• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis of sponge-like TiO2 with surface-phase junctions for enhanced visible-light photocatalytic performance

    2021-11-06 03:19:18YueJiangYaoQinTianyuYuSijieLin
    Chinese Chemical Letters 2021年5期

    Yue Jiang,Yao Qin,Tianyu Yu,Sijie Lin,*

    a College of Environmental Science and Engineering, The Institute for Translational Nanomedicine, Shanghai East Hospital, Tongji University,Shanghai 200092, China

    b Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University,Shanghai 200092, China

    c Institute for Regenerative Medicine, The Institutefor Translational Nanomedicine, Shanghai East Hospital,Tongji University School of Medicine,Shanghai 200123, China

    ABSTRACT Maximizing adsorption and catalytic active sites and promoting the photo-excited charge separation are two key factors to achieve excellent photocatalytic performance.In this study, we report a sol-gel synthesis approach to obtain non-metal doped TiO2 with sponge-like structure and surface-phase junctions all at once.While doping of carbon and nitrogen shifted the activation wavelength to the visible-light region,the innovative use of perchloric acid as a pore-making agent led to the formation of three-dimensional lamellar and porous structure with surface-phase junctions.High surface area with catalytic active sites rendered by the sponge-like structure and surface-phase junctions contributed to the much improved photocatalytic degradation efficiency toward rhodamine B,tetracycline and Disperse Red 60 with excellent reusability and stability.The improved generation and separation efficiency of the photo-induced charge carriers of the as-prepared TiO2 were supported by electrochemical impedance measurements and transient photocurrent responses.This method could also be applied to other photocatalysts to achieve structural alteration and element doping simultaneously.

    Keywords:Structural alteration Surface-phase junction Photocatalytic degradation Visible light TiO2

    Photocatalysis has been a tremulously focus over the past three decades due to its attractive solar energy conversion ability for environmental remediations [1-4].TiO2, being the benchmark photocatalyst with high production volume,has a market value of approximately 16,200 million US dollars in 2018 owing to its market penetration inpaints,cosmetics,food coloring and plastic industries[5-7].However,there is plenty of room for improvement to resolve the disadvantages of TiO2, such as low responsiveness towards visible-light, agglomeration induced inactivation, high carrier recombination rate.Recent studies have shown some success in improving long wavelength light (visible-light/infrared-light) responsiveness by metal/non-metal doping and better dispersity and stability bysurface modifications[8-10].Introduction of defects and heterojunctions showed improved photoexcited charge separation and reduction of electron-holes recombination[11-15].

    Among various improvement strategies, heterojunctions formation at the interface of different materials was effective in creating spatial separation of electron-hole pairs and subsequently lowering the recombination rate [16,17].Studies have demonstrated that typeII heterojunction photocatalysts, such as BiVO4/WO3and TiO2/g-C3N4exhibit desirable electron-hole separation efficiency, fast mass transfer and wide light-absorption range against type I or III[18,19].Surface-phase junctions formed within the same material,such as surface anatase/rutile junctions in TiO2,could further minimize the redox potential loss due to band structures differences and have the advantage of lowering the cost of multi-components in photocatalyst [20-22].Moreover, the advantage of the high surface area of nano-sized photocatalysts was often compromised by particle agglomeration during photocatalytic performance [23].While loading photocatalysts into three-dimensional matrix could effectively prevent the agglomeration,the efficiency of such materials largely relied on the capacity,the uniformity as well as the stability of the loading of photocatalyst [24-26].Therefore, it would be appealing to create photocatalysts with three-dimensional structures of its own [27-29].Such structure would enable effective absorption of targetpollutant molecules and provide sufficient active sites for photocatalytic degradation to occur simultaneously [30,31].More importantly, each of the above mentioned strategies was only targeting one limitation at a time.It would be desirable to develop strategies to achieve improvements in multiple aspects simultaneously and study the synergistic effect among them.

    Fig.1.Physicochemical characterizations of the as-prepared C,N-TiO2.(A-C)Representative SEM images of C,N-TiO2-1 at increasing magnifications, with yellow and red circles indicating particles of ~20 nm and ~100 nm in size.(D)Representative TEM image of the thin layers of C,N-TiO2-1 and the corresponding selected area electron diffraction(SAED)pattern(insert).(E)High-resolution TEM image of the thin layers of C,N-TiO2-1 with surface-phase junctions highlighted in yellow dash lines.(F) AFM image of the thin layers of C,N-TiO2-1 and the corresponding height profile (insert).(G-K) Representative TEM image of C,NTiO2-1 and the corresponding elemental mapping showing the distribution of C,N, O and Ti.

