线观看免费| 亚洲欧美日韩东京热| 午夜福利影视在线免费观看| 国产乱人视频| 成年免费大片在线观看| 亚洲美女视频黄频| av专区在线播放| 国产综合精华液| 一个人看的www免费观看视频| 国产老妇伦熟女老妇高清| 91aial.com中文字幕在线观看| 精品亚洲成a人片在线观看 | 三级经典国产精品| 久久久久精品性色| 26uuu在线亚洲综合色| av黄色大香蕉| 成人18禁高潮啪啪吃奶动态图 | 特大巨黑吊av在线直播| 国产欧美另类精品又又久久亚洲欧美| 蜜桃在线观看..| 久久青草综合色| 亚洲av日韩在线播放| 国产视频内射| 日本vs欧美在线观看视频 | 午夜福利网站1000一区二区三区| 成年免费大片在线观看| 精品国产三级普通话版| 亚洲第一av免费看| 国产高清有码在线观看视频| 在线看a的网站| 天堂俺去俺来也www色官网| av免费在线看不卡| 国产在线男女| 久久国产亚洲av麻豆专区| 你懂的网址亚洲精品在线观看| 免费黄色在线免费观看| 精品久久久久久电影网| 高清在线视频一区二区三区| 只有这里有精品99| 亚洲成人一二三区av| 国产伦精品一区二区三区视频9| 亚洲av在线观看美女高潮| 日韩制服骚丝袜av| 精品亚洲乱码少妇综合久久| 亚洲内射少妇av| 网址你懂的国产日韩在线| 亚洲av免费高清在线观看| 久久久午夜欧美精品| 成年av动漫网址| a级毛片免费高清观看在线播放| 国产欧美亚洲国产| 老司机影院成人| av播播在线观看一区| 国产日韩欧美在线精品| 少妇裸体淫交视频免费看高清| 纯流量卡能插随身wifi吗| 日韩中文字幕视频在线看片 | 日本爱情动作片www.在线观看| 肉色欧美久久久久久久蜜桃| 建设人人有责人人尽责人人享有的 | 欧美少妇被猛烈插入视频| 免费大片黄手机在线观看| av不卡在线播放| 一区二区三区精品91| 新久久久久国产一级毛片| 国产精品欧美亚洲77777| 国产男女超爽视频在线观看| 丝袜脚勾引网站| 亚洲天堂av无毛| 国产成人精品一,二区| 精品少妇久久久久久888优播| 免费观看在线日韩| 色视频www国产| 国内揄拍国产精品人妻在线| 久久久a久久爽久久v久久| 久久99热这里只频精品6学生| 永久网站在线| 亚洲欧美一区二区三区国产| 日本av免费视频播放| 国产淫语在线视频| 久久97久久精品| 永久免费av网站大全| 欧美成人精品欧美一级黄| 亚洲内射少妇av| 国产在线免费精品| 国产老妇伦熟女老妇高清| av国产免费在线观看| 国产在线男女| 国产精品久久久久久av不卡| 中文字幕av成人在线电影| 精品亚洲成国产av| 在线观看美女被高潮喷水网站| 国产免费福利视频在线观看| 久久久久久久大尺度免费视频| 高清av免费在线| 亚洲性久久影院| 女性被躁到高潮视频| 国产精品秋霞免费鲁丝片| 午夜免费男女啪啪视频观看| 春色校园在线视频观看| 免费观看a级毛片全部| 精品视频人人做人人爽| 国精品久久久久久国模美| 国产免费一级a男人的天堂| 婷婷色av中文字幕| 九色成人免费人妻av| 色网站视频免费| 国产精品蜜桃在线观看| 免费久久久久久久精品成人欧美视频 | 午夜福利网站1000一区二区三区| 一级av片app| 精品一区在线观看国产| 最近中文字幕2019免费版| 青春草国产在线视频| 大码成人一级视频|