• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Aggregation-induced emission or aggregation-caused quenching?Impact of covalent bridge between tetraphenylethene and naphthalimide

    2021-11-06 03:19:06XioxieWeijieChiXieHnChoWngShenghuLiuXiogngLiuJunYin
    Chinese Chemical Letters 2021年5期

    Xioxie M,Weijie Chi,Xie Hn,Cho Wng,Shenghu Liu,Xiogng Liu,*,Jun Yin,*

    a Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University,Wuhan 430079, China

    b Singapore University of Technology and Design, Singapore 487372, Singapore

    c School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

    1 These authors contributed equally to this work.

    ABSTRACT Understanding the physical mechanisms governing aggregation-induced-emission (AIE) and aggregation-caused-quenching plays a vital role in developing functional AIE materials.In this work,tetraphenylethene (TPE, a classical AIEgen) and naphthalimide (NI, a popular fluorophore with ACQ characteristics)were connected through non-conjugated linkages and conjugated linkages.We showed that the nonconjugated-linkage of TPE to NI fragments leads to substantial PET in molecular aggregates and ACQ.In contrast, the conjugated connection between TPE and NI moieties results in the AIE phenomenon by suppressing twisted intramolecular charge transfer.This work provides an important guideline for the rational design of AIE materials.

    Keywords:Aggregation-induced-emission Tetraphenylethene Naphthalimide Conjugated-linkage Mechanofluorochromism

    Aggregation-induced emission luminogens (AIEgens) have been attracting increasing research interests for their broad range of applications (i.e., such as biosensors, photodynamic therapy agents,organic light-emitting diodes,and wave-guides)[1-10].As a popular AIEgen design strategy, tetraphenylethene (TPE) has been frequently attached to other fluorophores of diverse molecular structures and emission colors to achieve tailored functionalities [1].Yet, this strategy yielded varied successes,resulting in the creations of compounds with both aggregationinduced emission (AIE) and aggregation-caused quenching (ACQ)characteristics[11].To facilitate the effective development of such AIEgens, it is critical to reveal the relationship between their molecular structures and AIE characteristics.

    To the end, significant research efforts have been devoted to design and synthesize novel TPE-based AIEgens[12-19].Tang et al.functionalized TPE to several planar ACQ fluorophores, such as anthracene and pyrene, and obtained new AIEgens (TPEpy and TPEAn) [20].The monomers of TPEpy and TPEAn exhibited weak fluorescence in tetrahydrofuran (THF), but their aggregation substantially enhanced the emission intensity.Our group also design a series of TPE-based AIEgens of various colors spanning across the entire visible to near-infrared spectrum,by linking TPE to different fluorophores, such as naphthalimide (NI) and borondipyrromethene (BODIPY) moieties [21].Choi et al.reported several NI-TPE isomeric conjugates, which were connected with single-bond, vinyl, and acetylene linkages between NI and TPE fragments[22].Their results showed that the 3-substituted and 4-substituted dyes with the single-bond linkage exhibited the AIE phenomenon, whereas 4-substituted dyes with vinyl and acetylene linkages showed ACQ.Besides this study,the ACQ phenomenon was noted in several TPE-perylenebisimide compounds[23].It is thus intriguing to understand both the structural factors and photophysical mechanisms governing the distinct AIE and ACQ phenomenon in TPE-fluorophore hybrid dyes, to better aid the rational creations of functional AIE materials.

    In this communication, we reported the synthesis, characterizations, and theoretical investigation of the AIE/ACQ characteristics of sixteen TPE-NI derivatives with various substituents and substituent positions (Scheme 1 and Fig.1).Our analysis shows that the nature of the covalent bridges (in spanning the π-conjugation of the TPE-NI hybrid dyes) plays a decisive role in activating AIE in the resulted compounds.

    Scheme 1.Synthetic routes of TPE-NI derivatives.

    Scheme 1 shows the synthesis route to obtain TPE-NI derivatives.The involved intermediates were synthesized according to previously reported methods with good yields.With the corresponding Br-substituted NI moiety and NH2-substituted aromatic moiety, the targeted compounds were prepared by a typical Pd-catalysed Buchwald reaction.All compounds were purified by silica gel columns, and their structures were well characterized by1H,13C NMR spectroscopy,and EI-MS.Fortunately,single crystals of 1-NI-3, 3-NI-4, and 3-NI-2 were obtained by diffusing hexane into DCM, THF, or EA solution at room temperature, respectively (Fig.S30 in Supporting information).The detailed synthesis procedures and characterizations are available in the supporting information (Figs.S32-S78 in Supporting information).