    Against this background,we set out to design synthesize TiO2-based photocatalysts with specific focus on creating structural alterations and surface junctions, aiming to improve the photocatalytic performance toward degradation of organic pollutants under visible light irradiation.By tuning the precursor ratios and introducing a pore-making agent, HClO4, into a sol-gel synthesis process, a unique type of carbon and nitrogen doped TiO2(C,NTiO2) with three-dimensional lamellar and porous structure and surface-phase junctions was obtained.Compared to the commercial TiO2(P25),the as-prepared C,N-TiO2showed enhanced visiblelight responsiveness, higher adsorption capacity and degradation efficiency towards a series of organic pollutants, including rhodamine B, tetracycline and Disperse Red 60 with excellent reusability and stability.

    By varying the concentrations and ratios of titanium tetrachloride(as Ti source),citric acid(as C source),nitric acid(as N source),and perchloric acid (as pore-making agent), it enabled investigation on the interplay among these key components in determining the structure and properties of the as-prepared TiO2photocatalysts(Table S1 in Supporting information).Representative micrographs of the resulted photocatalysts under scanning electron microscope(SEM) and transmission electron microscope (TEM) showed drastically different morphologies.Among them, C,N-TiO2-1 displayed a unique lamellar and porous structure (Fig.1A) while the rest showed irregular or spherical shaped particles(Figs.S1A-H in Supporting information).In comparison, P25 showed typical spherical shape with 25 nm in diameter.Close-up SEM images of C,N-TiO2-1 (Figs.1B and C) revealed clear lamellar structure with grain size of approximately 20-100 nm in diameters and macropores in the range of hundreds of nm distributed in each layer.The unique three-dimensional lamellar and porous structure of C,NTiO2-1 resulted in a relatively higher specific surface area as determined by Brunauer-Emmett-Teller (BET) analysis (Table 1).

    Table 1 Summary of the physicochemical characteristics of C,N-TiO2 in comparison with P25.

    As indicated in the SEM images, each of the lamellar layer constitutes thinner stacking sheets.These thin stacking sheets were analyzed by TEM and atomic force microscopy (AFM)following sonication. Figs.1D and E showed that both typical TiO2crystalline phases, i.e.anatase (lattice fringe of 0.35 nm corresponding to the 101 lattice plane)and rutile(lattice space of 0.325 nm corresponding to the 110 lattice plane) were present in these thinner sheets with abundant surface-phase junctions(highlighted in yellow dash line).Under AFM,the average thickness of these thinner sheets was approximately 1.5 nm with macropores and mesopores (Fig.1F).Energy-dispersive spectroscopy (EDS)mapping( Figs.1G-K)demonstrated that both carbon and nitrogen elements were uniformly distributed in the thin layers of C,N-TiO2-1.These results suggested that the choice of carbon and nitrogen sources as well as the pore-making reagent was crucial to obtain the desired structure feature of the modified photocatalysts.The amount of HNO3not only served as a N source but also provided an acidic environment that was crucial for the formation of stable TiO2particles with size in the range of 50-60 nm[32].Citric acid as a C source played a role in controlling the appropriate hydrolysis rate [33].The formation of three-dimensional lamellar and macropore structures was likely due to the introduction of HClO4leading to gas production under high temperature [34].The adsorption of Cl-ion to the crystal facets of anatase or rutile could contribute to the alteration of crystal growth direction that led to the formation of surface-phase junctions [35].It is also worth mentioning that with the ideal combination of these components,the yield of the lamellar and porous structures could reach almost 100%.Without any purification processes, the as-prepared C,NTiO2-1 showed consistent structural features in all views under SEM (Figs.S2A-D in Supporting information).

    Given the unique structure,further physicochemical characterizations were focused on C,N-TiO2-1 in comparison with the others.The phase composition and crystalline structure were further confirmed by X-ray diffraction (XRD).As illustrated in Fig.S3A (Supporting information), only C,N-TiO2-1 and P25 showed characteristic diffraction peaks for both anatase and rutile,while the rest only possessed anatase phase.Similar to P25,the anatase to rutile ratio of C,N-TiO2-1 was approximately 3:1,an ideal ratio for charge separation efficiency[20,21].The presence of both anatase and rutile phases in C,N-TiO2-1 in microscale was further confirmed using high-resolution Raman spectroscopy(Fig.S3B in Supporting information).These results were in good agreement with the high resolution TEM (Fig.1E) and thesurface-phase junctions were expected to show an effective electron-hole separation under light irradiation [20,21,36].

