劉 瀟, 王 強(qiáng),3, 馬 林, 王 軍
廣州市白云山片麻狀花崗巖成因及構(gòu)造意義
劉 瀟1,2, 王 強(qiáng)1,2,3, 馬 林1,3*, 王 軍1
(1. 中國(guó)科學(xué)院 廣州地球化學(xué)研究所 同位素地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室, 廣東 廣州 510640; 2. 中國(guó)科學(xué)院大學(xué) 地球與行星科學(xué)學(xué)院, 北京 100049; 3. 中國(guó)科學(xué)院 深地科學(xué)卓越創(chuàng)新中心, 廣東 廣州 510640)
華南板塊內(nèi)部廣泛分布的早古生代片麻狀花崗巖的形成究竟是與大洋板塊俯沖有關(guān), 還是與陸內(nèi)擠壓碰撞有關(guān), 存在激烈爭(zhēng)議。本文對(duì)廣州市白云山風(fēng)景名勝區(qū)內(nèi)的片麻狀花崗巖進(jìn)行了LA-ICP-MS鋯石U-Pb年代學(xué)、全巖主量元素和微量元素、Sr-Nd同位素和鋯石Hf-O同位素地球化學(xué)研究, 結(jié)果表明: 白云山片麻狀花崗巖形成于晚奧陶?早志留世(444±6 Ma)。白云山片麻狀花崗巖含有原生白云母和黑云母, 并且具有高的SiO2, Al2O3和低的MgO含量(SiO2=74.8%~80.4%, Al2O3=9.64%~12.7%, MgO=0.46%~0.61%)。白云山片麻狀花崗巖的稀土總量相對(duì)較低, 變化于44~173 μg/g之間, 具有輕稀土相對(duì)富集的右傾分布模式, 同時(shí)具有中?強(qiáng)的Eu負(fù)異常(Eu*=0.27~0.63)。白云山片麻狀花崗巖富集Rb、Th、U和Pb, 虧損Ba、Sr、Nb、Ta、Zr、Hf和Ti。白云山片麻狀花崗巖具有富集的全巖Nd和鋯石Hf同位素組成(Nd()= ?12.1~?7.88;Hf()= ?10.8~ ?2.63)以及高的鋯石O同位素組成(18O=8.06‰~11.4‰)。巖相學(xué)和地球化學(xué)特征表明白云山片麻狀花崗巖主要起源于地殼變質(zhì)沉積巖的部分熔融。結(jié)合區(qū)域地質(zhì)和白云山片麻狀花崗巖的地球化學(xué)特征, 提出白云山片麻狀花崗巖最有可能形成于早古生代陸內(nèi)擠壓造山的構(gòu)造背景。
LA-ICP-MS U-Pb年代學(xué); Sr-Nd-Hf-O同位素; 片麻狀花崗巖; 白云山; 華南
華南板塊由揚(yáng)子和華夏地塊拼貼形成之后, 主要經(jīng)歷了早古生代、三疊紀(jì)以及侏羅紀(jì)和白堊紀(jì)三期構(gòu)造事件[1–5], 形成了華南板塊廣泛分布的花崗質(zhì)巖石(圖1)。華南板塊花崗質(zhì)巖石的成因研究, 對(duì)于揭示華南板塊的構(gòu)造演化具有十分重要的意義。前人對(duì)華南中生代三疊紀(jì)、侏羅紀(jì)和白堊紀(jì)的花崗巖進(jìn)行了大量的研究, 并且對(duì)華南中生代的構(gòu)造演化做了較好的約束[2,7–11]。華南板塊早古生代也有廣泛分布的花崗質(zhì)巖石[3,4,12–18], 除此之外, 華南早古生代還有一些鎂鐵質(zhì)?超鎂鐵質(zhì)巖、火山巖和變質(zhì)巖的報(bào)道[17,19–21], 巖性比較復(fù)雜。相比于中生代的花崗巖來(lái)說(shuō), 華南板塊早古生代的片麻狀花崗巖的研究程度相對(duì)較低, 其成因究竟是與大洋板塊俯沖有關(guān), 還是與陸內(nèi)擠壓碰撞有關(guān), 存在激烈爭(zhēng)議[21–24]。前人通過(guò)系統(tǒng)的鋯石U-Pb年代學(xué)研究, 發(fā)現(xiàn)出露在武功地塊、武夷地塊和云開(kāi)地塊的的片麻狀花崗巖主要形成于早古生代(460~410 Ma), 而不是前人所認(rèn)為的前寒武古老基底巖石[3]。這些片麻狀花崗巖被認(rèn)為主要形成于陸內(nèi)造山構(gòu)造背景下, 加厚地殼內(nèi)部變泥質(zhì)巖的部分熔融, 沒(méi)有明顯幔源物質(zhì)的貢獻(xiàn)[3]。另外, 也有的學(xué)者通過(guò)統(tǒng)計(jì)前人發(fā)表的鋯石U-Pb年代學(xué)和Hf同位素?cái)?shù)據(jù), 并結(jié)合巖石變形的研究, 提出華南早古生代武夷?云開(kāi)造山帶形成于俯沖?碰撞的構(gòu)造背景[24]。白云山片麻狀花崗巖屬于武夷?云開(kāi)地塊的一部分(圖1)。Yang.[25]報(bào)道了白云山周邊的片麻狀花崗巖形成于晚奧陶世?早志留世(454~439 Ma)。Yu.[26]對(duì)白云山周邊的片麻狀花崗巖、混合巖化片麻狀花崗巖和侵入到混合巖當(dāng)中的花崗巖脈進(jìn)行了LA-ICP-MS鋯石U-Pb年代學(xué)、全巖主量元素和微量元素及鋯石Hf-O同位素的研究, 揭示了混合巖當(dāng)中的淺色體和花崗巖脈分別形成于438 Ma和433 Ma, 花崗巖脈起源于片麻狀花崗巖的部分熔融。本次開(kāi)展針對(duì)白云山風(fēng)景區(qū)內(nèi)的片麻狀花崗巖的巖石學(xué)、年代學(xué)、元素地球化學(xué)、Sr-Nd-Hf-O同位素地球化學(xué)研究, 以期揭示其景區(qū)內(nèi)巖石的主要特征、成因及其形成的動(dòng)力學(xué)機(jī)制。
圖1 華南板塊顯生宙花崗巖分布圖(據(jù)文獻(xiàn)[3,4,6])
華南板塊由其西北的揚(yáng)子地塊和東南的華夏地塊在新元古代約850 Ma的時(shí)候發(fā)生碰撞拼貼所形成[27–28]。華南板塊早古生代火成巖的類(lèi)型多樣, 以花崗巖為主, 也包含有少量的鎂鐵質(zhì)?超鎂鐵質(zhì)巖和火山巖。華南早古生代花崗巖主要是S型花崗巖[14], 此外也包括少量的I型花崗巖[12,13,18,29]和A型花崗巖[30]。華南早古生代鎂鐵質(zhì)?超鎂鐵質(zhì)巖包括: 含輝石角閃巖、含角閃石輝長(zhǎng)巖和輝長(zhǎng)巖[17,19,31–32]?;鹕綆r包括玄武巖?安山巖?英安巖巖石組合[33]。除了火成巖之外, 華南早古生代還發(fā)現(xiàn)有變質(zhì)巖, 譬如浙江龍游石榴角閃巖和陳蔡巖群變質(zhì)巖[20–21]。
白云山片麻狀花崗巖和出露于武功地塊、武夷地塊還有云開(kāi)地塊的早古生代片麻狀花崗巖均位于江山?紹興斷裂東側(cè)的華夏地塊[3]。華夏地塊的基底巖石主要是古元古界至中元古界八都群、龍泉群和麻源群的黑云斜長(zhǎng)麻粒巖、云母(石英)片巖、變質(zhì)火山?沉積巖還有少量的角閃巖[34]。本文研究的片麻狀花崗巖位于廣東省廣州市北部白云區(qū)白云山著名風(fēng)景名勝區(qū)。區(qū)內(nèi)出露的巖石主要是一套古生代的片麻狀花崗巖, 并在局部可見(jiàn)塊狀構(gòu)造的巖石(圖2)。在白云山片麻狀花崗巖的周?chē)雎队型砉派?二疊紀(jì)以及中生代三疊紀(jì)、侏羅紀(jì)和白堊紀(jì)的沉積地層, 同時(shí)還可見(jiàn)晚侏羅世花崗巖(圖2)。
本次研究的片麻狀花崗巖主要采自廣州市白云山風(fēng)景名勝區(qū)(包括景區(qū)的山頂摩星嶺(樣品號(hào)17BY07-2)), 其采樣位置見(jiàn)圖2和圖3。
白云山片麻狀花崗巖呈灰白色或者肉紅色, 主要由石英、白云母、黑云母和絹云母組成(圖3)。石英含量(體積分?jǐn)?shù))約40%~45%、白云母含量約10%~15%、黑云母含量約5%、絹云母含量約20%~30%。石英粒度一般為0.5~1.5 mm, 白云母粒度一般為0.5~1.0 mm, 黑云母粒度較細(xì), 通常為0.2~0.3 mm。石英具有定向排列的特征, 有的白云母受到應(yīng)力作用而發(fā)生變形, 絹云母以細(xì)小鱗片狀集合體的形式產(chǎn)出, 主要由斜長(zhǎng)石蝕變所形成(圖3c和3d)。副礦物主要有鋯石、磷灰石以及少量的磁鐵礦等。
