• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A sensitive electrochemical detection of metronidazole in synthetic serum and urine samples using low-cost screen-printed electrodes modified with reduced graphene oxide and C60

    2021-11-11 13:37:56ElsMriMteronAdemrWongTyneAguirFreitsRonldoCensiFriOsvldoOliveirJr
    Journal of Pharmaceutical Analysis 2021年5期

    Els Mri Mterˊon , Ademr Wong , Tyne Aguir Freits , Ronldo Censi Fri ,Osvldo N. Oliveir Jr.

    a Department of Chemistry, Federal University of S?ao Carlos,13560-970, S?ao Carlos, Brazil

    b S?ao Carlos Institute of Physics, University of S?ao Paulo,13560-970, S?ao Carlos, Brazil

    Keywords:Metronidazole Fullerene Reduced graphene oxide Screen-printed electrodes Antibiotic

    ABSTRACT Monitoring the concentration of antibiotics in body fluids is essential to optimizing the therapy and minimizing the risk of bacteria resistance,which can be made with electrochemical sensors tailored with appropriate materials. In this paper, we report on sensors made with screen-printed electrodes (SPE)coated with fullerene (C60), reduced graphene oxide (rGO) and Nafion (NF) (C60-rGO-NF/SPE) to determine the antibiotic metronidazole (MTZ). Under optimized conditions, the C60-rGO-NF/SPE sensor exhibited a linear response in square wave voltammetry for MTZ concentrations from 2.5 × 10-7 to 34×10-6 mol/L,with a detection limit of 2.1×10-7 mol/L.This sensor was also capable of detecting MTZ in serum and urine, with recovery between 94% and 100%, which are similar to those of the standard chromatographic method (HPLC-UV). Because the C60-rGO-NF/SPE sensor is amenable to mass production and allows for MTZ determination with simple principles of detection,it fulfills the requirements of therapeutic drug monitoring programs.

    1. Introduction

    The alarming increase in bacteria resistance has brought failure to many treatments requiring antibiotics [1], which is especially worrying because introducing new drugs into the market is expensive and takes a long time. New approaches are therefore needed to preserve the efficacy of currently approved antibiotics[2], as exemplified by the therapeutic drug monitoring (TDM)program used in clinical practice to quantify concentrations of antibiotics and other drugs in body fluids [2,3]. With TDM combined with knowledge from pharmacokinetics, one may identify situations where an unnecessary amount of drug has been administered,and optimize the concentration which would inhibit bacterial growth[4,5].An important requirement for the success of TDM is to develop low-cost,easy-to-use tests to quantify the drugs in body fluids.Today,this type of test is performed with expensive,time-consuming methods, including radioimmunoassays, highperformance liquid chromatography (HPLC), fluorescence polarization immunoassay, enzyme immunoassay, and enzyme-linked immunosorbant assay [6-9]. In this context, electrochemical sensors and biosensors are strong candidates to fulfill the TDM requirements,for they have been proven excellent in the monitoring of antimicrobial drugs [10-12], in addition to the detection of antibiotics in water [10,13], food [14,15], and biological samples[16,17].

    The development of efficient electrochemical sensors for TDM which are also of low cost,demands a judicious choice of materials,both for the electrodes and coating layers used in functionalization.From the large library of materials for this purpose, carbon nanomaterials (e.g., graphite, nanohorns, fullerenes, carbon nanotubes,graphene, carbon nanoparticles, and nanodiamonds) should be highlighted for their reproducible electrocatalytic responses,biocompatibility and enhanced electron transport [18,19]. In this study, we chose carbon ink to produce screen-printed electrode(SPE) amenable for mass production [20], which was modified by two other types of carbon nanomaterials, namely, reduced graphene oxide (rGO) and fullerene (C60) in order to leverage their intrinsic properties such as increased active area, suitability for immobilization of electrocatalytic compounds and easy fabrication[21].Fullerenes have been widely used as nanomediator for sensors since they allow for operation at lower potentials,thus reducing the interference from electroactive compounds[22-27].

    We tested the suitability of the electrochemical sensors by determining the concentration of metronidazole(MTZ),a synthetic antibiotic to treat trichomoniasis, dysentery, liver abscesses, rosacea and anaerobically infected burn wounds,in addition to surgical prophylaxis [28,29]. For patients with burn wounds, in particular,sepsis is a major cause of morbidity and mortality due to the inability to maintain a sterile environment in the hospital and avoid contamination with microorganisms and their ensuing antibiotic resistance[2,30,31].Detection of MTZ is also relevant to minimizing its side effects, which include nauseas, diarrhea, neurotoxicity,optic neuropathy, peripheral neurophaty and ancephatopathy.Furthermore,it has shown genotoxic effects in animal models[28].The electrochemical sensors reported to determine MTZ were made with molecularly imprinted polymers [32-36], β-cyclodextrin-functionalized gold nanoparticles/poly(L-cysteine) [37], 3D hierarchical porous graphene/polythionine [38], Ni/Fe-layered double hydroxides [39], modified glassy carbon electrodes, multiwalled carbon nanotubes [40], composite film derived from cysteic acid, poly(diallydimethylammonium chloride)-functionalized graphene [41], and carbon paste electrode [42-44] in pharmaceutical drug tablets and fish tissue [32,33,40], and human blood serum[35].In this work,we employed C60-rGO and Nafion,for the first time to the best of our knowledge,to modify a low-cost SPE.