    Fig.2.XPS analysis demonstrated successful doping of C and N in C,N-TiO2-1.XPS spectra of C,N-TiO2-1 and the fitting results in N 1s(A),C 1s(B),O 1s(C)and Ti 2p(D)regions.

    The X-ray photoelectron spectroscopy(XPS)analysis confirmed a successful doping of C and N in the C,N-TiO2-1.As shown in Figs.2A-D,the XPS spectra revealed the presence of C,N,O and Ti elements in C,N-TiO2-1 with an atom ratio of 19:1:29:51.As shown in Fig.2A, the N 1s spectrum showed a main peak at 399.5 eV corresponding to the pyrrole-like nitrogen with the N atoms hosted in an interstitial position and directly bond to lattice oxygen to form Ti-O-N and/or Ti-N-O linkages[37,38].And in C 1s region(Fig.2B),the fitting result showed three peaks at 284.8,286.1 and 288.8 eV, which could be ascribed to the adventitious elemental carbon, COxcompounds and carbonate species, respectively 39].Considering the synthesis conditions(high-concentration of nitric acid and calcination at 450°C),the main N 1s peaks of C,N-TiO2-1 could be ascribed to interstitial N atoms in the environment of Ti-N-O and Ti-O-N linkages, due to the high electronegativity of O[39-41].In Fig.2C of the O 1s spectra,the one at 530.1 eV arising from O-Ti-O shifted slightly to lower energy compared with that of P25 due to N doping.The one at higher energy of 531.9 eV was attributed to the formation of hyponitrite(N2O2)2-resulting from decomposition of nitrogen precursors or oxidation of the interstitially doped N in the TiO2lattice [41,42].The spectra of Ti 2p presented in Fig.2D showed a slight shift of the Ti4+2p3/2and Ti4+2p1/2peaks(458.8 and 464.5 eV,respectively)to lower energy likely due to the covalent doping of N[32].Meanwhile,the absence of Ti 2p peak at around 455 eV suggested that there were no Ti-C bonds formed, consistent with the C 1s spectra [43].

    To evaluate the utility of C,N-TiO2-1 for pollutants removal,rhodamine B,tetracycline and Disperse Red 60 were used as model pollutant molecules for organic dyes and antibiotics.Under dark condition, C,N-TiO2-1 showed the highest adsorption capacity towards all three pollutant molecules(Fig.3A).Although C,N-TiO2-1 had a similar specific surface area comparing to C,N-TiO2-3(Table 1),the adsorption capacity of the former was approximately twice of the latter and more than three times higher than P25.These results suggested that the unique lamellar and porous structure of C,N-TiO2-1 might create a capillary force to attract pollutant molecules more effectively.Based on the photocatalytic decolorization of rhodamine B, all C,N-TiO2showed first-order kinetic under visible light irradiation,where C,N-TiO2-1 displayed the highest rate constant( Figs.S4A-C in Supporting information).To further evaluate the photocatalytic performance of C,N-TiO2-1,all three molecules were subjected to photocatalytic degradation under visible light.According to the total organic carbon (TOC)analysis, the removal rate for rhodamine B, tetracycline and Disperse Red 60 were 53.51%, 62.92% and 34.77%, respectively(Fig.3B).The differences in degradation efficiencies by C,N-TiO2-1 toward different types of pollutants indicated that the interactions between the material surface and pollutant molecules might play a role.Since the reactive oxidative species generated during photocatalytic performance were usually short-lived,it would be ideal to have the pollutant molecules tightly bound to the material surface.The unique three-dimensional lamellar and porous structure of C,N-TiO2-1 could explain the enhanced photocatalytic degradation efficiency.The aspect of reusability and stability of the C,N-TiO2-1 was addressed by conducting five repeated cycles of photocatalytic de-colorization of rhodamine B.As shown in Fig.3C, the photocatalytic activity of C,N-TiO2-1 remained stable after five recycles.And neither the crystalline phase nor the morphology showed any changes after 5 cycles as shown in Figs.3D and E.

    Fig.3.Removal of rhodamine B, tetracycline and Disperse Red 60 by the as-prepared C,N-TiO2.(A) Adsorption capacity of C,N-TiO2-1-4 and P25 toward rhodamine B,tetracycline and Disperse Red 60.(B)Extent of mineralization of rhodamine B,tetracycline and Disperse Red 60 by C,N-TiO2-1 under visible light irradiation determined by TOC quantification.(C)Five repeated cycles of photocatalytic de-colorization of rhodamine B by C,N-TiO2-1 under visible light irradiation showing excellent reusability.(D)The XRD patterns of C,N-TiO2-1 before and after photocatalytic performance.(E) Representative SEM images of C,N-TiO2-1 after five runs of photocatalytic performance showing excellent material stability.