圖2 白云山片麻狀花崗巖地質(zhì)簡(jiǎn)圖(據(jù)文獻(xiàn)[35])
圖3 白云山片麻狀花崗巖野外露頭(a和b)和顯微鏡下照片(c和d)
2.2.1 激光剝蝕-等離子體質(zhì)譜(LA-ICP-MS)鋯石U-Pb年齡分析
首先將新鮮的巖石樣品粉碎至粒度小于0.12 mm (120目), 用常規(guī)的人工淘洗和電磁選方法富集鋯石, 再在雙目鏡下用手工方法逐個(gè)精選鋯石顆粒。鋯石陰極發(fā)光圖像在中國(guó)科學(xué)院廣州地球化學(xué)研究所同位素地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室的場(chǎng)發(fā)射電子顯微鏡上拍攝。
鋯石原位 LA-ICP-MS U-Pb同位素分析是在中國(guó)科學(xué)院地質(zhì)與地球物理研究所巖石圈演化國(guó)家重點(diǎn)實(shí)驗(yàn)室完成的, 儀器型號(hào)為: Agilent 7500a, 進(jìn)樣系統(tǒng)為193 nm ArF 準(zhǔn)分子激光剝蝕系統(tǒng)(GeoLas Plus), 詳細(xì)的儀器操作流程以及工作條件見(jiàn)文獻(xiàn)[36]。每6~9個(gè)鋯石樣品點(diǎn)位插入2個(gè)91500標(biāo)樣和1個(gè)GJ-1監(jiān)控樣, 并在每組鋯石樣品的頭尾各插入1個(gè)NIST 610玻璃。每個(gè)鋯石分析點(diǎn)大概有80 s的時(shí)間記錄信號(hào), 其中前30 s為背景信號(hào), 后50 s為樣品信號(hào)。鋯石微量元素含量是用NIST 610玻璃作為外標(biāo), Si元素作為內(nèi)標(biāo)進(jìn)行計(jì)算獲得的, 鋯石的U-Pb同位素比值用91500鋯石標(biāo)樣(約1065 Ma[37])作為外標(biāo)進(jìn)行同位素分餾校正。數(shù)據(jù)處理過(guò)程中背景和分析信號(hào)的選擇以及定量校正采用的是ICPMSDataCal軟件[38]。諧和曲線圖的繪制以及加權(quán)年齡的計(jì)算是采用Ludwig[39]的Isoplot 3.75軟件完成。
2.2.2 全巖主量元素和微量元素分析
全巖主、微量元素的分析測(cè)試在中國(guó)科學(xué)院廣州地球化學(xué)研究所同位素地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室完成。主元素分析采用Rigaku RIX 2000型熒光光譜儀(XRF)測(cè)試, 其詳細(xì)操作步驟見(jiàn)Li.[40]。樣品的主元素氧化物含量由36種涵蓋硅酸鹽樣品范圍的參考標(biāo)準(zhǔn)物質(zhì)雙變量擬合而成的工作曲線確定, 基體校正根據(jù)經(jīng)驗(yàn)的Traill-Lachance程序進(jìn)行, 分析精度為1%~5%。微量元素的分析則采用Perkin-Elmer Sciex ELAN 6000型電感耦合等離子體質(zhì)譜儀(ICP-MS), 具體的流程見(jiàn)Li.[41]。使用USGS標(biāo)準(zhǔn)W-2和G-2及國(guó)內(nèi)標(biāo)準(zhǔn)GSR-1、GSR-2和GSR-3來(lái)校正所測(cè)樣品的微量元素含量, 分析精度一般為2%~5%。
2.2.3 全巖Sr-Nd同位素分析
全巖Sr-Nd同位素比值的分析測(cè)試在中國(guó)科學(xué)院廣州地球化學(xué)研究所同位素地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室MicroMass ISOPROBE型多接受器電感耦合等離子體質(zhì)譜儀(MC-ICPMS)上完成。同位素分析采用Teflon溶樣器, 加入HNO3和HF混合酸溶樣。用特效Sr柱和AGW50-X12陽(yáng)離子交換樹(shù)脂柱分離和富集Sr以及稀土元素(REE)。用專(zhuān)用的陽(yáng)離子交換樹(shù)脂柱(HDEHP)進(jìn)行Nd的分離和富集。所有測(cè)量的87Sr/86Sr和143Nd/144Nd比值用86Sr/88Sr=0.1194和146Nd/144Nd=0.7219校正, 詳細(xì)的分析流程及儀器分析條件見(jiàn)文獻(xiàn)[42–43]。在本文樣品的分析過(guò)程中, 該儀器測(cè)定的國(guó)際Sr和Nd同位素標(biāo)準(zhǔn)樣品NBS987和JNdi-1的87Sr/86Sr和143Nd/144Nd比值分別為0.710247±9 (2σ)和0.512103±5 (2σ)。
2.2.4 二次離子質(zhì)譜(SIMS)鋯石氧同位素分析
鋯石原位氧同位素分析在中國(guó)科學(xué)院廣州地球化學(xué)研究所的同位素地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室完成, 采用的儀器型號(hào)是Cameca IMS-1280-HR。利用強(qiáng)度為約2 nA的Cs+一次離子束在10 kV電壓下加速, 轟擊樣品表面并激發(fā)二次離子, 然后二次離子進(jìn)入質(zhì)譜儀進(jìn)行同位素分析, 詳細(xì)的儀器操作流程以及工作條件見(jiàn)Li.[44]。使用Penglai (18OVSMOW=5.3‰[44])鋯石標(biāo)樣進(jìn)行儀器質(zhì)量分餾校正。為了監(jiān)控Penglai鋯石標(biāo)樣校正未知樣品的結(jié)果, 采用Qinghu (18OVSMOW=5.3‰±0.3‰[45])作為監(jiān)控樣和未知樣品一起分析, 即每5個(gè)樣品鋯石分析點(diǎn)插入1個(gè)Penglai標(biāo)樣和每10個(gè)樣品鋯石分析點(diǎn)插入1個(gè)Qinghu監(jiān)控樣。
2.2.5 激光多接收質(zhì)譜(LA-MC-ICP-MS)鋯石Lu-Hf同位素分析
鋯石原位Lu-Hf同位素分析在中國(guó)科學(xué)院廣州地球化學(xué)研究所同位素地球化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室完成, 采用的質(zhì)譜儀為Neptune公司生產(chǎn)的多接收電感耦合等離子體質(zhì)譜儀(MC-ICP-MS), 進(jìn)樣系統(tǒng)為193 nm ArF準(zhǔn)分子激光剝蝕系統(tǒng)(Resonetics), 詳細(xì)的儀器操作流程以及工作條件見(jiàn)Zhang.[46]。所有鋯石Hf同位素測(cè)試點(diǎn)都是落在之前SIMS鋯石氧同位素測(cè)試點(diǎn)之上或在其附近。在分析樣品的同時(shí), 用鋯石標(biāo)樣Ple?ovice作為未知樣和樣品一起分析以監(jiān)測(cè)儀器狀態(tài)和數(shù)據(jù)漂移程度。每5個(gè)樣品鋯石點(diǎn)位插入1個(gè)Ple?ovice監(jiān)控樣。在本文鋯石樣品的分析過(guò)程中, Ple?ovice鋯石標(biāo)樣的平均值為0.282475±9 (2σ), 在誤差范圍內(nèi)與文獻(xiàn)[47]所報(bào)道的值0.282482±13 (2σ)一致。
本次用于年齡分析的白云山風(fēng)景名勝區(qū)山頂摩星嶺片麻狀花崗巖樣品(17BY07-2)中的鋯石大致分為兩種類(lèi)型。第一種鋯石自形程度較好, 長(zhǎng)柱狀, 顆粒大小約100~200 μm, 長(zhǎng)寬比為1∶2~1∶3。鋯石的陰極發(fā)光圖像顯示清晰且平直的振蕩環(huán)帶, 表明其為典型的巖漿成因鋯石(圖4d和4e[48])。第二種鋯石為渾圓狀, 內(nèi)部振蕩環(huán)帶不清晰(圖4f和4g), 其可能是巖石繼承自源區(qū)或者是巖漿上升過(guò)程中所捕獲的鋯石。陰極發(fā)光圖像顯示這兩種鋯石的邊部都發(fā)育有一圈較窄較亮的變質(zhì)邊(圖4d~4g), 表明白云山片麻狀花崗巖在形成之后還受到過(guò)后期變質(zhì)事件的改造。