    2. Materials and methods

    2.1. Reagents, materials, and apparatus

    MTZ,clindamycin,dipyrone,tetracycline,diclofenac,ranitidine,uric acid,caffeine and C60 were purchased from Sigma-Aldrich(S?ao Paulo,Brazil).Graphene was obtained from Graphene Supermarket(Calverton, MD, USA). A stock solution of MTZ at 1.0 × 10-2mol/L was prepared by diluting 17.1 mg in a 10 mL capacity flask. The electrochemical measurements were performed with an Autolab potentiostat/galvanostat (model PGSTAT-30, Eco Chemie, Utrecht,The Netherlands) controlled by NOVA 2.1 software. The electrochemical system had a screen-printed sensor with threeelectrodes: pseudo-reference electrode (Ag/AgCl), auxiliary electrode made of carbon ink and the working electrode with functionalized carbon ink (r=0.15 cm) connected with an auxiliary cable.

    HPLC-UV analysis was made with a Shimadzu model 10ATvp LC system (San Francisco, CA, USA), consisting of two pumps (LC-10AT), column oven (CTO10A), and UV detector (SPD-10A). The mobile phase consisted of a 1.0×10-3mol/L phosphate buffer(pH 7.0) solution and acetonitrile at the ratio of 95:5 (V/V) (filtered through a 0.22 μm pore membrane filter) at the temperature of 20°C. The flow rate was 1 mL/min and detection was made at 320 nm.This analytical method was used for the comparison with the electrochemical sensor [45].

    2.2. Fabrication and preparation of C60-rGO-NF/SPE sensors

    SPE were made as reported in the literature[46,47]. A negative mask with the SPE model was prepared in an adhesive vinyl polymeric material using Silhouette Studio version 2.7.4 software and an electronic craft cutter from Silhouette Cameo (Silhouette America, S?ao Paulo, Brazil). Fig. 1 shows the main steps for preparing the electrode: (1) the vinyl mask was fixed on a polyester sheet (USA Folien Laserjet Clear A4 transparency film); (2) the carbon ink(C2160602D2 from Gwent Electronic Materials Ltd.,S?ao Paulo, Brazil) was deposited on the support with a plastic spatula and cured at 90°C for 30 min; (3) the Ag/AgCl ink (C2051014P10,Gwent Electronic Materials Ltd., S?ao Paulo, Brazil) was applied to the part corresponding to the pseudo-reference electrode,and then the ink was cured at 60°C for 30 min;(4)removal of the vinyl mask;(5) delimitation of the geometric area of the working electrodes with a rectangular vinyl mask, followed by a heater press and (6)SPE for use.

    To obtain an active sensor, the SPE was placed in an acid bath(0.5 mol/L H2SO4) under stirring for 1 min (for partial functionalization of the electrode surface). A suspension (2 mL) containing rGO(3 mg)and NF(50 μL,0.5%V/V)was prepared and subjected to an ultrasonic bath for 20 min to yield a homogeneous dispersion.An aliquot of 3 μL of C60 solution prepared in CH2Cl2was cast onto the electrode surface,and dried for 1 h.In the pretreatment process cyclic voltammetry(2 cycles)was used with the potential scanning from 0 to-1.5 V at a scan rate of 20 mV/s in a 1 mol/L KOH solution.Another potential scanning was carried out (550 to -50 mV) at a scan rate of 50 mV/s using the phosphate buffer solution (pH 7.0)with the goal of stabilizing the electrochemical sensor response[48].

    2.3. Preparation of synthetic urine and serum samples

    The synthetic urine sample was prepared by following the procedure reported by Laube et al.[49]using the compounds found in real samples: 49, 20, 10, 15, 18, 18 mmol/L of NaCl, KCl, CaCl2,KH2PO4,NH4Cl,and urea were added.The remaining volume of the flask was filled with ultrapure water. The synthetic serum sample was prepared as described by Parham and Zargar [50]. The flask volume was completed with ultrapure water. The total volume of the samples was 25 mL. After this step, the samples were spiked with two levels of concentration of MTZ and an aliquot of 250 μL was added separately in 10 mL of supporting electrolyte solution.

    3. Results and discussion

    3.1. Morphological characterization of the C60-rGO-NF/SPE sensor

    The scanning electron microscopy image in Fig. 2A is typical of rGO,with smooth multilayers in overlapping sheets with crumpled and wrinkled sheets. Fig. 2B shows a dense, uniform C60 film deposited on rGO, resulting from an evenly dispersed C60-rGO mixture which had been subjected to an ultrasound bath before modifying the surface electrode.NF is very diluted(0.01%V/V)and therefore it could not be visualized in a straightforward manner,though it may be responsible for some lighter shadows on the image.