    Many NI fluorophores exhibited ACQ characteristics, due to strong intermolecular π-π interactions[24],such as compounds 4-NI-3, 4-NI-5, 5-NI-3, and 5-NI-5 (Fig.1).In the tetrahydrofuran(THF)/water binary solution of these compounds, we noted a consistent drop in emission intensities due to the formation of molecular aggregates, as the volume ratio (fw) of water increased(Figs.S2-S5 and Table S1 in Supporting information).These results also suggest that a phenyl substituent is not bulky enough to effectively separate NI dimers and avoid strong intermolecular interactions.To further decrease intermolecular interactions and prevent ACQ,we decided to link a bulky TPE unit to NI.The UV-vis absorption and fluorescence spectra of the mixture of TPE and 5-NI-5 demonstrated that simple mixing of TPE and NI fluorophores could not change the ACQ phenomenon of NI fluorophores(Fig.S29 in Supporting information).Therefore,we covalently linked TPE to NI via two types of linkages: non-conjugated linkages and conjugated linkages.

    We firstly connected TPE to NI via non-conjugated linkers.The non-conjugated covalent linkage could be realized either via inserting a -CH2- moiety between TPE and NI, such as in compounds 1-NI-3, 3-NI-1, 4-NI-1, and 1-NI-1 (Fig.1), or choose connection sites that disrupt conjugations(such as in 2-NI-1 and 2-NI-3 in Fig.1).In 2-NI-1 and 2-NI-3,the bond alternation breaks at the imide functionalization site of NI.

    Fig.1.Compounds reported in this work.

    We subsequently synthesized these six compounds and investigated their spectral properties (Fig.2 and Figs.S5-S10 in Supporting information).In these compounds,two distinct UV-vis absorption peaks are noted, registered at ~290 nm and ~440 nm,respectively (Fig.2a).These peaks matched very well with the reported data of TPE and NI derivatives, respectively [25,26].Subsequent quantum chemical calculations further support these assignments.Time-dependent density functional theory(TD-DFT)calculations show that the first and second absorption bands are contributed by the photoexcitation of the NI and TPE fragments,respectively (Fig.2b) [27,28].Moreover, the emission wavelength from the NI fragment showed an obvious redshift as the polarity of the solvent increases (Fig.2c).

    Fig.2.(a) UV-vis absorption spectra of 1-NI-3 in various solvents; [1-NI-3]=10 μmol/L.(b) Electron and hole distributions of 1-N1-3 during the S1 (the first absorption band) and S2 (the second absorption band) vertical excitation.(c)The normalized fluorescence spectra of 1-NI-3 in various solvents; [1-NI-3]=10 μmol/L;λex=420 nm.(d) The fluorescence spectra of 1-NI-3 in the binary mixture of THF/water as a function of the volume ratio of water(fw);the inset shows the photographs of the samples under UV radiations in a dark room; [1-NI-3]=10 μmol/L;λex=420 nm.(e) A dimer structure of 1-NI-3 as extracted from its single crystal structure.(f)Calculated frontier molecular orbitals of this dimmer in vacuo, which suggest both intramolecular and intermolecular PET from TPE to NI fragments in vacuo; the energy levels are not drawn in scale for clarity.

    Next, we measured the fluorescence intensities of these compounds in the binary THF/water mixture.Taking 1-NI-3 as one representative example,as fwincreases from 0 to 90%to induce the formation of aggregates,the emission peak experiences a slight red shift from 491 nm to 535 nm (Fig.2d).This redshift is attributed to the enhanced ICT effect in the NI fragment(as solvent polarity increases).Notably,the corresponding quantum yield of 1-NI-3 considerably dropped from 66.5%to only 10.4%,exhibiting the ACQ characteristics.Other compounds in this group demonstrated similar ACQ effects, as reflected by a significant reduction of fluorescence intensity (Figs.S11-S15 in Supporting information).

    To elucidate this ACQ mechanism, we performed DFT and TDDFT calculations on the dimer of 1-NI-3 at M06-2X/def2-SVP level[29].The initial structure is from the crystal structure of 1-NI-3(Table S2 in Supporting information).We showed that the photoinduced electron transfer (PET) process could be substantially activated as the distance between TPE and NI becomes smaller in the excited state,i.e.,via the formation of aggregation.For example,intramolecular TPE-NI distance amounts to 8.559 ? (relatively large).In contrast, the distance between NI and another TPE unit from a neighbouring molecule(in molecular aggregates)decreases to only 7.663 ?(Fig.2e).The reduced distance could substantially activate PET from TPE to NI, thus resulting in the ACQ of 1-NI-3[30,31].Indeed, our TD-DFT calculation on the dimmer of 1-NI-3 showed that S1photoexcitation is mainly from HOMO-2 to LUMO(in the NI fragment).The electron from HOMO-1 or HOMO sitting at the TPE fragments could transfer to HOMO-2 and quench the fluorescence via PET (Fig.2f) [32].