    Further mechanistic investigations demonstrated that the enhanced visible-light photocatalytic performance was mainly due to the shift of activation wavelength, the unique macrostructure, and the surface-phase junctions.As shown in Fig.4A, the band gap of C,N-TiO2-1 was at 2.71 eV,showing a significant band gap narrowing with red shift of the absorption edge to the visible light region compared to P25 (3.20 eV), according to their UV-vis diffuse reflectance spectra (insert of Fig.4A).Based on electrochemical impedance measurements and transient photocurrent responses( Figs.4B and C),the impedance value of C,N-TiO2-1 was similar to that of P25 while a higher transient photocurrent was observed for C,N-TiO2-1.These results suggested that the enhanced photocatalytic degradation efficiency was resulted from a higher sorption of visible light and a better generation and separation efficiency of the photo-induced charge carriers,i.e.,electrons(e-)and holes(h+)pairs.This is consistent with the previous report,in which the current intensity was found to decrease with the increase of material thickness[36].Moreover,the unique lamellar structure and surface-phase junctions also contributed to a higher generation of hydroxyl radicals (?OH) based on electron paramagnetic resonance (EPR) measurements (Fig.4D).Based on scavengers experiments,it was clear that hydroxyl radicals played the most significant role in photocatalytic degradation while h+and O2?-also took part in the degradation processes (Fig.S5 in Supporting information).

    Fig.4.Mechanistic analysis of the enhanced photocatalytic performance of C,NTiO2-1.(A) Band gap energy of C,N-TiO2-1 and P25 and the corresponding UV-vis diffuse reflectance spectra (insert).(B) Electrochemical impedance spectroscopy(EIS) Nyquist plots showing similar impedance values of C,N-TiO2-1 and P25.(C)Transient current response of C,N-TiO2-1 and P25 membrane electrodes with light on and off cycles showing higher transient photocurrent of C,N-TiO2-1 than that of P25.(D)EPR spectra of C,N-TiO2-1 and P25 under visible light irradiation showing a much higher? OH generation by C,N-TiO2-1 than that of P25.

    In summary, this study demonstrated the possibility of significantly enhancing the photocatalytic performance of TiO2through structural alteration and surface-phase junctions formation.Such improvement was achieved by a one-pot sol-gel process that included an innovative use of pore-making agent HClO4.The resulted modified TiO2showed effective photocatalytic degradation of organic pollutants upon visible light irradiation with excellent reusability and stability.The excellent pollutants removal rate was attributed to the relatively narrow band gap resulted from C and N doping,the higher charge-carrier migration efficiency due to the presence of surface-phase junctions, and the large adsorptive capacity owing to the unique lamella structure.This strategy could also be applied to optimize other photo/electrocatalysts for environmental remediations.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was supported by National Key Research and Development Program of China (No.2018YFC1803100), National Natural Science Foundation of China (No.21777116), and the Fundamental Research Funds for the Central Universities.

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version, at doi:https://doi.org/10.1016/j.cclet.2020.11.010.