    The chemical composition of graphene, GO and rGO was assessed with X-ray photoelectron spectroscopy(XPS).Figs.3A and B display two well-defined binding energy peaks for graphene and GO at 285.4 eV assigned to C1s(graphene=96.8%and GO=87.3%)and at 530.9 eV due to O1s(graphene=3.2%and GO=12.7%,insets in Figs.3A and B).With deconvolution of the XPS spectra of C1s,one may determine the degree of oxidation and the binding of carbon atoms:aromatic C-C bonds(carbon sp2,284.5 eV);C-H(285.6 eV);C-O (ether/alcohol, 286.5 eV), C=O (carbonyl, 287.6 eV), O-C=O(carboxyl,289.5 eV).There was a large difference in peak intensity between graphene and GO.For graphene the aromatic bond(C-C)peak was large,indicating the expected high degree of order of the hexagonal carbon structure.On the other hand,for GO there was an increase in the peaks related to carbon bonds with oxygenated groups(CO,C=O and O-C=O)and CH,with a consequent decrease in the peak related to aromatic C-C. This confirmed that oxygenated groups were inserted in the carbon structure of graphene.When GO was reduced using NaBH4, these groups were removed,and their corresponding peaks decreased significantly,as shown in Fig. 3C for rGO.

    Fig.1.Schematic representation of the preparation of screen-printed electrode (SPE).

    Fig.2.Morphological characterization by scanning electron microscopy images of (A)reduced graphene oxide (rGO) and (B) C60-rGO.

    3.2. Catalytic activity from synergic effect between C60 and rGO

    The analytic response of the C60-rGO-NF/SPE sensor was determined using cyclic voltammetry for a concentration of MTZ of 1.0×10-4mol/L.Fig.4 shows the cathodic peak due to reduction of MTZ on the electrode surface at-0.9 V vs.Ag/AgCl(3.0 mol/L KCl).This peak increased when the SPE electrode was modified with C60 and rGO, with the current for C60-rGO-NF/SPE being 5 times the value for SPE and 2.1 times the value for rGO/SPE. The increased current can be attributed to an increase in the porosity of these nanomaterials which increases the surface area of the electrode.The electrochemical reduction of MTZ involves four electrons according to reaction below[42].

    3.3. Effect of potential scan rate and pH

    The presence of a cathodic peak and absence of anodic peaks in Fig. 5 indicate an irreversible redox process for MTZ on the C60-rGO-NF/SPE sensor. The cathodic peak shifted to a more negative potential and increased with the scan rate.The insets show that the cathodic peak current decreased linearly with the scan rate,with a correlation coefficient of 0.998. We also tried thev1/2dependence but fitting was poorer, with a correlation coefficient of 0.967.Therefore,the MTX redox reaction was controlled by an adsorption process (rather than a diffusion process).

    Fig.S1 shows that the cathodic peak current for MTZ increased with the pH up to pH 7, above which it leveled off. This is why we selected pH 7 for subsequent experiments to determine MTZ with the C60-rGO-NF/SPE sensor. The potential at which the cathodic peak occurred increased with pH, as is typical of an irreversible electrochemical process.The equation for theEpvs.pH in Fig.S1 isEp=-0.4-0.062pH,where the slope of-0.062 mV/pH corresponds to an equal number of protons and electrons in the electrochemical reduction of MTZ [51].

    3.4. Determination of MTZ using the C60-rGO-NF/SPE sensor

    First, a comparison was made between differential pulse voltammetry and square wave voltammetry(SWV).From the analysis of peak current intensity and stability in the electrochemical signal,we inferred that SWV presented the best response.Thus,this technique was chosen for the detection and quantification studies of MTZ.The quantitative determination of MTZ was performed under optimized conditions for the C60-rGO-NF/SPE sensor. Fig. 6 shows a linear increase in the peak current with MTZ concentration in the range between 2.5×10-7and 34×10-6mol/L,with a regression equationIp(μA) = 0.15 + 0.1CMTZ(μmol/L) (r=0.998). The limit of detection(LOD) was 2.1× 10-7mol/L,calculated using the statistical method described by da Silva and Machado[52],LOD=yB+3SB,whereyBis the intercept of the calibration plot used as the blank signal and SBis the standard deviation(obtained directly from the analytical curve).The concentrations for which the sensor works are clinically relevant as they correspond to serum concentrations from patients reported in the literature. For instance, after administering a single dose of 200 mg MTZ,the blood concentration varied from 5.8×10-7mol/L to 2.8× 10-6mol/L within 24 h and with a renal excretion of 13%-46% [53]. In subsidiary experiments we verified that the sensor displayed a linear behavior for MTZ concentrations up to 10-6mol/L(not shown). We also tested the accumulation potential (Eacc) at potentials 0,-0.2,and-0.4 V with an accumulation time of 30 s,and did not observe an appreciable increase in current.This is favorable for the electrochemical analysis, and Eaccwas not used for determining MTZ in the SWV experiments.