LA-ICP-MS鋯石U-Pb年代學(xué)結(jié)果詳見(jiàn)表1。本次所分析的白云山片麻狀花崗巖當(dāng)中38顆鋯石點(diǎn)的206Pb/238U年齡變化在2457~435 Ma之間(圖4a)。7顆206Pb/238U年齡最小的鋯石的U含量變化于172~908 μg/g之間, Th含量變化于39.9~295 μg/g之間, Th/U比值為0.23~0.74, 加權(quán)平均年齡為444±6 Ma (MSWD=0.27) (圖4b), 將其解釋為巖石的形成年齡。白云山片麻狀花崗巖當(dāng)中剩下的31顆鋯石的U含量變化于5.65~1437 μg/g之間, Th含量變化于1.35~811 μg/g之間, Th/U比值為0.07~2.04,206Pb/238U年齡變化于2457~492 Ma之間, 將其解釋為繼承鋯石年齡。在這些繼承鋯石當(dāng)中, 有9顆206Pb/238U年齡變化在984~964 Ma之間的鋯石給出一組新元古代973±6 Ma (MSWD=0.70) (圖4c)的加權(quán)平均年齡。本次所獲得的白云山風(fēng)景名勝區(qū)山頂摩星嶺片麻狀花崗巖的形成年齡和Yang.[25]用SHPIMP所獲得的白云山風(fēng)景名勝區(qū)周?chē)钠闋罨◢弾r的形成年齡(453.5±7.8 Ma、446±7 Ma和439±9 Ma)大致相近。此外, 在野外白云山片麻狀花崗巖的局部可見(jiàn)塊狀花崗巖(圖2), 這些塊狀花崗巖的形成時(shí)代和成因需要后續(xù)的工作來(lái)進(jìn)一步確定。
圖4?白云山片麻狀花崗巖LA-ICP-MS鋯石U-Pb諧和圖(a~c)和鋯石陰極發(fā)光圖像(d)
表1 白云山片麻狀花崗巖鋯石LA-ICP-MS U-Pb同位素分析結(jié)果
白云山片麻狀花崗巖的全巖主量元素和微量元素分析結(jié)果見(jiàn)表2。白云山片麻狀花崗巖具有高的SiO2和K2O含量(質(zhì)量分?jǐn)?shù)), 分別變化于74.8%~ 80.4%和3.19%~4.31%之間。此外, 白云山片麻狀花崗巖還具有中等–高的Al2O3(9.64%~12.7%)、變化的TFe2O3(0.90%~8.69%)以及低的MgO (0.46%~0.61%)含量, 計(jì)算的Mg#值為11.5~54.8 (Mg#=100× MgOmolar/(MgOmolar+FeOmolar), FeO=0.90×TFe2O3)。在SiO2-Zr/TiO2圖解中白云山片麻狀花崗巖落在花崗巖的區(qū)域(圖5a)。在Th-Co圖解中, 白云山片麻狀花崗巖顯示高鉀或者鉀玄質(zhì)的特征(圖5b)。白云山片麻狀花崗巖的稀土總量(∑REE)整體與大陸地殼(106 μg/g[51])相似, 變化在44.2~173 μg/g之間, LREE/HREE比值在3.81~11.2之間, (La/Yb)CN為2.96~15.1 (下標(biāo)“CN”表示球粒隕石標(biāo)準(zhǔn)化值), 顯示重稀土相對(duì)輕稀土虧損的右傾分布模式(圖6a)。中等–相對(duì)較強(qiáng)的Eu負(fù)異常(Eu*=0.27~0.63) (Eu*= EuCN/(SmCN×GdCN)1/2)表明在白云山片麻狀花崗巖的形成過(guò)程中經(jīng)歷了較為顯著的斜長(zhǎng)石分離結(jié)晶(圖6a)。在原始地幔標(biāo)準(zhǔn)化微量元素圖解上, 白云山片麻狀花崗巖具有富集Rb、Th、U和Pb, 虧損Ba、Sr、Nb、Ta、Zr、Hf和Ti的特征(圖6b)。本文所研究的白云山片麻狀花崗巖的微量元素組成同大陸地殼相比, 具有相對(duì)偏低的特征(圖6b), 這可能是由于其經(jīng)歷了較高程度的分離結(jié)晶或者是由于風(fēng)化作用過(guò)程中活潑元素活化遷移所導(dǎo)致的。
白云山片麻狀花崗巖全巖Sr-Nd同位素分析結(jié)果列于表3, 鋯石Hf-O同位素分析結(jié)果列于表4。由于白云山片麻狀花崗巖具有高的Rb/Sr比值(7.10~42.6), 而且經(jīng)歷了后期表生風(fēng)化作用, 所以其Sr同位素組成不能反映源區(qū)特征, 故本文沒(méi)有用Sr同位素來(lái)討論巖石成因。白云山片麻狀花崗巖現(xiàn)今(143Nd/144Nd)s比值在0.511761~0.512071之間, 根據(jù)巖石的形成年齡444 Ma反算得到的初始(143Nd/144Nd)i比值在0.511445~0.511662之間,Nd()值在?12.1~?7.88之間(圖7a), Nd同位素模式年齡(2DM)在2.18~1.83 Ga之間。
表2 白云山片麻狀花崗巖全巖主元素(%)與微量元素(μg/g)分析結(jié)果
圖5 白云山片麻狀花崗巖SiO2-Zr/TiO2 (a, 據(jù)文獻(xiàn)[49])和Th-Co巖石分類(lèi)(b, 據(jù)文獻(xiàn)[50])圖
圖6 白云山片麻狀花崗巖球粒隕石標(biāo)準(zhǔn)化稀土元素分布模式(a)和原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖(b)
標(biāo)準(zhǔn)化數(shù)據(jù)引自文獻(xiàn)[51]; 大陸地殼數(shù)據(jù)引自文獻(xiàn)[52]; 華南板塊早古生代片麻狀花崗巖數(shù)據(jù)引自文獻(xiàn)[3]
Normalizing values are from reference [51], data of bulk continental crust are from reference [52], and data of Early Paleozoic gneissic granites of South China Block are from references [3]
白云山片麻狀花崗巖樣品17BY07-2具有變化的鋯石Hf-O同位素組成。樣品17BY07-2的鋯石現(xiàn)今(176Hf/177Hf)s比值在0.282179~0.282433之間, 初始(176Hf/177Hf)i比值在0.282172~0.282421之間,Hf()值在?10.8~?2.63之間(圖7b、圖8a和圖9), 在鋯石Hf()值頻率分布直方圖上具有多個(gè)峰的特征(圖8a), Hf同位素模式年齡(2DM)在2.16~1.60 Ga之間。樣品17BY07-2的鋯石18O值在8.06‰~11.4‰之間(圖8b和圖9), 在鋯石18O值頻率分布直方圖上同樣具有多個(gè)峰的特征(圖8b)。所有鋯石點(diǎn)的Hf()平均值為?8.16±0.32 (圖8a),18O平均值為10.1‰±0.2‰ (圖8b)。
由于白云山片麻狀花崗巖形成于早古生代, 在其形成之后經(jīng)歷了印支期區(qū)域變質(zhì)作用以及后期表生風(fēng)化作用過(guò)程, 因此巖石的原始結(jié)構(gòu)構(gòu)造和礦物成分不同程度地受到破壞。一般來(lái)說(shuō), 變質(zhì)作用和風(fēng)化作用會(huì)發(fā)生活潑元素K、Na和Ca及低場(chǎng)強(qiáng)元素Rb、Sr和Ba等不同程度的活化遷移, 而過(guò)渡族元素(Co、Ni、Sc和V)和高場(chǎng)強(qiáng)元素(Ti、Zr、Y、Nb、Ta、Hf、Th和REE)大都能夠保持原有的地球化學(xué)特征[60]。由于稀土元素Nd在變質(zhì)作用和風(fēng)化作用過(guò)程中較穩(wěn)定[61], 加之鋯石是一種易保存的副礦物[55], 因而全巖Nd同位素和鋯石Hf-O同位素可以用來(lái)示蹤巖石的源區(qū)物質(zhì)組成。本文偏重于使用不活潑元素, 高場(chǎng)強(qiáng)元素以及全巖Nd同位素和鋯石Hf-O同位素來(lái)進(jìn)行巖石成因的討論。