    Next, we connected TPE to NI via conjugated linkages.We hypothesized that twisted intramolecular charge transfer (TICT)rotation could be employed in NI derivatives to enable AIE characteristics [33-35].During TICT rotation, the amino group at the 4-positon of NI experiences a ~90°rotation with respect to the NI scaffold,forming a non-emissive specie[36,37].However,upon molecular aggregation, TICT rotation could be effectively suppressed, thus recovering bright emissions from NI (provided that intermolecular π-π interactions are weak in molecular aggregates).Moreover,the TICT rotation could be activated by replacing the secondary amino group with either a dialkylated amino group or an amino-phenyl group [38,39].

    To verify this speculation, we designed, synthesized, and characterized 3-NI-4, 4-NI-4, and 5-NI-4.We also successfully obtained the crystal structure of 3-NI-4 (Table S3 in Supporting information).Notably, as the solvent polarity increases (from toluene to acetonitrile),the emission intensity of 3-NI-4 and 4-NI-4 showed a large drop (Figs.S16 and S17 in Supporting information).This drop of emission intensities is attributed to the formation of TICT,as TICT is usually activated in polar solvents[21].Indeed,our viscosity dependent studies in the binary mixture of methanol/glycerol showed that increasing viscosity enhanced the emission intensities of 3-NI-4, corroborating the TICT mechanism (Fig.3a and Fig.S18 in Supporting information).Finally, the potential energy surface of excited-state calculations[38]also showed that the TICT state is energetically favorable for 3-NI-4 in polar solvents (Fig.3b).Similar polarity-dependent and viscosity-dependent emission results are also obtained in 4-NI-4,and 5-NI-4 (Figs.S19 and S20 in Supporting information).These results affirmed the TICT fluorescence quenching mechanism.Yet,the emission intensities of 3-NI-4,4-NI-4,and 5-NI-4 in molecular aggregates remained weak,presumably due to strong intermolecular interactions in molecular aggregates.

    Fig.3.(a) The viscosity dependence of the emission intensities of 3-NI-4 in the binary mixture of methanol and glycerol, as a function of the volume ratio of glycerol;[3-NI-2]=10 μmol/L,λex=450 nm.(b)The potential energy surface in the S1 state of 3-NI-4 as a function of the amino group rotation in tetrahydrofuran.(c)The emission spectra of 3-NI-2 in various solvents; [3-NI-2]=10 μmol/L,λex=450 nm.(d)The viscosity dependence of the emission intensities of 3-NI-2 in the binary mixture of methanol and glycerol,as a function of the volume ratio of glycerol;[3-NI-2]=5 μmol/L,λex=450 nm.(e)The potential energy surface in the S1 state of 3-NI-2 as a function of the amino group rotation in tetrahydrofuran; (f) The fluorescence spectra of 3-NI-2 in the binary mixture of THF/water as a function of the volume ratio of water (fw); the inset shows the photographs of the samples under UV radiations in a dark room; [3-NI-2]=10 μmol/L,λex=450 nm.

    Fig.4.(a)The emission spectra of 3-NI-2(λex=450 nm)in the crystalline(unground and annealed)and the amorphous(ground)states.(b)The photography of 3-NI-2 under daylight and UV light(in a dark room)upon grinding and annealing.(c)The powder X-ray diffraction patterns of 3-NI-2 in the crystalline(unground and annealed)and the amorphous (ground) states.

    Inspired by the emission characteristics of 3-NI-4, we next connected TPE to NI via conjugated linkages for two considerations: (1) TPE is much bulky and could effectively suppress intermolecular interactions in aggregates; (2) Conjugated linkage of TPE preserves the π-conjugation and could retain TICT in the resulted compounds and introduce additional rotational modes due to the flexible structure of TPE.Collectively,these two factors could enable AIE characteristics based on the RIR mechanism[20].

    We have thus designed and synthesized compounds 3-NI-2,4-NI-2,and 5-NI-2.We also obtained the crystal structure of 3-NI-2(Table S4 in Supporting information).As expected, when solvent polarity increases from toluene to acetonitrile, the emission intensities of these compounds experience a rapid reduction, due to the activation of TICT in polar solvents(Fig.3c and Figs.S21-S23 in Supporting information).In contrast,increasing viscosity greatly enhanced the emissions,indicating the inhibition of TICTand other rotation modes in these compounds (Fig.3d and Fig.S24 in Supporting information).Potential energy surface calculations further affirmed the presence of the TICT state in the monomers of these compounds (Fig.3e, Figs.S25 and S26 in Supporting information).

    In contrast, in the binary mixture of THF and water,increasing fwis associated with a continuous and significant intensification of fluorescence by 11 times for 3-NI-2, 42 times for 4-NI-2, and 4 times for 5-NI-2, respectively (Fig.3f, Figs.S27 and S28 in Supporting information).The bright aggregate emissions suggest that TPE effectively avoid intermolecular interactions in the solidstate.It is thus clear that the conjugated connection of TPE to a fluorophore “kills two birds” (TICT+steric hindrance) with one stone, and represents a promising design strategy to develop AIEgens.In addition to the significant AIE characteristics, we hypothesized that conjugated linkages of TPE to NI might enable notable mechanofluorochromism.This is because the TPE moiety is highly flexible.Changing the conformation of TPE via mechanical grinding could greatly affect its electron-donating strength to the NI moiety, thus shifting the emission wavelength [40].Moreover,mechanical grinding may further modify intermolecular interactions due to transitions between the crystalline and amorphous phases.