    Fig.3.Evaluation of graphene functionalization by X-ray photoelectron spectroscopy analysis: (A) graphene, (B) GO and (C) rGO, and respective insets.

    Fig.4.Cyclic voltammograms of 1.0 × 10-4 mol/L metronidazole (MTZ) in 0.1 mol/L phosphate buffer (pH 7.0) for bare SPE, rGO-NF/SPE and C60-rGO-NF/SPE. Scan rate=25 mV/s. NF: Nafion.

    Table 1 shows that LOD and linear range for the C60-rGO-NF/SPE sensor are competitive with other electrochemical devices to determine MTZ in the literature [36,38-40,42-44,54]. Furthermore,this sensor is highly stable,providing repeatable results with small sample volumes. The whole methodology is also promising because it is amenable to mass production of electrodes at a low cost, which is essential for disposable devices.

    3.5. Interference and repeatability studies

    The repeatability of the electrochemical signal for MTZ using C60-rGO-NF/SPE sensor was evaluated in 0.1 mol/L phosphate buffer solution containing 5.0 × 10-6mol/L MTZ in 14 measurements. The relative standard deviation (RSD) of the cathodic peak current was 3.6% (Fig. S2). When different electrodes were employed,RSD was 4.9%(for seven electrodes,i.e.,n=7).Hence,the proposed sensor had a good repeatability.The influence of possible interferents in plasma and urine for MTZ determination was found to be negligible,as demonstrated in Fig.7,when several drugs and substances were added to MTZ.There was no significant change in the MTZ analytical signal, when clindamycine, diclofenac, tetracycline, dopamine, uric acid, dipyrone, ranitidine and caffeine were tested in SWV experiments using a 1:1 concentration ratio (analyte:interference). In addition, no change in analytical signal was observed for a 1:10 concentration ratio (analyte:interference). The MTZ concentration used was 5.0×10-7mol/L,while the interferent concentration was 5.0 × 10-6mol/L.

    Fig.5.Effect of different scan rates on cyclic voltammograms at the C60-rGO-NF/SPE sensor in the presence of 5.0×10-5 mol/L MTZ in 0.1 mol/L phosphate buffer(pH 7.0).

    3.6. Analytical applications to urine and serum samples

    Proof-of-concept experiments were performed to determine MTZ in synthetic serum and urine samples.Table 2 shows the SWV results for the C60-rGO-NF/SPE sensor under the same conditions identified in the optimization process. Recovery of MTZ ranged from 94% to 100% with RSD of 3.3% in triplicate experiments for serum and urine samples. Significantly, the relative error in these results was within 10% of the values obtained with the standard HPLC method (Fig. S3).

    Table 1 Comparison of analytical results for the C60-rGO-NF/SPE sensor with other methods to determine metronidazole in the literature.

    Table 2 Results from the analysis of synthetic urine and serum samples using C60-rGO-NF/SPE sensor under optimized conditions.The last column shows the relative error compared with the standard HPLC method.

    4. Conclusion

    Fig.6.SWV at C60-rGO-NF/SPE sensor for different concentrations of MTZ in a phosphate buffer (pH=7.0) and analytical curve (inset). Parameters square wave voltammetry (SWV): f=15 Hz, A=75 mV, and ΔE=5 mV.

    Fig.7.(A) Study of interference with different drugs and (B) SWV graph.

    We have designed an electrochemical sensor that can be employed in therapeutic drug monitoring, for which distinct carbon nanomaterials were combined. The suitability of the methodology was demonstrated with the antibiotic MTZ, which could be determined with an LOD of 2.1 × 10-7mol/L using the C60-rGO-NF/SPE sensor.Furthermore,this sensor could be applied to determine MTZ in urine and serum samples, with recoveries similar to those of the standard HPLC-UV technique. The method exhibits high stability, repeatability and reproducibility. The high performance of the sensor may be attributed to the synergy in electrocatalytic activity of C60 and rGO,as indicated by the results with cyclic voltammetry and SWV. The fast response and low cost of the electrochemical sensors require a small expenditure of materials and reagents.The materials, concepts, and methodology are generic and may be extended to other antibiotics and drugs,and this is promising for drug monitoring to fight bacteria resistance.

    Declaration of competing interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    The authors gratefully acknowledge the financial support granted by CNPq, INEO, CAPES and FAPESP (Grant Nos.: 2018/22214-6, 2017/24053-7 and 2016/0991-5).

    Appendix A. Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.jpha.2021.03.004.