1999年Barbarin[62]根據(jù)花崗巖礦物學(xué)組成和地球化學(xué)特征將其劃分為6種類(lèi)型: 含原生白云母的過(guò)鋁質(zhì)花崗巖(MPG)、含堇青石的過(guò)鋁質(zhì)花崗巖(CPG)、含鉀長(zhǎng)石的斑狀花崗巖(KCG)、含鈣質(zhì)角閃石的花崗巖(ACG)、含輝石且富角閃石的花崗巖(RTG)以及條紋堿性長(zhǎng)石花崗巖和正長(zhǎng)巖(PAG)。巖相學(xué)顯示白云山片麻狀花崗巖當(dāng)中的白云母具有伴生于其他礦物的獨(dú)立礦物晶體, 且與周邊的石英或其他礦物之間表現(xiàn)為平衡結(jié)晶的平直界面(圖3d)。因此, 白云山片麻狀花崗巖在上述分類(lèi)中應(yīng)屬于MPG。
MPG通常被認(rèn)為是起源于純的地殼沉積物的部分熔融[62]。沉積巖通常具有較高的Al2O3含量, 另外, TiO2是沉積物當(dāng)中最難遷移, 含量最穩(wěn)定的元素[63], 所以地殼沉積巖起源的花崗巖通常具有較高的Al2O3/TiO2比值[64]。白云山片麻狀花崗巖具有高的Al2O3/TiO2比值(14.6~402; 表2), 同起源于沉積物部分熔融的喜馬拉雅淡色花崗巖相似(65.0~491)[65],表明其源區(qū)可能主要是沉積物。類(lèi)似地, 由于Th在風(fēng)化作用過(guò)程中保持穩(wěn)定, 不容易從沉積物當(dāng)中淋濾出去, 所以陸源碎屑沉積物通常富集Th[66]。白云山片麻狀花崗巖具有同喜馬拉雅淡色花崗巖相類(lèi)似的Th含量(5.93~17.5 μg/g和1.35~21.5 μg/g; 表2)以及(Th/La)N(下標(biāo)‘N’表示原始地幔標(biāo)準(zhǔn)化值)比值(3.8~6.8和1.9~15[65]), 同樣表明其源區(qū)可能主要是沉積物質(zhì)。前人通過(guò)富集的全巖Nd-Hf同位素組成(Nd()=?11.4~?5.0;Hf()=?19.4~2.4; 圖7)認(rèn)為華南板塊東部早古生代出露于武功地塊、武夷地塊以及云開(kāi)地塊的片麻狀花崗巖起源于變泥質(zhì)巖為主地殼源區(qū)的部分熔融[3]。同這些片麻狀花崗巖相比, 白云山片麻狀花崗巖也具有富集的全巖Nd和鋯石Hf同位素組成(Nd()=?12.1~?7.88;Hf()=?11.5~?2.63; 圖7、圖8a和圖9; 表3和4)。此外, 白云山片麻狀花崗巖還具有高的鋯石O同位素組成(18O= 8.06‰~11.4‰; 圖8b和圖9; 表4), 這一特征類(lèi)似于沉積物起源的華南板塊三疊紀(jì)大容山含堇青石花崗巖[56]、侏羅紀(jì)九嶷山A型花崗巖[57]、新元古代九嶺S型花崗巖[58]以及喜馬拉雅淡色花崗巖[59]。因此, 全巖Nd和鋯石Hf-O同位素組成同樣表明了白云山片麻狀花崗巖主要起源于華夏基底變質(zhì)沉積巖的部分熔融。白云山片麻狀花崗巖具有低的(La/Yb)CN比值(2.96~15.1), 所以其源區(qū)不含有石榴子石, 可能位于相對(duì)淺的中地殼。華南板塊早古生代片麻狀花崗巖的源區(qū)沉積物質(zhì)被認(rèn)為是通過(guò)華南新元古代南華裂谷進(jìn)入深部地殼[3,21]。新元古代南華裂谷沉積物源多樣, 主要包括硅質(zhì)碎屑巖、火山碎屑巖、凝灰?guī)r、頁(yè)巖、泥巖和碳酸鹽巖[67]。白云山片麻狀花崗巖具有變化較大的全巖Al2O3/TiO2比值(14.6~402)、Nd同位素(?12.1~?7.88)、鋯石Hf同位素(?10.8~?2.63)和O同位素(8.06‰~11.4‰)組成。相對(duì)于沉積巖來(lái)說(shuō), 幔源鎂鐵質(zhì)巖漿或者地殼變基性巖具有相對(duì)較低的Al2O3/TiO2比值、虧損的Nd-Hf和低的鋯石O同位素組成[3,55], 因此白云山片麻狀花崗巖的源區(qū)物質(zhì)除了變質(zhì)沉積巖之外, 還包含有少量幔源鎂鐵質(zhì)巖漿或者地殼變質(zhì)基性巖。由于華南早古生代通過(guò)殼?;旌闲纬傻幕◢弾r通常含有角閃石和鎂鐵質(zhì)包體[13,18,29], 巖相學(xué)顯示白云山片麻狀花崗巖不含有角閃石(圖3c和3d), 在野外也沒(méi)有觀察到白云山片麻狀花崗巖當(dāng)中含有鎂鐵質(zhì)包體(圖3a和3b)。因此, 白云山片麻狀花崗巖不太可能通過(guò)殼幔巖漿混合作用所形成。白云山片麻狀花崗巖最有可能起源于變質(zhì)沉積巖和少量變質(zhì)基性巖所形成的混雜源區(qū)的部分熔融。白云山片麻狀花崗巖在鋯石Hf()值和18O值頻率分布圖上所表現(xiàn)出來(lái)的較大的變化范圍以及多個(gè)峰的特征可能主要受控于其變質(zhì)沉積巖源區(qū)物質(zhì)的多樣性以及變質(zhì)沉積巖源區(qū)和變質(zhì)基性巖源區(qū)物質(zhì)的混合。白云山片麻狀花崗巖具有高且變化的SiO2含量(74.8%~80.4%; 圖5a和表2)以及負(fù)的Eu和Ti異常(Eu*=0.27~0.63; 圖6a), 表明在其形成過(guò)程中可能經(jīng)歷了一定程度斜長(zhǎng)石和黑云母的分離結(jié)晶。
表3 白云山片麻狀花崗巖全巖Sr-Nd同位素分析結(jié)果
注: (87Rb/86Sr)s和(147Sm/144Nd)s是通過(guò)表2中全巖Rb、Sr、Sm和Nd的含量計(jì)算得到的;(87Sr/86Sr)s和(143Nd/144Nd)s是對(duì)應(yīng)樣品的分析測(cè)試結(jié)果;
Nd()=10,000×(((143Nd/144Nd)s?(147Sm/144Nd)s×(e?1))/((143Nd/144Nd)CHUR(0)?(147Sm/144Nd)CHUR×(e?1))?1);DM=ln((143Nd/144Nd)s?(143Nd/144Nd)DM)/((147Sm/144Nd)s?(147Sm/144Nd)DM)/Sm;2DM=DM?(DM?)×[(cc?Sm/Nd)/(cc?DM)],Sm/Nd=(147Sm/144Nd)s/(147Sm/144Nd)CHUR?1(據(jù)文獻(xiàn)[53])。
式中:cc,、s和DM分別是大陸地殼、鋯石樣品還有虧損地幔的Sm/Nd值; 下標(biāo)cc表示大陸地殼, 下標(biāo)s表示被分析的鋯石樣品, 下標(biāo)CHUR表示球粒隕石均一儲(chǔ)庫(kù); 下標(biāo)DM表示虧損地幔;代表鋯石的結(jié)晶年齡(444Ma); (143Nd/144Nd)CHUR=0.512638; (147Sm/144Nd)CHUR=0.1967; (143Nd/144Nd)DM=0.513151; (147Sm/144Nd)DM=0.2135; (147Sm/144Nd)cc=0.12;Sm=6.54×10?12a?1;=444 Ma
表4 白云山片麻狀花崗巖鋯石原位Hf-O同位素分析結(jié)果
注:Hf()=10000×(((176Hf/177Hf)s?(176Lu/177Hf)s×(e?1))/((176Hf/177Hf)CHUR(0)?(176Lu/177Hf)CHUR×(e?1))?1);DM=1/×ln(1+((176Hf/177Hf)s?(176Hf/177Hf)DM)/((176Lu/177Hf)s?(176Lu/177Hf)DM));2DM=DM?(DM?)×((cc?Lu/Hf)/(cc?DM)),Lu/Hf=(176Lu/177Hf)s/(176Lu/177Hf)CHUR?1;
式中:cc,、s和DM分別是大陸地殼、鋯石樣品還有虧損地幔的Lu/Hf值; 下標(biāo)cc表示大陸地殼, 下標(biāo)s表示被分析的鋯石樣品, 下標(biāo)CHUR表示球粒隕石均一儲(chǔ)庫(kù);下標(biāo)DM表示虧損地幔;代表鋯石的結(jié)晶年齡(444Ma);176Lu的衰變常數(shù)=1.867×10?11a?1(據(jù)文獻(xiàn)[54]); (176Hf/177Hf)DM=0.283250; (176Lu/177Hf)DM=0.0384; 現(xiàn)今(176Hf/177Hf)CHUR(0)=0.282772; (176Lu/177Hf)CHUR=0.0332; (176Hf/177Hf)cc=0.015