    Indeed,our analysis of the intermolecular contacts in the crystal structure of 3-NI-2 revealed multiple intermolecular N-H???O, CH???O, C-H???π hydrogen bonds, and π-π stacking interactions(Fig.S31 in Supporting information).The alternation of these contacts (intermolecular interactions) along with the conformational changes in TPE is likely to cause interesting mechanochromic properties.

    To verify this hypothesis,we tested 3-NI-2 and found that this compound indeed possesses favourable mechanochromic properties(Figs.4a and b).After grinding,the peak emission wavelength of 3-NI-2 exhibited a notable redshift from 582 nm to 605 nm.The peak emission intensity was also enhanced, with the absolute quantum yield changing from 4.16%in the pristine form to 14.02%upon grinding,or intensified by ~3 times.The spectral changes are reflected by significant colour changes both under ambient light and UV light (Fig.4b).Interestingly, upon annealing at 180°C for 5 min, the fluorescence properties reverted to the original state.

    Along with these spectral changes, the diffraction peaks in PXRD results demonstrated that grinding effectively convert the powder from crystalline to amorphous phase, and the crystalline phase was recovered after annealing (Fig.4c).

    In summary, through the systematic synthesis and characterizations of 16 compounds, we showed that the nonconjugatedlinkage of TPE to NI fragments leads to substantial PET in molecular aggregates,endowing these compounds with aggregation-causedquenching (ACQ) characteristics.In contrast, the conjugated connection of TPE to NI moieties not only electronically activates TICT in polar solvents in the resulting compounds but also provides steric hindrance to minimize intermolecular interactions as such compounds form aggregates.Accordingly,the inhibition of TICT in the molecular aggregates leads to significant AIE.This rational modulation of ACQ and AIE via linker engineering is likely to apply to many other fluorophores and will provide an important guideline for developing functional materials (i.e., for photothermal therapies and bioimaging applications).

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    J.Yin acknowledge financial support from the National Natural Science Foundation of China (Nos.21676113, 21772054), Distinguished Young Scholar Program of Hubei Province (No.2018CFA079),the 111 Project B17019,the Scholar Support Program of CCNU (No.0900-31101090002), and the Excellent Doctoral Dissertation Cultivation Grant of CCNU from the colleges’ basic research and operation grant(MOE,No.2019YBZZ029).The study was supported by Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules (No.KLSAOFM2012), Hubei University, China.And also supported by excellent doctorial dissertation cultivation grant of CCNU from the colleges’basic research and operation of MOE(No.2019YBZZ029).X.Liu is indebted to A*STAR under its Advanced Manufacturing and Engineering Program(No.A2083c0051).The authors would like to acknowledge the use of the computing service of SUTD-MIT IDC and the National Super-Computing Centre (Singapore).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2020.12.031.