    97热精品久久久久久| 亚洲伊人久久精品综合| 亚洲精品视频女| 91aial.com中文字幕在线观看| 自拍偷自拍亚洲精品老妇| 日韩大片免费观看网站| 久久久久久久精品精品| 国产无遮挡羞羞视频在线观看| 亚洲丝袜综合中文字幕| 永久网站在线| 久久久国产一区二区| 婷婷色综合www| 亚洲精品乱码久久久v下载方式| 国产成人freesex在线| 自拍偷自拍亚洲精品老妇| 国产亚洲午夜精品一区二区久久| 亚洲人与动物交配视频| 18+在线观看网站| 亚洲欧美精品自产自拍| 免费久久久久久久精品成人欧美视频 | 国产精品国产三级国产av玫瑰| 午夜福利视频精品| 极品少妇高潮喷水抽搐| av.在线天堂| 亚洲国产av新网站| 亚洲精品国产av成人精品| 又爽又黄a免费视频| 伦理电影大哥的女人| 欧美日韩视频精品一区| 亚洲aⅴ乱码一区二区在线播放| 人妻系列 视频| 午夜视频国产福利| 99精国产麻豆久久婷婷| 精品久久久久久久久亚洲| 国产伦精品一区二区三区视频9| 蜜臀久久99精品久久宅男| 3wmmmm亚洲av在线观看| 亚洲精品乱久久久久久| 午夜免费鲁丝| 免费观看的影片在线观看| 免费在线观看成人毛片| 亚洲av综合色区一区| 伊人久久国产一区二区| 80岁老熟妇乱子伦牲交| 国产在线免费精品| 91久久精品电影网| 国产 一区精品| 中国三级夫妇交换| 国产亚洲最大av| 卡戴珊不雅视频在线播放| 女性被躁到高潮视频| 男人狂女人下面高潮的视频| 一级毛片aaaaaa免费看小| 久久久久久久久久久免费av| 在线观看一区二区三区激情| 欧美成人午夜免费资源| 老师上课跳d突然被开到最大视频| 亚洲av成人精品一区久久| 日韩在线高清观看一区二区三区| 国产成人精品福利久久| 国产高潮美女av| 3wmmmm亚洲av在线观看| 国产国拍精品亚洲av在线观看| 午夜免费鲁丝| av不卡在线播放| 国产精品伦人一区二区| 国产日韩欧美在线精品| 国产毛片在线视频| 大话2 男鬼变身卡| 日韩不卡一区二区三区视频在线| 国产视频首页在线观看| 一区二区三区乱码不卡18| 涩涩av久久男人的天堂| 国产永久视频网站| 校园人妻丝袜中文字幕| 欧美成人午夜免费资源| 永久免费av网站大全| 日韩av免费高清视频| 久久久久精品性色| 国产伦在线观看视频一区| 中文欧美无线码| 久久青草综合色| 纯流量卡能插随身wifi吗| 国产白丝娇喘喷水9色精品| 中文天堂在线官网| 99热网站在线观看| 深爱激情五月婷婷| 亚洲精品日本国产第一区| 天堂俺去俺来也www色官网| 亚洲精品乱码久久久v下载方式| 美女中出高潮动态图| 国产精品99久久久久久久久| 插逼视频在线观看| 亚洲精品日韩在线中文字幕| 91久久精品电影网| 国产一区二区三区综合在线观看 | 26uuu在线亚洲综合色| 国产永久视频网站| 免费看光身美女| 丝袜喷水一区| 极品教师在线视频| 在线免费观看不下载黄p国产| 日韩欧美精品免费久久| 黄色怎么调成土黄色| 一边亲一边摸免费视频| 亚洲怡红院男人天堂| 少妇人妻一区二区三区视频| 国产精品成人在线| 国产亚洲91精品色在线| 99久久综合免费| 新久久久久国产一级毛片| 全区人妻精品视频| 亚洲内射少妇av| 久久久久国产精品人妻一区二区| 人妻一区二区av| 五月伊人婷婷丁香| 91精品国产国语对白视频| 精品亚洲成a人片在线观看 | 久久久久久久大尺度免费视频| 网址你懂的国产日韩在线| 日本vs欧美在线观看视频 | 51国产日韩欧美| 日本av免费视频播放| 欧美精品人与动牲交sv欧美| 免费播放大片免费观看视频在线观看| 一级毛片电影观看| 天天躁日日操中文字幕| 国产69精品久久久久777片| 亚洲精品一区蜜桃| 国产伦理片在线播放av一区| 国产高清不卡午夜福利| 亚洲美女黄色视频免费看| 成人漫画全彩无遮挡| 久久久久久久国产电影| 日韩欧美 国产精品| 精品一区在线观看国产| 久久精品国产亚洲av天美| 插逼视频在线观看| 欧美一区二区亚洲| 国产深夜福利视频在线观看| 午夜福利网站1000一区二区三区| 