圖7 白云山片麻狀花崗巖εNd(t)-t (a)和εHf(t)-t (b)圖
華南板塊早古生代片麻狀花崗巖數(shù)據(jù)引自文獻(xiàn)[3]。
Data of Early Paleozoic gneissic granites of South China Block are from references [3].
圖8 白云山片麻狀花崗巖鋯石εHf(t)值(a)和δ18O值(b)頻率分布直方圖
圖9 白云山片麻狀花崗巖鋯石δ18O-εHf(t)圖(據(jù)文獻(xiàn)[55])
華南板塊大容山花崗巖、九嶷山花崗巖和九嶺花崗巖數(shù)據(jù)引自文獻(xiàn)[56–58]; 喜馬拉雅淡色花崗巖數(shù)據(jù)引自文獻(xiàn)[59]。
Data of Darongshan, Jiuyishan and Jiuling granites of South China Block are from references [56–58], data of Himalayan leucogranites are from reference [59].
華南板塊內(nèi)部廣泛分布的早古生代片麻狀花崗巖的形成究竟是與大洋板塊俯沖有關(guān), 還是與陸內(nèi)擠壓碰撞有關(guān), 存在激烈爭(zhēng)議[3,14,24,26,68]。華南板塊早古生代(460~410 Ma)主要發(fā)育有S型花崗巖, 出露面積為20900 km2, 比如二云母花崗巖、白云母花崗巖和黑云母花崗巖等[3,4,14,26,68]。這些花崗巖通常被認(rèn)為與擠壓所導(dǎo)致的陸內(nèi)俯沖, 陸殼疊置所導(dǎo)致的地殼變沉積巖的熔融有關(guān)[14,15,69]。此外, 華南早古生代還發(fā)育有少量的I型花崗巖類(lèi), 出露面積小于400 km2, 如含角閃石花崗巖、花崗閃長(zhǎng)巖、閃長(zhǎng)巖、二長(zhǎng)閃長(zhǎng)巖以及二長(zhǎng)巖[12,13,17,18,68]。這些I型花崗巖類(lèi)通常含有一些鎂鐵質(zhì)包體, 并與一些鎂鐵質(zhì)?超鎂鐵質(zhì)巖石(如含輝石角閃巖、含角閃石輝長(zhǎng)巖和輝長(zhǎng)巖)共生[12,13,17–19,29,31,32]。華南早古生代的I型花崗巖類(lèi)具有變化較大的全巖Nd同位素組成(Nd()= ?13.2~1.3)和鋯石Hf同位素組成(Hf()=?16.0~ +9.0), 普遍認(rèn)為形成于陸內(nèi)造山的垮塌階段, 起源于古老地殼物質(zhì)的重熔或者殼幔巖漿的混合[12,17,18,29]; 共生的鎂鐵質(zhì)?超鎂鐵質(zhì)巖石具有高的MgO、Cr和Ni含量, 被認(rèn)為來(lái)自地幔源區(qū)[17,19,31,32]。除了火成巖的證據(jù)之外, 變質(zhì)巖的--軌跡也支持華南板塊早古生代的時(shí)候可能處于陸內(nèi)造山的構(gòu)造背景。浙江省陳蔡巖群變質(zhì)巖的視剖面圖表明其從800 MPa (454~447 Ma)順時(shí)針近等溫降壓至400 MPa (425 Ma), 標(biāo)志著華南板塊早古生代陸內(nèi)造山從地殼增厚向垮塌轉(zhuǎn)變[21]。華南板塊早古生代陸內(nèi)造山的構(gòu)造背景還得到了沉積學(xué)證據(jù)的支持。從華夏地塊到揚(yáng)子地塊, 華南板塊早古生代沉積序列逐漸從淺海硅質(zhì)碎屑巖相連續(xù)演化為硅質(zhì)碎屑巖–碳酸鹽巖過(guò)渡相以及碳酸鹽巖相沉積, 中間不存在大陸邊緣相沉積[14,22]。除了陸內(nèi)造山以外, 也有的學(xué)者提出華南早古生代處于俯沖–碰撞的構(gòu)造背景[24]。2018年Lin.[24]通過(guò)統(tǒng)計(jì)華夏地塊已經(jīng)發(fā)表的鋯石U-Pb年齡數(shù)據(jù)、Hf同位素?cái)?shù)據(jù)并結(jié)合巖石變形的研究, 認(rèn)為華南板塊早古生代武夷–云開(kāi)造山帶是由西部華夏地塊和一個(gè)至今還沒(méi)有識(shí)別出來(lái)的地塊發(fā)生碰撞所形成, 這個(gè)未識(shí)別出來(lái)的地塊在與和西部華夏地塊發(fā)生碰撞之后又在晚古生代的時(shí)候裂解出去了。白云山片麻狀花崗巖的形成時(shí)代(444±6 Ma)和廣泛分布在武功地塊、武夷地塊以及云開(kāi)地塊(460~410 Ma)的片麻狀花崗巖相一致; 此外白云山片麻狀花崗巖具有同沉積巖起源的喜馬拉雅淡色花崗巖相類(lèi)似的主量元素和微量元素組成, 富集的Nd-Hf以及高的鋯石O同位素組成, 表明其主要起源于華夏基底變沉積巖的部分熔融。另外, 白云山片麻狀花崗巖和華南板塊早古生代廣泛分布的S型花崗巖以長(zhǎng)1200 km, 寬600 km的面狀形式分布, 不同于線狀分布于俯沖?碰撞造山帶的火成巖[68]。所以, 白云山片麻狀花崗巖最有可能形成于陸內(nèi)擠壓造山的構(gòu)造背景。華南板塊早古生代陸內(nèi)造山可能和澳大利亞?印度板塊以及華夏板塊匯聚的遠(yuǎn)程作用力有關(guān)[3]。
(1) 鋯石U-Pb年代學(xué)揭示了白云山風(fēng)景名勝區(qū)山頂摩星嶺片麻狀花崗巖形成于晚奧陶?早志留世(444±6 Ma);
(2) 白云山片麻狀花崗巖含有原生白云母, 其主要起源于地殼變質(zhì)沉積巖的部分熔融;
(3) 白云山片麻狀花崗巖最有可能形成于陸內(nèi)擠壓造山的構(gòu)造背景。
我們誠(chéng)摯感謝兩位評(píng)審專(zhuān)家的細(xì)致評(píng)審及寶貴建議和探討; 此外, 我們也非常感謝李衛(wèi)高級(jí)工程師、孫勝玲高級(jí)工程師、涂湘林高級(jí)工程師、曾文高級(jí)工程師、王鑫玉工程師、張樂(lè)工程師、楊亞楠博士、楊宗永博士和胡萬(wàn)龍博士對(duì)本文樣品前處理還有實(shí)驗(yàn)分析測(cè)試過(guò)程中的幫助。
[1] Li Z X, Li X H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model[J]. Geology, 2007, 35(2): 179–182.
[2] Wang Y J, Fan W M, Sun M, Liang X Q, Zhang Y H, Peng T P. Geochronological, geochemical and geothermal constraints on petrogenesis of the Indosinian peraluminous granites in the South China Block: A case study in the Hunan Province[J]. Lithos, 2007, 96(3/4): 475–502.
[3] Wang Y J, Zhang A M, Fan W M, Zhao G C, Zhang G W, Zhang Y Z, Zhang F F, Li S Z. Kwangsian crustal anatexis within the eastern South China Block: Geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains[J]. Lithos, 2011, 127(1/2): 239–260.
[4] Zhang F F, Wang Y J, Zhang A M, Fan W M, Zhang Y Z, Zi J W. Geochronological and geochemical constraints on the petrogenesis of Middle Paleozoic (Kwangsian) massive granitesin the eastern South China Block[J]. Lithos, 2012, 150: 188–208.