    18美女黄网站色大片免费观看| 俄罗斯特黄特色一大片| 国产高潮美女av| 欧美+日韩+精品| 极品教师在线视频| 久久久久性生活片| 色精品久久人妻99蜜桃| 精品国产三级普通话版| 两个人的视频大全免费| 好看av亚洲va欧美ⅴa在| 国产久久久一区二区三区| 97热精品久久久久久| 偷拍熟女少妇极品色| 中文字幕人成人乱码亚洲影| 亚洲中文字幕日韩| 亚洲avbb在线观看| 欧美成人性av电影在线观看| 欧美bdsm另类| 欧美区成人在线视频| 国产熟女xx| 国产 一区 欧美 日韩| 亚洲五月婷婷丁香| 性插视频无遮挡在线免费观看| 美女高潮喷水抽搐中文字幕| 日本黄大片高清| 久久久久免费精品人妻一区二区| 亚洲在线自拍视频| 极品教师在线视频| 精品一区二区三区视频在线| 啪啪无遮挡十八禁网站| 色播亚洲综合网| 99国产综合亚洲精品| 国产不卡一卡二| 黄色一级大片看看| 99久久精品一区二区三区| 久久伊人香网站| 国产亚洲精品久久久com| 在线观看美女被高潮喷水网站 | 久久久久久久久久成人| 欧美色视频一区免费| 国产男靠女视频免费网站| 男女那种视频在线观看| 很黄的视频免费| 久9热在线精品视频| 一区二区三区四区激情视频 | 日韩精品青青久久久久久| 99精品在免费线老司机午夜| 直男gayav资源| 日韩亚洲欧美综合| 国产黄a三级三级三级人| 欧美日本亚洲视频在线播放| 九九在线视频观看精品| 国产免费男女视频| av在线老鸭窝| 亚洲精品乱码久久久v下载方式| 亚洲欧美激情综合另类| 国产成人aa在线观看| 乱人视频在线观看| 亚洲国产精品999在线| 国产高清视频在线播放一区| 1000部很黄的大片| 午夜久久久久精精品| 99久国产av精品| 一个人观看的视频www高清免费观看| 美女高潮喷水抽搐中文字幕| 久久久久久久久久黄片| 精品久久久久久久久亚洲 | 国产免费男女视频| 成人一区二区视频在线观看| 久久伊人香网站| 国内精品久久久久久久电影| 成人性生交大片免费视频hd| 亚洲性夜色夜夜综合| 露出奶头的视频| 高清日韩中文字幕在线| 99久久精品热视频| 少妇人妻一区二区三区视频| 久久热精品热| 国产亚洲精品久久久久久毛片| 中文资源天堂在线| 日日夜夜操网爽| 亚洲在线自拍视频| 成人亚洲精品av一区二区| 国产人妻一区二区三区在| 99riav亚洲国产免费| 搡老妇女老女人老熟妇| 欧美一区二区国产精品久久精品| 无遮挡黄片免费观看| 亚洲人成网站在线播放欧美日韩| 人妻丰满熟妇av一区二区三区| 在线看三级毛片| 午夜福利欧美成人| 九九久久精品国产亚洲av麻豆| 免费在线观看影片大全网站| 激情在线观看视频在线高清| 精品久久久久久久久av| 久久午夜亚洲精品久久| 69av精品久久久久久| 最近视频中文字幕2019在线8| 免费看美女性在线毛片视频| 舔av片在线| 欧美zozozo另类| 久99久视频精品免费| 午夜精品久久久久久毛片777| 欧美成人a在线观看| 色播亚洲综合网| 色精品久久人妻99蜜桃| 亚洲最大成人手机在线| 精品久久久久久久末码| 欧美一区二区亚洲| 日本免费a在线| АⅤ资源中文在线天堂| 偷拍熟女少妇极品色| 我要搜黄色片| 久久精品综合一区二区三区| 丰满的人妻完整版| 国产高清视频在线观看网站| 我的女老师完整版在线观看| 99久久精品热视频| 3wmmmm亚洲av在线观看| 精品久久久久久久久亚洲 | 在线国产一区二区在线| 亚洲va日本ⅴa欧美va伊人久久| 18+在线观看网站| netflix在线观看网站| 国产 一区 欧美 日韩| 亚洲中文日韩欧美视频| 人人妻人人看人人澡| 成人欧美大片| 国产av麻豆久久久久久久| 精品一区二区三区av网在线观看| 国产精品伦人一区二区| 国产aⅴ精品一区二区三区波| 免费在线观看亚洲国产| 97超级碰碰碰精品色视频在线观看| 国产淫片久久久久久久久 | 特大巨黑吊av在线直播| 国产麻豆成人av免费视频| 男女那种视频在线观看| 亚洲第一电影网av| 久久草成人影院| 特大巨黑吊av在线直播| 99热这里只有是精品在线观看 | 99国产精品一区二区三区| 精品久久久久久久人妻蜜臀av| 亚洲国产日韩欧美精品在线观看| 国产老妇女一区| 国产精品98久久久久久宅男小说| 97碰自拍视频| 男女做爰动态图高潮gif福利片| 一个人免费在线观看电影| 啪啪无遮挡十八禁网站| 久久天躁狠狠躁夜夜2o2o| 欧美色视频一区免费| 