国产av国产精品国产| 高清在线视频一区二区三区| 亚洲精品视频女| 超碰av人人做人人爽久久| 免费黄网站久久成人精品| 日本免费在线观看一区| 国产精品精品国产色婷婷| 成年免费大片在线观看| 欧美激情国产日韩精品一区| 久久久久视频综合| 欧美丝袜亚洲另类| 亚洲经典国产精华液单| 国产亚洲最大av| 国产精品蜜桃在线观看| 国产成人精品久久久久久| 亚洲精品国产成人久久av| 晚上一个人看的免费电影| 国产熟女欧美一区二区| 丰满迷人的少妇在线观看| 亚洲人成网站在线播| 欧美区成人在线视频| 精品久久国产蜜桃| av线在线观看网站| 国产黄色免费在线视频| 亚洲综合精品二区| 久久毛片免费看一区二区三区| av国产免费在线观看| 久久 成人 亚洲| 久久国产精品男人的天堂亚洲 | 啦啦啦中文免费视频观看日本| 麻豆精品久久久久久蜜桃| 成人一区二区视频在线观看| 高清黄色对白视频在线免费看 | 久久久久国产精品人妻一区二区| 免费av不卡在线播放| 一本—道久久a久久精品蜜桃钙片| 日韩免费高清中文字幕av| 亚洲av中文字字幕乱码综合| 精品久久久久久电影网| 狂野欧美激情性bbbbbb| 大香蕉久久网| 免费av中文字幕在线| 国产精品久久久久久久久免| 交换朋友夫妻互换小说| 黄色怎么调成土黄色| av在线老鸭窝| 26uuu在线亚洲综合色| 老司机影院成人| 91狼人影院| 日本vs欧美在线观看视频 | 亚洲欧美成人精品一区二区| 免费播放大片免费观看视频在线观看| 一本一本综合久久| 国产伦理片在线播放av一区| 亚洲综合色惰| 久久99热6这里只有精品| 免费av不卡在线播放| 欧美少妇被猛烈插入视频| 欧美日韩亚洲高清精品| 日韩一本色道免费dvd| 免费观看无遮挡的男女| 欧美老熟妇乱子伦牲交| 欧美精品国产亚洲| 91精品国产九色| 精品熟女少妇av免费看| 久久6这里有精品| 欧美一级a爱片免费观看看| 国产精品福利在线免费观看| 人妻少妇偷人精品九色| 九九在线视频观看精品| 国产视频首页在线观看| 免费少妇av软件| 午夜日本视频在线| 中国国产av一级| 精品一区二区三区视频在线| 九色成人免费人妻av| 一级毛片我不卡| 成年av动漫网址| 蜜桃在线观看..| 欧美精品人与动牲交sv欧美| 多毛熟女@视频| 在线免费十八禁| 国产淫语在线视频| 人妻夜夜爽99麻豆av| 国产男人的电影天堂91| 成年人午夜在线观看视频| 一级爰片在线观看| 国产免费福利视频在线观看| 亚州av有码| av女优亚洲男人天堂| 国产淫语在线视频| 晚上一个人看的免费电影| 久久女婷五月综合色啪小说| 日本av手机在线免费观看| 国产一区有黄有色的免费视频| 成人黄色视频免费在线看| 亚洲精品日本国产第一区| 少妇高潮的动态图| 观看美女的网站| 精品一区二区三卡| 久久久久久久久大av| 色视频www国产| 亚洲国产高清在线一区二区三| 少妇裸体淫交视频免费看高清| 国产成人精品一,二区| 亚洲成人中文字幕在线播放| 人妻系列 视频| 天堂中文最新版在线下载| 91在线精品国自产拍蜜月| 精品一品国产午夜福利视频| 亚洲一级一片aⅴ在线观看| 成人二区视频| 国产精品国产三级专区第一集| 最近手机中文字幕大全| 国产白丝娇喘喷水9色精品| 久久久久人妻精品一区果冻| 国产成人精品一,二区| 久久久久精品久久久久真实原创| 婷婷色av中文字幕| 亚洲精品久久久久久婷婷小说| 最近手机中文字幕大全| 色网站视频免费| 日韩成人av中文字幕在线观看| 亚洲丝袜综合中文字幕| 国产亚洲91精品色在线| 国产一区有黄有色的免费视频| 国产一区二区在线观看日韩| 美女高潮的动态| 国产高潮美女av| 欧美成人一区二区免费高清观看| 欧美激情极品国产一区二区三区 | 精品视频人人做人人爽| 亚州av有码| 蜜桃久久精品国产亚洲av| 免费高清在线观看视频在线观看| 乱系列少妇在线播放| 高清午夜精品一区二区三区| videossex国产| 日韩国内少妇激情av| 色哟哟·www| 国产亚洲av片在线观看秒播厂| 亚洲熟女精品中文字幕| 三级国产精品片| av在线蜜桃| 男男h啪啪无遮挡| 在线播放无遮挡| 高清av免费在线| 伊人久久国产一区二区| 亚洲美女黄色视频免费看| 亚洲欧美一区二区三区国产| 边亲边吃奶的免费视频| 国产片特级美女逼逼视频| av天堂中文字幕网| 99久久综合免费| 免费看光身美女| 搡老乐熟女国产| 青春草视频在线免费观看| 亚洲美女视频黄频| 18禁动态无遮挡网站| 亚洲精品视频女| 亚洲精品日本国产第一区| 99视频精品全部免费 在线| av在线播放精品| 赤兔流量卡办理| 在线观看三级黄色| 又黄又爽又刺激的免费视频.