[5] Wang Y J, Fan W M, Zhang G W, Zhang Y H. Phanerozoic tectonics of the South China Block: Key observations and controversies[J]. Gondwana Research, 2013, 23: 1273–1305.
[6] 孫濤. 新編華南花崗巖分布圖及其說(shuō)明[J]. 地質(zhì)通報(bào), 2006, 25(3): 332–335.
Sun Tao. A new map showing the distribution of granites in South China and its explanatory notes[J]. Geol Bull China, 2006, 25(3): 332–335 (in Chinese with English abstract).
[7] Li X H. Cretaceous magmatism and lithospheric extension in Southeast China[J]. J Asian Earth Sci, 2000, 18(3): 293–305.
[8] Zhou X M, Li W X. Origin of Late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of mafic magmas[J]. Tectonophysics, 2000, 326: 269–287.
[9] Zhou X M, Sun T, Shen W Z, Shu L S, Niu Y L. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution[J].Episodes, 2006, 29(1): 26–33.
[10] Li X H, Li Z X, Li W X, Liu Y, Yuan C, Wei G J, Qi C S. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab?[J]. Lithos, 2007, 96(1/2): 186–204.
[11] Shu L S, Faure M, Wang B, Zhou X M, Song B. Late Palaeozoic- Early Mesozoic geological features of South China: Response to the Indosinian collision events in Southeast Asia[J]. C R Geosci, 2008, 340(2/3): 151–165.
[12] Huang X L, Yu Y, Li J, Tong L X, Chen L L. Geochronology and petrogenesis of the early Paleozoic I-type granite in the Taishan area, South China: Middle-lower crustal melting during orogenic collapse[J]. Lithos, 2013, 177: 268–284.
[13] Guan Y L, Yuan C, Sun M, Wilde S, Long X P, Huang X L, Wang Q. I-type granitoids in the eastern Yangtze Block: Implications for the Early Paleozoic intracontinental orogeny in South China[J]. Lithos, 2014, 206: 34–51.
[14] Shu L S, Wang B, Cawood P A, Santosh M, Xu Z Q. Early Paleozoic and Early Mesozoic intraplate tectonic and magmaticevents in the Cathaysia Block, South China[J]. Tectonics, 2015, 34(8): 1600–1621.
[15] Song M J, Shu L S, Santosh M, Li J Y. Late Early Paleozoic and Early Mesozoic intracontinental orogeny in the South ChinaCraton: Geochronological and geochemical evidence[J]. Lithos,2015, 232: 360–374.
[16] Xu W J, Xu X S. Early Paleozoic intracontinental felsic magmatism in the South China Block: Petrogenesis and geodynamics[J].Lithos, 2015, 234/235: 79–92.
[17] Zhang Q, Jiang Y H, Wang G C, Liu Z, Ni C Y, Qing L. Origin of Silurian gabbros and I-type granites in central Fujian, SE China: Implications for the evolution of the early Paleozoic orogen of South China[J]. Lithos, 2015, 216: 285–297.
[18] Yu Y, Huang X L, He P L, Li J. I-type granitoids associated with the early Paleozoic intracontinental orogenic collapse along pre-existing block boundary in South China[J]. Lithos, 2016, 248: 353–365.
[19] Zhong Y F, Wang L X, Zhao J H, Liu L, Ma C Q, Zheng J P, Zhang Z J, Luo B J. Partial melting of an ancient sub-continental lithospheric mantle in the early Paleozoic intracontinental regime and its contribution to petrogenesis of the coeval peraluminous granites in South China[J]. Lithos, 2016, 264: 224–238.
[20] 王靜強(qiáng), 舒良樹(shù), 于津海. 浙江龍游石榴角閃巖的巖石學(xué)特征與構(gòu)造意義[J]. 科學(xué)通報(bào), 2015, 61(1): 125–134.
Wang Jingqiang, Shu Liangshu, Yu Jinhai. Petrological properties and tectonic significance for Longyou garnet amphibolite[J]. Chinese Sci Bull, 2015, 61(1): 125–134 (in Chinese with English abstract).
[21] Li Z X, Li X H, Wartho J A, Clark C, Li W X, Zhang C L, Bao C M. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: New age constraints and pressure-temperature conditions[J]. Geol Soc Am Bull, 2010, 122(5/6): 772–793.