国产精品久久电影中文字幕| 怎么达到女性高潮| 老司机深夜福利视频在线观看| 国内精品美女久久久久久| 成年女人看的毛片在线观看| 在线观看舔阴道视频| 看黄色毛片网站| 好看av亚洲va欧美ⅴa在| 看十八女毛片水多多多| 欧美日韩瑟瑟在线播放| 日本熟妇午夜| 亚洲无线观看免费| 精品不卡国产一区二区三区| 两个人的视频大全免费| 在线免费观看的www视频| 精品午夜福利在线看| 草草在线视频免费看| 国产91精品成人一区二区三区| 午夜a级毛片| 免费高清视频大片| 午夜福利免费观看在线| 免费看美女性在线毛片视频| av在线天堂中文字幕| 国产成人影院久久av| 青草久久国产| 特大巨黑吊av在线直播| 久久草成人影院| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美国产在线观看| 国产在线男女| 91狼人影院| 人人妻人人看人人澡| 国产欧美日韩精品一区二区| 中文在线观看免费www的网站| 日日摸夜夜添夜夜添小说| 在线国产一区二区在线| 老熟妇乱子伦视频在线观看| 在线观看免费视频日本深夜| 黄色配什么色好看| 又黄又爽又免费观看的视频| 婷婷精品国产亚洲av| 精品一区二区三区视频在线观看免费| 91午夜精品亚洲一区二区三区 | 亚洲中文字幕日韩| 国产伦精品一区二区三区视频9| 噜噜噜噜噜久久久久久91| 99在线视频只有这里精品首页| 观看免费一级毛片| 91麻豆av在线| 亚洲在线自拍视频| 99精品在免费线老司机午夜| 三级男女做爰猛烈吃奶摸视频| 久久精品国产亚洲av涩爱 | 人人妻人人看人人澡| 国产激情偷乱视频一区二区| 在线观看舔阴道视频| 免费看光身美女| 一级黄色大片毛片| 一进一出抽搐gif免费好疼| 精品国产三级普通话版| 18禁黄网站禁片免费观看直播| 亚洲av成人不卡在线观看播放网| 九九在线视频观看精品| 2021天堂中文幕一二区在线观| 精华霜和精华液先用哪个| 欧美一区二区精品小视频在线| 亚洲经典国产精华液单 | 五月伊人婷婷丁香| 国产精品免费一区二区三区在线| 香蕉av资源在线| 中文字幕熟女人妻在线| 国产精品女同一区二区软件 | 国产一区二区激情短视频| 亚洲内射少妇av| 乱人视频在线观看| 在现免费观看毛片| 亚洲一区高清亚洲精品| 久久久久精品国产欧美久久久| 又黄又爽又刺激的免费视频.| 久久久久久久亚洲中文字幕 | 欧美bdsm另类| 国产乱人视频| 日本黄色视频三级网站网址| 日韩欧美 国产精品| 日韩欧美国产一区二区入口| 97超视频在线观看视频| 国产亚洲欧美在线一区二区| 十八禁网站免费在线| 亚洲国产精品成人综合色| 日日干狠狠操夜夜爽| 亚洲黑人精品在线| 国产美女午夜福利| 免费黄网站久久成人精品 | av在线观看视频网站免费| 人人妻,人人澡人人爽秒播| 一级a爱片免费观看的视频| 国产成人福利小说| 久久久色成人| 非洲黑人性xxxx精品又粗又长| 国产av一区在线观看免费| 看片在线看免费视频| 国产白丝娇喘喷水9色精品| 免费在线观看影片大全网站| 91麻豆精品激情在线观看国产| 国产精品三级大全| 有码 亚洲区| 99久久无色码亚洲精品果冻| 俺也久久电影网| 国产精品亚洲av一区麻豆| 天堂影院成人在线观看| 精品一区二区三区av网在线观看| 搡老熟女国产l中国老女人| 1000部很黄的大片| 国产精品av视频在线免费观看| 99热只有精品国产| 噜噜噜噜噜久久久久久91| 老鸭窝网址在线观看| 老司机午夜十八禁免费视频| 亚洲不卡免费看| 国语自产精品视频在线第100页| 亚洲专区中文字幕在线| 国产成年人精品一区二区| 美女xxoo啪啪120秒动态图 | 色综合婷婷激情| 在线观看舔阴道视频| 一区二区三区高清视频在线| 丁香欧美五月| 国产欧美日韩一区二区三| or卡值多少钱| 午夜免费激情av| 婷婷丁香在线五月| 国产精品永久免费网站| 免费av观看视频| 久久香蕉精品热| 日韩中字成人| 亚洲激情在线av| 男人的好看免费观看在线视频| 成人鲁丝片一二三区免费| 精品久久久久久久久久久久久| 亚洲中文日韩欧美视频| 在线观看免费视频日本深夜| 我的女老师完整版在线观看| 禁无遮挡网站| 校园春色视频在线观看| 成人高潮视频无遮挡免费网站| 每晚都被弄得嗷嗷叫到高潮| 丰满人妻一区二区三区视频av| 亚洲av日韩精品久久久久久密| 毛片女人毛片| 久久草成人影院| 欧美一级a爱片免费观看看| 91在线观看av| 