    男插女下体视频免费在线播放| 91av网一区二区| 国产亚洲精品综合一区在线观看| 色av中文字幕| 69人妻影院| 午夜a级毛片| 婷婷精品国产亚洲av| 最近最新中文字幕大全电影3| 男人的好看免费观看在线视频| 免费高清视频大片| 日韩欧美国产一区二区入口| 久久久久久久久中文| e午夜精品久久久久久久| 亚洲欧美日韩卡通动漫| 国产蜜桃级精品一区二区三区| 一进一出好大好爽视频| 人妻夜夜爽99麻豆av| 色综合婷婷激情| 亚洲av不卡在线观看| 久久精品91无色码中文字幕| 午夜免费观看网址| 91字幕亚洲| 亚洲va日本ⅴa欧美va伊人久久| svipshipincom国产片| 欧美乱妇无乱码| 精品久久久久久久毛片微露脸| 丁香欧美五月| 国产精品久久久久久久电影 | 黄色女人牲交| 悠悠久久av| 波多野结衣巨乳人妻| 亚洲欧美精品综合久久99| 日韩高清综合在线| 成人特级av手机在线观看| 亚洲乱码一区二区免费版| 成年版毛片免费区| 啦啦啦观看免费观看视频高清| 国产中年淑女户外野战色| 91久久精品国产一区二区成人 | 性色av乱码一区二区三区2| 午夜福利欧美成人| 国产一级毛片七仙女欲春2| 在线播放无遮挡| 国产成人啪精品午夜网站| 麻豆成人午夜福利视频| 亚洲av一区综合| 亚洲激情在线av| 欧美又色又爽又黄视频| 国产乱人伦免费视频| 窝窝影院91人妻| 99久久综合精品五月天人人| 无人区码免费观看不卡| 69av精品久久久久久| 亚洲av成人av| 国产一区在线观看成人免费| 色哟哟哟哟哟哟| 伊人久久精品亚洲午夜| 精品久久久久久久久久免费视频| 日本黄色片子视频| 国模一区二区三区四区视频| 国产一区二区激情短视频| eeuss影院久久| av在线蜜桃| 国内精品一区二区在线观看| 亚洲国产精品久久男人天堂| 高清毛片免费观看视频网站| 国产精品自产拍在线观看55亚洲| 热99在线观看视频| 久久精品人妻少妇| 日本成人三级电影网站| 亚洲午夜理论影院| 一本精品99久久精品77| 国产亚洲欧美98| 欧美成狂野欧美在线观看| 午夜亚洲福利在线播放| 男女床上黄色一级片免费看| 久久国产乱子伦精品免费另类| 日本黄色视频三级网站网址| 99国产精品一区二区三区| 男女那种视频在线观看| 欧美黄色淫秽网站| 亚洲五月婷婷丁香| 日本免费a在线| 国产黄a三级三级三级人| 国产精品av视频在线免费观看| 精品人妻偷拍中文字幕| 一个人看的www免费观看视频| 看黄色毛片网站| 国产精品电影一区二区三区| 免费看光身美女| 日日夜夜操网爽| 黄色丝袜av网址大全| 最新在线观看一区二区三区| 国产精华一区二区三区| 两个人视频免费观看高清| 亚洲av日韩精品久久久久久密| www.色视频.com| 精品久久久久久,| 日韩欧美 国产精品| 免费av不卡在线播放| 在线播放无遮挡| 脱女人内裤的视频| 国产高清videossex| 国产中年淑女户外野战色| 国产亚洲av嫩草精品影院| 亚洲黑人精品在线| 免费大片18禁| 国产一区二区亚洲精品在线观看| 国产免费av片在线观看野外av| 日本与韩国留学比较| 一区二区三区高清视频在线| 黄色成人免费大全| 在线十欧美十亚洲十日本专区| 天堂av国产一区二区熟女人妻| 精品人妻一区二区三区麻豆 | 国产精品,欧美在线| 精华霜和精华液先用哪个| 精品电影一区二区在线| 女同久久另类99精品国产91| 成人高潮视频无遮挡免费网站| 中文字幕av在线有码专区| 级片在线观看| 欧美极品一区二区三区四区| 亚洲欧美激情综合另类| 成人av在线播放网站| 久久九九热精品免费| 成人无遮挡网站| 叶爱在线成人免费视频播放| 老汉色av国产亚洲站长工具| 国产91精品成人一区二区三区| 少妇丰满av| 日韩欧美精品v在线| 婷婷精品国产亚洲av在线| 成人av一区二区三区在线看| 午夜两性在线视频| 国产精品国产高清国产av| 国产精品99久久久久久久久| 亚洲中文日韩欧美视频| 免费人成在线观看视频色| 观看免费一级毛片| 级片在线观看| 国产精品 欧美亚洲| 色综合欧美亚洲国产小说| 欧美丝袜亚洲另类 | 1000部很黄的大片| 午夜福利在线观看免费完整高清在 | 亚洲人成网站高清观看| 国内久久婷婷六月综合欲色啪| 欧美日韩亚洲国产一区二区在线观看| 亚洲成a人片在线一区二区| 三级毛片av免费| 国产伦一二天堂av在线观看| 国产av麻豆久久久久久久| 久久久精品大字幕| 