[22] Wang Y J, Zhang F F, Fan W M, Zhang G W, Chen S Y, Cawood P A, Zhang A M. Tectonic setting of the South China Block in the early Paleozoic: Resolving intracontinental and ocean closuremodels from detrital zircon U-Pb geochronology[J]. Tectonics, 2010, 29(6): 1–16.
[23] Charvet J, Shu L S, Faure M, Choulet F, Wang B, Lu H F, Le Breton N. Structural development of the Lower Paleozoic belt of South China: Genesis of an intracontinental orogen[J]. J Asian Earth Sci, 2010, 39(4): 309–330.
[24] Lin S F, Xing G F, Davis D W, Yin C Q, Wu M L, Li L M, Yang J, Chen Z H. Appalachian-style multi-terrane Wilson cycle model for the assembly of South China[J]. Geology, 2018, 46(4): 319–322.
[25] Yang D S, Li X H, Li W X, Liang X Q, Long W G, Xiong X L. U-Pb and40Ar-39Ar geochronology of the Baiyunshan gneiss (central Guangdong, south China): Constraints on the timing of early Palaeozoic and Mesozoic tectonothermal events in the Wuyun (Wuyi-Yunkai) Orogen[J]. Geol Mag, 2010, 147(4): 481–496.
[26] Yu P P, Zhang Y Z, Zhou Y Z, Weinberg R F, Zheng Y, Yang W B. Melt evolution of crustal anatexis recorded by the Early Paleozoic Baiyunshan migmatite-granite suite in South China[J].Lithos, 2019, 332: 83–98.
[27] Li X H, Li W X, Li Z X, Lo C H, Wang J, Ye M F, Yang Y H. Amalgamation between the Yangtze and Cathaysia Blocks in South China: constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precamb Res, 2009, 174(1/2): 117–128.
[28] Zhao J H, Zhou M F. Neoproterozoic high-Mg basalts formed by melting of ambient mantle in South China[J]. Precamb Res, 2013, 233: 193–205.
[29] Xia Y, Xu X S, Zou H B, Liu L. Early Paleozoic crust-mantle interaction and lithosphere delamination in South China Block: Evidence from geochronology, geochemistry, and Sr-Nd-Hf isotopes of granites[J]. Lithos, 2014, 184: 416–435.
[30] Feng S J, Zhao K D, Ling H F, Chen P R, Chen W F, Sun T, Jiang S Y, Pu W. Geochronology, elemental and Nd-Hf isotopic geochemistry of Devonian A-type granites in central Jiangxi, South China: Constraints on petrogenesis and post-collisional extension of the Wuyi-Yunkai orogeny[J]. Lithos, 2014, 206: 1–18.
[31] Wang Y J, Zhang A M, Fan, W M, Zhang Y H, Zhang Y Z. Origin of paleosubduction-modified mantle for Silurian gabbro in the Cathaysia Block: Geochronological and geochemical evidence[J]. Lithos, 2013, 160: 37–54.
[32] Zhong Y F, Ma C Q, Liu L, Zhao J H, Zheng J P, Nong J N, Zhang Z J. Ordovician appinites in the Wugongshan Domain of the Cathaysia Block, South China: Geochronological and geochemical evidence for intrusion into a local extensional zone within an intracontinental regime[J]. Lithos, 2014, 198: 202–216.
[33] Yao W H, Li Z X, Li W X, Wang X C, Li X H, Yang J H. Post–kinematic lithospheric delamination of the Wuyi-Yunkai orogen in South China: Evidence from ca. 435 Ma high-Mg basalts[J]. Lithos, 2012, 154: 115–129.
[34] 李獻(xiàn)華, 王一先, 趙振華, 陳多福, 張宏. 閩浙古元古代斜長(zhǎng)角閃巖的離子探針?shù)喪疷-Pb年代學(xué)[J]. 地球化學(xué), 1998, 27(4): 327–334.
Li Xian-hua, Wang Yi-xian, Zhao Zhen-hua, Chen Duo-fu, Zhang Hong. SHRIMP U-Pb zircon geochronology for amphibolitefrom the Precambrian basement in SW Zhejiang and NW Fujian Province[J]. Geochimica, 1998, 27(4): 327–334 (in Chinese with English abstract).
[35] 廣東省地質(zhì)礦產(chǎn)資源局. 廣東省區(qū)域地質(zhì)[M]. 北京: 地質(zhì)出版社, 1998: 1–941.
Bureau of Geology and Mineral Resources of Guangdong Province. Regional Geology of Guangdong Province[M]. Beijing: Geological Publishing House, 1998: 1–941 (in Chinese).
[36] Xie L W, Zhang Y B, Zhang H H, Sun J F, Wu F Y. In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite[J]. Chinese Sci Bull, 2008, 53(10): 1565–1573.
[37] Wiedenbeck M, Alle P, Corfu F, Griffin W L, Meier M, Oberli F, Von Quadt A, Roddick J C, Spiegel W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses[J]. Geostand Newsl, 1995, 19(1): 1–23.
[38] Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q, Wang D B. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. J Petrol, 2010, 51(1/2): 537–571.
[39] Ludwig K R. User’s Manual for Isoplot 3.75: A GeochronologicalToolkit for Microsoft Excel[M]. Berkeley: Berkeley Geochronology Center Special Publication, 2012: 1–75.
[40] Li X H, Qi C S, Liu Y, Liang X R, Tu X L, Xie L W, Yang Y H. Petrogenesis of the Neoproterozoic bimodal volcanic rocks along the western margin of the Yangtze Block: New constraints from Hf isotopes and Fe/Mn ratios[J]. Chinese Sci Bull, 2005, 50(21): 2481–2486.
[41] Li X H, Zhou H, Chung S L, Lo C H, Wei G J, Liu Y, Lee C Y. Geochemical and Sr-Nd isotopic characteristics of late Paleogene ultrapotassic magmatism in southeastern Tibet[J]. Int Geol Rev, 2002, 44(6): 559–574.
[42] 梁細(xì)榮, 韋剛健, 李獻(xiàn)華, 劉穎. 利用MC-ICPMS精確測(cè)定143Nd/144Nd和Sm/Nd比值[J]. 地球化學(xué), 2003, 32(1): 91–96.
Liang Xi-rong, Wei Gang-jian, Li Xian-hua, Liu Ying. Precise measurement of143Nd/144Nd and Sm/Nd ratios using multiple- collectors inductively coupled plasma-mass spectrometer (MC-ICPMS)[J]. Geochimica, 2003, 32(1): 91–96 (in Chinese with English abstract).
[43] 韋剛健, 梁細(xì)榮, 李獻(xiàn)華, 劉穎. (LP)MC-ICPMS方法精確測(cè)定液體和固體樣品的Sr同位素組成[J]. 地球化學(xué), 2002, 31(3): 295–299.
Wei Gang-jian, Liang Xi-rong, Li Xian-hua, Liu Ying. Precise measurement of Sr isotopic composition of liquid and solid base using (LP) MC-ICPMS[J]. Geochimica, 2002, 31(3): 295–299 (in Chinese with English abstract).
[44] Li X H, Long W G, Li Q L, Liu Y, Zheng Y F, Yang Y H, Chamberlain K R, Wan D F, Guo C H, Wang X C, Tao H. Penglai zircon megacrysts: A potential new working reference material for microbeam determination of Hf-O isotopes and U-Pb age[J]. Geostand Geoanal Res, 2010, 34(2): 117–134.
[45] Li X H, Tang G Q, Gong B, Yang Y H, Hou K J, Hu Z C, Li Q L, Liu Y, Li W X. Qinghu zircon: A working reference for microbeam analysis of U-Pb age and Hf and O isotopes[J]. Chinese Sci Bull, 2013, 58(36): 4647–4654.
[46] Zhang L, Ren Z Y, Nichols A R L, Zhang Y H, Zhang Y, Qian S P, Liu, J Q. Lead isotope analysis of melt inclusions by LA-MC-ICP-MS[J]. J Anal At Spectrom, 2014, 29(8): 1393– 1405.