在线a可以看的网站| 婷婷精品国产亚洲av在线| 日韩欧美一区二区三区在线观看| 亚洲av一区综合| 麻豆av噜噜一区二区三区| 国产精品久久久久久久久免 | 少妇高潮的动态图| 国产精品影院久久| avwww免费| 十八禁网站免费在线| 国产人妻一区二区三区在| 嫁个100分男人电影在线观看| 美女高潮的动态| 久久久久久久亚洲中文字幕 | 亚洲熟妇熟女久久| 91久久精品国产一区二区成人| 久久久久性生活片| 淫妇啪啪啪对白视频| 伦理电影大哥的女人| 精品人妻1区二区| 精品久久久久久久久av| 18禁黄网站禁片午夜丰满| 十八禁国产超污无遮挡网站| 国产黄片美女视频| 深夜a级毛片| 麻豆国产97在线/欧美| 久久天躁狠狠躁夜夜2o2o| 老司机午夜十八禁免费视频| 色5月婷婷丁香| 亚洲自拍偷在线| 乱人视频在线观看| 免费在线观看亚洲国产| 国产精品一区二区三区四区免费观看 | 2021天堂中文幕一二区在线观| 国产av不卡久久| 久久久久性生活片| 可以在线观看毛片的网站| 每晚都被弄得嗷嗷叫到高潮| 深夜精品福利| 国模一区二区三区四区视频| 在线观看午夜福利视频| 亚洲精品456在线播放app | 国产精品永久免费网站| 国内精品一区二区在线观看| 自拍偷自拍亚洲精品老妇| 久久精品综合一区二区三区| 久久久国产成人精品二区| 中文资源天堂在线| 一区二区三区高清视频在线| 欧美黑人欧美精品刺激| 99riav亚洲国产免费| 日本一本二区三区精品| 人妻制服诱惑在线中文字幕| 亚洲自拍偷在线| 狠狠狠狠99中文字幕| 美女高潮的动态| 国产亚洲精品av在线| ponron亚洲| 少妇的逼好多水| 欧美黄色淫秽网站| 欧美绝顶高潮抽搐喷水| 少妇人妻一区二区三区视频| 午夜福利免费观看在线| 热99re8久久精品国产| 18+在线观看网站| 亚洲av成人不卡在线观看播放网| 精品久久国产蜜桃| 夜夜夜夜夜久久久久| 国产成+人综合+亚洲专区| 欧美bdsm另类| 午夜福利在线观看吧| 久久伊人香网站| 在线a可以看的网站| www.色视频.com| 桃红色精品国产亚洲av| 精品久久久久久久久久免费视频| 人妻制服诱惑在线中文字幕| 18禁黄网站禁片免费观看直播| 在线观看美女被高潮喷水网站 | 精品一区二区三区视频在线观看免费| www.999成人在线观看| 欧美黄色淫秽网站| 特级一级黄色大片| 欧美bdsm另类| 天天躁日日操中文字幕| 国产在视频线在精品| 国内少妇人妻偷人精品xxx网站| 91在线精品国自产拍蜜月| 亚洲人成网站在线播| 成年版毛片免费区| 免费电影在线观看免费观看| 久9热在线精品视频| 特级一级黄色大片| 久久精品久久久久久噜噜老黄 | 日韩欧美 国产精品| 中文字幕熟女人妻在线| 成熟少妇高潮喷水视频| 永久网站在线| 99在线人妻在线中文字幕| 久久久国产成人免费| 波多野结衣巨乳人妻| 国产精品av视频在线免费观看| 日韩欧美精品免费久久 | 久久这里只有精品中国| 精品久久久久久久末码| 久久久久久久亚洲中文字幕 | 禁无遮挡网站| a级一级毛片免费在线观看| 日韩成人在线观看一区二区三区| 欧美zozozo另类| 亚洲在线自拍视频| 在线观看av片永久免费下载| 一个人免费在线观看的高清视频| 成年免费大片在线观看| 天天一区二区日本电影三级| 日韩欧美一区二区三区在线观看| 麻豆国产av国片精品| 免费看光身美女| 欧美精品国产亚洲| 国产视频内射| 免费无遮挡裸体视频| 有码 亚洲区| 欧美中文日本在线观看视频| 伦理电影大哥的女人| 一个人免费在线观看的高清视频| 亚洲一区高清亚洲精品| 精品一区二区三区视频在线观看免费| 一个人免费在线观看的高清视频| 精品午夜福利视频在线观看一区| 亚洲成人免费电影在线观看| a级毛片免费高清观看在线播放| 精品日产1卡2卡| 国产午夜福利久久久久久| 我要搜黄色片| 又黄又爽又刺激的免费视频.