久久久久久久亚洲中文字幕 | 久久草成人影院| www国产在线视频色| 国产成人欧美在线观看| e午夜精品久久久久久久| 美女 人体艺术 gogo| 国产成人aa在线观看| 国产成人aa在线观看| 好男人在线观看高清免费视频| 男人的好看免费观看在线视频| 日韩高清综合在线| 国产成人影院久久av| 国产成人影院久久av| 嫁个100分男人电影在线观看| 18美女黄网站色大片免费观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美一区二区三区黑人| 一夜夜www| 岛国在线免费视频观看| 99国产精品一区二区蜜桃av| 色播亚洲综合网| 中国美女看黄片| 亚洲精品影视一区二区三区av| 嫩草影院入口| 国模一区二区三区四区视频| 日韩高清综合在线| 国产亚洲精品久久久com| 久久午夜亚洲精品久久| 久9热在线精品视频| 一级作爱视频免费观看| 国产精品美女特级片免费视频播放器| 亚洲人成电影免费在线| 久99久视频精品免费| x7x7x7水蜜桃| 夜夜夜夜夜久久久久| 蜜桃亚洲精品一区二区三区| 亚洲一区高清亚洲精品| 久久草成人影院| 蜜桃久久精品国产亚洲av| www.熟女人妻精品国产| 日韩欧美国产在线观看| 精品一区二区三区av网在线观看| 精品国内亚洲2022精品成人| 精品久久久久久久人妻蜜臀av| 欧美高清成人免费视频www| 国产亚洲精品一区二区www| 国产探花极品一区二区| 国产黄片美女视频| 夜夜看夜夜爽夜夜摸| 成人av一区二区三区在线看| 午夜免费成人在线视频| 精品久久久久久,| 日本 av在线| 18禁国产床啪视频网站| 一二三四社区在线视频社区8| 成年女人永久免费观看视频| 欧美性猛交╳xxx乱大交人| 精品免费久久久久久久清纯| 母亲3免费完整高清在线观看| 一边摸一边抽搐一进一小说| 久久性视频一级片| 亚洲人与动物交配视频| 女人被狂操c到高潮| 国产精品 欧美亚洲| 国产在线精品亚洲第一网站| 欧美最黄视频在线播放免费| 小蜜桃在线观看免费完整版高清| 无限看片的www在线观看| 一个人看的www免费观看视频| 日本黄色视频三级网站网址| 国内少妇人妻偷人精品xxx网站| 亚洲乱码一区二区免费版| 国产主播在线观看一区二区| 99热只有精品国产| 久久久久久大精品| 成人午夜高清在线视频| a在线观看视频网站| 日韩亚洲欧美综合| 精品无人区乱码1区二区| 婷婷丁香在线五月| 精品人妻一区二区三区麻豆 | 一本一本综合久久| 久久久久性生活片| 日本三级黄在线观看| 中文字幕久久专区| 欧美日本视频| 波野结衣二区三区在线 | 高清日韩中文字幕在线| 亚洲国产欧美人成| 69人妻影院| 久久九九热精品免费| 国产视频内射| 国产精品 欧美亚洲| 免费在线观看日本一区| 亚洲一区二区三区不卡视频| 黄色成人免费大全| 91字幕亚洲| 亚洲片人在线观看| 欧美日韩国产亚洲二区| 在线a可以看的网站| 成人国产一区最新在线观看| avwww免费| 亚洲熟妇熟女久久| 亚洲欧美一区二区三区黑人| 免费观看的影片在线观看| x7x7x7水蜜桃| 国产av一区在线观看免费| 窝窝影院91人妻| 国内精品一区二区在线观看| 国产99白浆流出| 亚洲国产精品sss在线观看| 日韩欧美三级三区| 香蕉丝袜av| 国产亚洲av嫩草精品影院| e午夜精品久久久久久久| 日韩欧美国产在线观看| 中文资源天堂在线| 国产视频一区二区在线看| 精品人妻1区二区| 香蕉av资源在线| 叶爱在线成人免费视频播放| 黄片大片在线免费观看| 日本黄色片子视频| 黑人欧美特级aaaaaa片| 欧美日韩瑟瑟在线播放| av在线蜜桃| 精华霜和精华液先用哪个| 亚洲av成人av| 99久久无色码亚洲精品果冻| 日韩有码中文字幕| www.