| 欧美日韩视频精品一区| a级毛色黄片| 亚洲激情五月婷婷啪啪| 国产成人aa在线观看| 成年美女黄网站色视频大全免费 | 超碰av人人做人人爽久久| 80岁老熟妇乱子伦牲交| 黑人猛操日本美女一级片| 亚洲国产毛片av蜜桃av| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产毛片av蜜桃av| 国产精品人妻久久久影院| av在线app专区| 少妇被粗大猛烈的视频| 晚上一个人看的免费电影| 街头女战士在线观看网站| 国产黄色视频一区二区在线观看| 永久免费av网站大全| 国产亚洲精品久久久com| 久久女婷五月综合色啪小说| videossex国产| 国产白丝娇喘喷水9色精品| 国产高清有码在线观看视频| 国产欧美亚洲国产| 卡戴珊不雅视频在线播放| 亚洲欧美日韩东京热| 国产综合精华液| 亚洲欧美成人精品一区二区| 18禁在线播放成人免费| 99re6热这里在线精品视频| 青春草亚洲视频在线观看| 另类亚洲欧美激情| 亚洲国产精品一区三区| 色5月婷婷丁香| 在线观看国产h片| 久热这里只有精品99| 又粗又硬又长又爽又黄的视频| 老师上课跳d突然被开到最大视频| 日韩制服骚丝袜av| 熟妇人妻不卡中文字幕| 国产伦精品一区二区三区视频9| 国产91av在线免费观看| 久久精品久久久久久噜噜老黄| 晚上一个人看的免费电影| 国产 一区精品| 国产精品国产三级国产专区5o| 男女边摸边吃奶| 水蜜桃什么品种好| 91久久精品电影网| 免费黄色在线免费观看| 久久热精品热| 日韩一区二区三区影片| 自拍偷自拍亚洲精品老妇| 免费在线观看成人毛片| 国产午夜精品久久久久久一区二区三区| 人妻系列 视频| 午夜福利在线在线| 国产69精品久久久久777片| 免费人妻精品一区二区三区视频| 韩国高清视频一区二区三区| 在线观看免费日韩欧美大片 | 国产精品久久久久久精品电影小说 | 2018国产大陆天天弄谢| 国产欧美日韩精品一区二区| 97在线视频观看| 亚洲av中文字字幕乱码综合| 在线观看国产h片| 国产伦理片在线播放av一区| 日本爱情动作片www.在线观看| 日本黄色日本黄色录像| 久久韩国三级中文字幕| 99精国产麻豆久久婷婷| 色婷婷久久久亚洲欧美| av.在线天堂| 一区二区三区四区激情视频| 99久久精品一区二区三区| 美女主播在线视频| 男人和女人高潮做爰伦理| 亚洲人成网站在线观看播放| 男女下面进入的视频免费午夜| 熟女人妻精品中文字幕| 看十八女毛片水多多多| 成人特级av手机在线观看| 亚洲图色成人| 国产极品天堂在线| 一区二区三区乱码不卡18| 伦精品一区二区三区| 午夜激情久久久久久久| 欧美成人精品欧美一级黄| 欧美精品人与动牲交sv欧美| 亚洲婷婷狠狠爱综合网| 亚洲性久久影院| 啦啦啦在线观看免费高清www| 国产久久久一区二区三区| 2022亚洲国产成人精品| 我要看黄色一级片免费的| 黄色配什么色好看| 亚洲av免费高清在线观看| 一个人看视频在线观看www免费| 久久综合国产亚洲精品| 亚洲中文av在线| 久久午夜福利片| 人人妻人人澡人人爽人人夜夜| 国产免费一区二区三区四区乱码| 亚洲第一区二区三区不卡| 国产淫片久久久久久久久| 久久热精品热| 亚洲成人一二三区av| 少妇被粗大猛烈的视频| 老师上课跳d突然被开到最大视频| 亚洲自偷自拍三级| 人妻 亚洲 视频| 亚洲精品国产色婷婷电影| 国产毛片在线视频| 美女xxoo啪啪120秒动态图| 