| 久久精品国产亚洲av香蕉五月| 亚洲精品456在线播放app | 国产视频一区二区在线看| 少妇的逼好多水| 蜜桃亚洲精品一区二区三区| 动漫黄色视频在线观看| 亚洲av第一区精品v没综合| 国产aⅴ精品一区二区三区波| 免费看a级黄色片| 麻豆国产av国片精品| 在线a可以看的网站| 免费搜索国产男女视频| 亚洲天堂国产精品一区在线| 亚洲精品亚洲一区二区| 亚洲精品影视一区二区三区av| 国产精品电影一区二区三区| 草草在线视频免费看| 一级作爱视频免费观看| 亚洲最大成人中文| 丰满乱子伦码专区| 99热这里只有精品一区| 国产爱豆传媒在线观看| 亚洲av熟女| 欧美绝顶高潮抽搐喷水| 亚洲av成人av| 99久国产av精品| 精品人妻1区二区| 久99久视频精品免费| 欧美三级亚洲精品| 色综合站精品国产| 亚洲成a人片在线一区二区| 精品国产亚洲在线| 午夜福利在线观看吧| 欧美激情久久久久久爽电影| 久久久久久大精品| 亚洲天堂国产精品一区在线| 欧美又色又爽又黄视频| 最后的刺客免费高清国语| 两性午夜刺激爽爽歪歪视频在线观看| 丰满的人妻完整版| 色综合欧美亚洲国产小说| 国产免费一级a男人的天堂| 亚洲欧美日韩卡通动漫| 99久久精品一区二区三区| 他把我摸到了高潮在线观看| 蜜桃亚洲精品一区二区三区| 国产精品久久久久久亚洲av鲁大| 18美女黄网站色大片免费观看| 免费av观看视频| 国产精品免费一区二区三区在线| 内地一区二区视频在线| 好男人电影高清在线观看| 午夜精品在线福利| 日韩精品中文字幕看吧| 丰满乱子伦码专区| 国产成人a区在线观看| 午夜福利欧美成人| 非洲黑人性xxxx精品又粗又长| 国产午夜福利久久久久久| 一本一本综合久久| 老熟妇仑乱视频hdxx| 精品一区二区三区视频在线| 小说图片视频综合网站| 天美传媒精品一区二区| 日日摸夜夜添夜夜添小说| 日韩欧美三级三区| 成人亚洲精品av一区二区| 成人国产一区最新在线观看| 欧美色视频一区免费| 国内精品一区二区在线观看| 国产精品日韩av在线免费观看| 人妻丰满熟妇av一区二区三区| 国产精品av视频在线免费观看| 成年免费大片在线观看| 悠悠久久av| 日韩高清综合在线| 久久久久国产精品人妻aⅴ院| or卡值多少钱| 国内精品久久久久精免费| 88av欧美| 欧洲精品卡2卡3卡4卡5卡区| 18禁黄网站禁片免费观看直播| 午夜激情欧美在线| 国产爱豆传媒在线观看| 午夜免费激情av| 亚洲色图av天堂| 日日干狠狠操夜夜爽| 午夜视频国产福利| 十八禁网站免费在线| www.熟女人妻精品国产| 热99在线观看视频| 国产久久久一区二区三区| 3wmmmm亚洲av在线观看| 两人在一起打扑克的视频| ponron亚洲| 久久久色成人| 动漫黄色视频在线观看| 性插视频无遮挡在线免费观看| 特级一级黄色大片| 超碰av人人做人人爽久久| 国产精品野战在线观看| 88av欧美| 人妻丰满熟妇av一区二区三区| 久久久久久久久大av| 成人亚洲精品av一区二区| 色在线成人网| aaaaa片日本免费| 日本与韩国留学比较| 性欧美人与动物交配| 欧美bdsm另类| 久久精品国产亚洲av天美| 国产欧美日韩一区二区三| 极品教师在线视频| 久久精品夜夜夜夜夜久久蜜豆| 欧美成人免费av一区二区三区| 深夜a级毛片| 欧美3d第一页| 欧美在线黄色| 久久伊人香网站| 丰满人妻一区二区三区视频av| 免费黄网站久久成人精品 | 18禁黄网站禁片午夜丰满| 色在线成人网| 精品午夜福利视频在线观看一区| 国产伦精品一区二区三区视频9| 天堂影院成人在线观看| 久久人人爽人人爽人人片va | 日本黄大片高清| 嫁个100分男人电影在线观看| 麻豆成人av在线观看| 亚洲欧美清纯卡通| 免费av不卡在线播放| 欧美xxxx黑人xx丫x性爽| 国产精品国产高清国产av| 欧美激情在线99| 久久久久国产精品人妻aⅴ院| 男女之事视频高清在线观看| 国产成+人综合+亚洲专区| 精品免费久久久久久久清纯| 国产午夜精品论理片| 99国产综合亚洲精品| 国产熟女xx| 性色av乱码一区二区三区2| 欧美精品啪啪一区二区三区| 久久久久久久精品吃奶| 日韩精品中文字幕看吧| 久久久久久久精品吃奶| 精品福利观看| 色精品久久人妻99蜜桃| 欧美区成人在线视频| 十八禁人妻一区二区| 每晚都被弄得嗷嗷叫到高潮| 最新在线观看一区二区三区| 黄色女人牲交| 国产又黄又爽又无遮挡在线| 亚州av有码| 免费人成在线观看视频色| 久久久久久国产a免费观看| 9191精品国产免费久久| 18禁在线播放成人免费| 欧美+日韩+精品| 欧美成人性av电影在线观看| 小说图片视频综合网站| 男插女下体视频免费在线播放| 亚洲成人免费电影在线观看| 国产精华一区二区三区| 99久久久亚洲精品蜜臀av| 精品熟女少妇八av免费久了| 好男人电影高清在线观看| 97超级碰碰碰精品色视频在线观看| 精品人妻视频免费看| 老司机福利观看| 精品一区二区免费观看| 九色国产91popny在线|