熟女人妻精品国产| 欧美日本视频| 亚洲 欧美 日韩 在线 免费| 亚洲国产精品sss在线观看| 亚洲国产欧洲综合997久久,| 狠狠狠狠99中文字幕| 日韩有码中文字幕| 久久久久精品国产欧美久久久| 欧美高清成人免费视频www| 精品不卡国产一区二区三区| 亚洲精品一区av在线观看| 岛国视频午夜一区免费看| 日本a在线网址| 久99久视频精品免费| 精品人妻一区二区三区麻豆 | 成年免费大片在线观看| 淫妇啪啪啪对白视频| 久久久久国产精品人妻aⅴ院| 亚洲专区中文字幕在线| 欧美日韩福利视频一区二区| 亚洲不卡免费看| 黄色成人免费大全| 男女午夜视频在线观看| www.999成人在线观看| 99久久无色码亚洲精品果冻| 国内精品久久久久久久电影| 国产高清三级在线| 欧美不卡视频在线免费观看| 午夜免费成人在线视频| 亚洲精品美女久久久久99蜜臀| 男女视频在线观看网站免费| 99久久精品国产亚洲精品| 国产高清三级在线| 亚洲色图av天堂| 无遮挡黄片免费观看| 成年女人永久免费观看视频| 俺也久久电影网| 亚洲第一欧美日韩一区二区三区| 精品国内亚洲2022精品成人| 真实男女啪啪啪动态图| 欧美+日韩+精品| 国产伦一二天堂av在线观看| 三级国产精品欧美在线观看| 国产精品久久久人人做人人爽| 18禁美女被吸乳视频| 热99re8久久精品国产| 夜夜躁狠狠躁天天躁| 在线观看66精品国产| 国产真人三级小视频在线观看| 舔av片在线| bbb黄色大片| 日韩大尺度精品在线看网址| av天堂中文字幕网| 3wmmmm亚洲av在线观看| 99国产综合亚洲精品| 操出白浆在线播放| 国内精品久久久久精免费| 小说图片视频综合网站| 一a级毛片在线观看| 国产伦人伦偷精品视频| 一级黄片播放器| 成人欧美大片| 亚洲一区二区三区色噜噜| 91麻豆精品激情在线观看国产| 欧美激情在线99| 成年女人毛片免费观看观看9| 小蜜桃在线观看免费完整版高清| 欧美日韩黄片免| 黄片小视频在线播放| 国产精品 国内视频| 成人亚洲精品av一区二区| 国产伦一二天堂av在线观看| 神马国产精品三级电影在线观看| 国产三级黄色录像| 国产精品嫩草影院av在线观看 | 国产精品1区2区在线观看.| 久久精品国产自在天天线| 男女之事视频高清在线观看| 欧美丝袜亚洲另类 | 天天一区二区日本电影三级| 精品人妻1区二区| 露出奶头的视频| 美女 人体艺术 gogo| 真人做人爱边吃奶动态| 久久久久久九九精品二区国产| 亚洲熟妇中文字幕五十中出| 久久九九热精品免费| 中文字幕av在线有码专区| 精品人妻偷拍中文字幕| 国产三级黄色录像| 午夜精品久久久久久毛片777| 亚洲在线观看片| eeuss影院久久| 日日干狠狠操夜夜爽| 99久久综合精品五月天人人| 亚洲欧美日韩东京热| eeuss影院久久| 亚洲aⅴ乱码一区二区在线播放| 欧美成人免费av一区二区三区| 久久久久国产精品人妻aⅴ院| 亚洲精品成人久久久久久| 天美传媒精品一区二区| www国产在线视频色| 亚洲最大成人中文| 欧美bdsm另类| 亚洲五月天丁香| 级片在线观看| 国产午夜福利久久久久久| 一进一出好大好爽视频| 高清毛片免费观看视频网站| 制服人妻中文乱码| 精品国产超薄肉色丝袜足j| 深夜精品福利| 久久久国产成人免费| 99久久精品一区二区三区| 亚洲精品亚洲一区二区| 嫩草影院精品99| 亚洲一区高清亚洲精品| 99国产精品一区二区三区| 国产真人三级小视频在线观看| 色播亚洲综合网| 级片在线观看| 亚洲一区二区三区色噜噜| 麻豆国产97在线/欧美| 国产中年淑女户外野战色| 亚洲无线观看免费| 国产真人三级小视频在线观看| 亚洲国产精品成人综合色| 国产精品永久免费网站| 全区人妻精品视频| 99在线人妻在线中文字幕| 无人区码免费观看不卡| 香蕉久久夜色| 少妇丰满av| 一本久久中文字幕| 欧美最黄视频在线播放免费| 此物有八面人人有两片| 天美传媒精品一区二区| 蜜桃久久精品国产亚洲av| 在线观看免费视频日本深夜| 深夜精品福利| 国产成人av教育| 免费看光身美女| 他把我摸到了高潮在线观看| 国产精品嫩草影院av在线观看 | 99久久久亚洲精品蜜臀av| 国产精品爽爽va在线观看网站| 欧美中文日本在线观看视频| 网址你懂的国产日韩在线| 美女高潮喷水抽搐中文字幕| 国产美女午夜福利| 内射极品少妇av片p| 国产伦精品一区二区三区视频9 | 国产精品 欧美亚洲| 午夜福利在线观看免费完整高清在 | 欧美zozozo另类| 日本一本二区三区精品| 国产爱豆传媒在线观看| 国产精品女同一区二区软件 | 国产午夜精品久久久久久一区二区三区 | 国产熟女xx| 热99在线观看视频| 最近在线观看免费完整版| 亚洲成av人片在线播放无| 最新中文字幕久久久久| 久久九九热精品免费| 亚洲午夜理论影院| 热99在线观看视频| 国产淫片久久久久久久久 | 国产麻豆成人av免费视频| 伊人久久精品亚洲午夜| 色吧在线观看| 免费在线观看成人毛片| 狂野欧美白嫩少妇大欣赏| 一级毛片女人18水好多| 村上凉子中文字幕在线| 国产精品久久视频播放| av专区在线播放| 