[47] Sláma J, Ko?ler J, Condon D J, Crowley J L, Gerdes A, Hanchar J M, Horstwood M S A, Morris G A, Nasdala L, Norberg N, Schaltegger U, Schoene B, Tubrett M N, Whitehouse M J. Ple?ovice zircon — A new natural reference material for U-Pb and Hf isotopic microanalysis[J]. Chem Geol, 2008, 249(1/2): 1–35.
[48] Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. J Metamorph Geol, 2000, 18(4): 423–439.
[49] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chem Geol, 1977, 20: 325–343.
[50] Hastie A R, Kerr A C, Pearce J A, Mitchell S F. Classification of altered volcanic island arc rocks using immobile trace elements: Development of the Th-Co discrimination diagram[J]. J Petrol, 2007, 48(12): 2341–2357.
[51] Sun S-s, McDonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geol Soc London Spec Publ, 1989, 42(1): 313–345.
[52] Rudnick R L, Gao S. Composition of the continental crust[M]//Rudnick R L. Ed. The Crust, Treatise in Geochemistry (vol. 3). New York: Elsevier, 2003: 1–64.
[53] DePaolo D J. A neodymium and strontium isotopic study of the Mesozoic calc-alkaline granitic batholiths of the Sierra Nevada and Peninsular Ranges, California[J]. J Geophys Res Solid Earth, 1981, 86(B11): 10470–10488.
[54] S?derlund U, Patchett P J, Vervoort J D, Isachsen C E. The176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth Planet Sci Lett, 2004, 219(3/4): 311–324.
[55] Li X H, Li W X, Wang X C, Li Q L, Liu Y, Tang G Q. Role of mantle-derived magma in genesis of early Yanshanian granites in the Nanling Range, South China: In situ zircon Hf-O isotopic constraints[J]. Sci China D, 2009, 52: 1262–1278.
[56] Jiao S J, Li X H, Huang H Q, Deng X G. Metasedimentary melting in the formation of charnockite: Petrological and zircon U-Pb-Hf-O isotope evidence from the Darongshan S-type granitic complex in southern China[J]. Lithos, 2015, 239: 217–233.
[57] Huang H Q, Li X H, Li W X, Li Z X. Formation of high18O fayalite-bearing A-type granite by high-temperature melting of granulitic metasedimentary rocks, southern China[J]. Geology, 2011, 39(10): 903–906.
[58] Rong W, Zhang S B, Zheng Y F. Back-reaction of peritectic garnet as an explanation for the origin of mafic enclaves in S-type granite from the Jiuling batholith in South China[J]. J Petrol, 2017, 58(3): 569–598.
[59] Hopkinson T N, Harris N B, Warren C J, Spencer C J, Roberts N M, Horstwood M S, Parrish R R. The identification and significance of pure sediment-derived granites[J]. Earth Planet Sci Lett, 2017, 467: 57–63.
[60] 李獻(xiàn)華, 李寄嵎, 劉穎, 陳多福, 王一先, 趙振華. 華夏古陸古元古代變質(zhì)火山巖的地球化學(xué)特征及其構(gòu)造意義[J]. 巖石學(xué)報(bào), 1999, 15(3): 364–370.
Li Xian-hua, Lee Chi-yu, Liu Ying, Chen Duo-fu, Wang Yi-xian, Zhao Zhen-hua. Geochemistry characteristics of the Paleoproterozoic meta-volcanics in the Cathaysia block and it’s tectonic significance[J]. Acta Petrol Sinica, 1999, 15(3): 364–371 (in Chinese with English abstract).
[61] Wang Q, Xu J F, Jian P, Bao Z W, Zhao Z H, Li C F, Xiong X L, Ma J L. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: implications for the genesis of porphyry copper mineralization[J]. J Petrol, 2006, 47(1): 119–144.
[62] Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments[J]. Lithos, 1999, 46(3): 605–626.
[63] 吳朝東, 儲(chǔ)著銀. 黑色頁(yè)巖微量元素形態(tài)分析及地質(zhì)意義[J]. 礦物巖石地球化學(xué)通報(bào), 2001, 20(1): 14–20.
Wu Chao-dong, Chu Zhu-yin. Sequential extraction of trace elements and the geological significance of fractions in black shales, west Hunan and east Guizhou[J]. Bull Mineral Petrol Geochem, 2001, 20(1): 14–20 (in Chinese with English abstract).
[64] Sylvester P J. Post-collisional strongly peraluminous granites[J]. Lithos, 1998, 45(1/4): 29–44.
[65] Guo Z F, Wilson M. The Himalayan leucogranites: Constraints on the nature of their crustal source region and geodynamic setting[J]. Gondw Res, 2012, 22(2): 360–376.
[66] Plank T, Langmuir C H. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chem Geol, 1998, 145(3/4): 325–394.
[67] Wang X C, Li Z X, Li, H X, Li Q L, Zhang Q R. Geochemical and Hf-Nd isotope data of Nanhua rift sedimentary and volcaniclastic rocks indicate a Neoproterozoic continental flood basalt provenance[J]. Lithos, 2011, 127(3/4): 427–440.
[68] Shu L S, Song M J, Yao J L. Comments on: Appalachian-style multi-terrane Wilson cycle model for the assembly of South China[J]. Geology, 2018, 46(6): 445.
[69] Faure M, Shu L S, Wang B, Charvet J, Choulet F, Monie P. Intracontinental subduction: A possible mechanism for the Early Palaeozoic Orogen of SE China[J]. Terr Nova, 2009, 21(5): 360–368.
Genesis and tectonic significance of the Baiyunshan gneissic granites in Guangzhou City, South China
LIU Xiao1,2, WANG Qiang1,2,3, MA Lin1*and WANG Jun1
1.State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;2. College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing 100049, China; 3. CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
Two formation mechanisms, intracontinental orogeny and oceanic lithospheric subduction, have been proposed to explain the Early Paleozoic gneissic granites widely distributed in the South China Block. This study presents LA-ICP-MS zircon U-Pb geochronological, whole-rock major and trace elements, and Sr-Nd and zircon Hf-O isotopic geochemical data of Baiyunshan gneissic granites in Guangzhou, South China. The Baiyunshan gneissic granites formed from the Late Ordovician to Early Silurian (444±6 Ma). They contain primary muscovite and biotite and have high SiO2and Al2O3and low MgO contents (SiO2=74.8%–80.4%, Al2O3=9.64%–12.7%, MgO= 0.46%–0.61%). They are enriched in Rb, Th, U, and Pb and depleted in Ba, Sr, Nb, Ta, Zr, Hf, and Ti. In addition, they have relatively low rare earth element (REE) abundances (44–173 μg/g) with enriched light REE patterns and pronounced negative Eu anomalies (Eu*=0.27–0.63). They exhibit enriched whole-rock Nd and zircon Hf isotopic compositions (Nd()=?12.1 to ?7.88;Hf()=?10.8 to ?2.63) as well as high zircon18O values (8.06‰–11.4‰). Petrographic and geochemical characteristics suggest that the Baiyunshan gneissic granites were derived from metasedimentary rock–dominated crustal sources. Owing to the regional geological and geochemical results, we suggest that the Baiyunshan gneissic granites most likely formed in an intracontinental orogenic setting.
LA-ICP-MS U-Pb geochronology; Sr-Nd-Hf-O isotopes; gneissic granites; Baiyunshan; South China
P595; P597; P581
A
0379-1726(2021)04-0340-14
10.19700/j.0379-1726.2021.04.002
2019-10-12;
2019-11-25;
2019-12-18
廣州市科技計(jì)劃項(xiàng)目科學(xué)研究專(zhuān)項(xiàng)(201707020032)
劉瀟(1993–), 男, 博士后, 地球化學(xué)專(zhuān)業(yè)。E-mail: liuxiao@gig.ac.cn
MA Lin, E-mail: malin@gig.ac.cn; Tel: +86-20-85292337