啦啦啦免费观看视频1| 男人的好看免费观看在线视频| 在线国产一区二区在线| 精品国产三级普通话版| 最近在线观看免费完整版| 无限看片的www在线观看| 宅男免费午夜| 日本撒尿小便嘘嘘汇集6| 黄色成人免费大全| 欧美日韩中文字幕国产精品一区二区三区| 中出人妻视频一区二区| 成年女人看的毛片在线观看| av在线天堂中文字幕| 一本精品99久久精品77| 神马国产精品三级电影在线观看| 日韩高清综合在线| 亚洲国产欧美网| 久久99热这里只有精品18| 亚洲成人久久爱视频| 国产毛片a区久久久久| 九色成人免费人妻av| 精品日产1卡2卡| 国产高潮美女av| 欧美在线一区亚洲| 美女被艹到高潮喷水动态| 午夜福利欧美成人| 欧美日韩一级在线毛片| 老熟妇乱子伦视频在线观看| 亚洲精品国产精品久久久不卡| 欧美日韩亚洲国产一区二区在线观看| av在线蜜桃| 亚洲欧美日韩卡通动漫| 窝窝影院91人妻| 热99在线观看视频| 国产中年淑女户外野战色| 日本成人三级电影网站| 18禁在线播放成人免费| 亚洲在线自拍视频| 国产一区在线观看成人免费| 日韩有码中文字幕| 三级男女做爰猛烈吃奶摸视频| 综合色av麻豆| 久久人妻av系列| 在线视频色国产色| 99在线视频只有这里精品首页| 日韩精品中文字幕看吧| 女生性感内裤真人,穿戴方法视频| 欧美中文综合在线视频| 日韩欧美国产一区二区入口| 午夜老司机福利剧场| 搞女人的毛片| 女生性感内裤真人,穿戴方法视频| 久久伊人香网站| 2021天堂中文幕一二区在线观| 亚洲av免费高清在线观看| 岛国在线观看网站| 淫秽高清视频在线观看| 两个人看的免费小视频| 国产一区在线观看成人免费| 亚洲人与动物交配视频| 全区人妻精品视频| 91在线精品国自产拍蜜月 | 精品乱码久久久久久99久播| 中出人妻视频一区二区| 国产三级中文精品| 欧美成狂野欧美在线观看| 亚洲色图av天堂| 欧美一区二区国产精品久久精品| 国产高清videossex| 美女大奶头视频| 一级黄片播放器| 精品一区二区三区人妻视频| 亚洲精华国产精华精| 国产免费男女视频| 琪琪午夜伦伦电影理论片6080| 国产综合懂色| 精品国产三级普通话版| 国产97色在线日韩免费| 精品电影一区二区在线| 国产亚洲精品久久久com| 婷婷精品国产亚洲av| 51午夜福利影视在线观看| 色综合婷婷激情| 亚洲熟妇熟女久久| 真实男女啪啪啪动态图| 精品国产三级普通话版| www国产在线视频色| 国产精品久久久久久亚洲av鲁大| 好男人在线观看高清免费视频| 日本成人三级电影网站| 日韩av在线大香蕉| 特级一级黄色大片| 国产精品爽爽va在线观看网站| 日韩大尺度精品在线看网址| 亚洲激情在线av| 亚洲不卡免费看| 欧美bdsm另类| 亚洲第一欧美日韩一区二区三区| av天堂在线播放| 狂野欧美白嫩少妇大欣赏| av在线蜜桃| 欧美乱妇无乱码| 中文亚洲av片在线观看爽| 色精品久久人妻99蜜桃| 激情在线观看视频在线高清| 男女之事视频高清在线观看| 韩国av一区二区三区四区| 成人特级av手机在线观看| 免费观看精品视频网站| 久久久久久久久久黄片| 精品人妻一区二区三区麻豆 | 欧美日韩精品网址| 久久6这里有精品| 手机成人av网站| 成人午夜高清在线视频| 日韩国内少妇激情av| 国产精品精品国产色婷婷| 午夜日韩欧美国产| 淫秽高清视频在线观看| 一区二区三区国产精品乱码| 女生性感内裤真人,穿戴方法视频| 人妻丰满熟妇av一区二区三区| 欧美黄色片欧美黄色片| 久久国产精品人妻蜜桃| 国产精品,欧美在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产av麻豆久久久久久久| 99在线人妻在线中文字幕| 看免费av毛片| 99在线人妻在线中文字幕| 人妻丰满熟妇av一区二区三区| 国产高清视频在线观看网站| 亚洲在线自拍视频| 长腿黑丝高跟| 免费人成在线观看视频色| 亚洲内射少妇av| 真人做人爱边吃奶动态| 国产亚洲欧美在线一区二区| 丁香六月欧美| 90打野战视频偷拍视频| 9191精品国产免费久久| 欧美性感艳星| 搞女人的毛片| 亚洲欧美日韩卡通动漫| 免费无遮挡裸体视频| 精品久久久久久久末码| 九九在线视频观看精品| 禁无遮挡网站| 两个人的视频大全免费| 女警被强在线播放| 欧美又色又爽又黄视频| 国产97色在线日韩免费| 亚洲成人中文字幕在线播放|