亚洲三级黄色毛片| 肉色欧美久久久久久久蜜桃| 免费人妻精品一区二区三区视频| 最近手机中文字幕大全| 欧美激情极品国产一区二区三区 | 国产精品久久久久久av不卡| 成人一区二区视频在线观看| 亚洲熟女精品中文字幕| 亚洲欧美清纯卡通| 亚洲在久久综合| 一级片'在线观看视频| 特大巨黑吊av在线直播| 亚洲精品乱码久久久久久按摩| 亚洲综合精品二区| 国产成人freesex在线| 麻豆国产97在线/欧美| 老师上课跳d突然被开到最大视频| 亚洲天堂av无毛| 亚洲欧美日韩另类电影网站 | 777米奇影视久久| 久久久久久久久久久丰满| 精品人妻视频免费看| 最近2019中文字幕mv第一页| 欧美三级亚洲精品| 免费观看性生交大片5| 蜜桃在线观看..| 2018国产大陆天天弄谢| 中文资源天堂在线| 欧美zozozo另类| 欧美区成人在线视频| 日本欧美国产在线视频| 欧美亚洲 丝袜 人妻 在线| 纯流量卡能插随身wifi吗| 最近最新中文字幕免费大全7| 在线观看免费视频网站a站| 欧美性感艳星| 久久国产精品大桥未久av | 少妇的逼水好多| 菩萨蛮人人尽说江南好唐韦庄| 免费黄频网站在线观看国产| 久久久久久久久大av| 蜜桃久久精品国产亚洲av| 免费播放大片免费观看视频在线观看| 国产 一区 欧美 日韩| 亚洲自偷自拍三级| 欧美日本视频| 国精品久久久久久国模美| 大陆偷拍与自拍| 久久久久网色| 国产精品无大码| 97在线人人人人妻| 啦啦啦在线观看免费高清www| 国产精品国产av在线观看| 亚洲色图综合在线观看| 午夜福利在线观看免费完整高清在| 久久精品夜色国产| 国内揄拍国产精品人妻在线| 中文字幕久久专区| 色视频在线一区二区三区| 国产在线免费精品| 能在线免费看毛片的网站| 午夜福利高清视频| 女的被弄到高潮叫床怎么办| 18禁裸乳无遮挡动漫免费视频| 午夜视频国产福利| 色视频在线一区二区三区| 欧美区成人在线视频| 狂野欧美激情性bbbbbb| 婷婷色综合大香蕉| 国产高清三级在线| 成人影院久久| 国产白丝娇喘喷水9色精品| 日日摸夜夜添夜夜爱| 插逼视频在线观看| 黄色视频在线播放观看不卡| 精品久久久久久久久亚洲| 国产乱人偷精品视频| 国产国拍精品亚洲av在线观看| 欧美激情国产日韩精品一区| 夜夜骑夜夜射夜夜干| 91午夜精品亚洲一区二区三区| 亚洲av不卡在线观看| 亚洲av福利一区| 人妻一区二区av| 能在线免费看毛片的网站| 成人毛片a级毛片在线播放| 91精品国产九色| 高清日韩中文字幕在线| 国产精品人妻久久久久久| 啦啦啦视频在线资源免费观看| 亚洲欧美精品自产自拍| 妹子高潮喷水视频| 色吧在线观看| 日韩在线高清观看一区二区三区| 国产免费一区二区三区四区乱码| 亚洲精品视频女| 亚洲精品乱码久久久v下载方式| 亚洲内射少妇av| www.av在线官网国产| 国产老妇伦熟女老妇高清| 欧美日韩在线观看h| 国产色爽女视频免费观看| 成人18禁高潮啪啪吃奶动态图 | 精品人妻一区二区三区麻豆| 日韩强制内射视频| 色网站视频免费| 99热全是精品| 我的女老师完整版在线观看| 国产伦理片在线播放av一区| 最近手机中文字幕大全| 国产午夜精品久久久久久一区二区三区| 乱码一卡2卡4卡精品| 成人18禁高潮啪啪吃奶动态图 | av在线老鸭窝| 天堂8中文在线网| 国产精品久久久久久久电影| 性色av一级| 各种免费的搞黄视频| 国产毛片在线视频| 国产精品熟女久久久久浪| 免费观看a级毛片全部| 日韩视频在线欧美| 啦啦啦视频在线资源免费观看| 中文天堂在线官网| 高清毛片免费看| 多毛熟女@视频| 久久女婷五月综合色啪小说| 少妇熟女欧美另类| 国产精品国产三级国产av玫瑰| 人人妻人人爽人人添夜夜欢视频 | 国产成人免费无遮挡视频| 免费av不卡在线播放| 欧美xxxx性猛交bbbb| 五月伊人婷婷丁香| av专区在线播放| 嫩草影院入口| 亚洲av国产av综合av卡| 国产亚洲av片在线观看秒播厂| 超碰av人人做人人爽久久| 制服丝袜香蕉在线| 欧美极品一区二区三区四区| 欧美少妇被猛烈插入视频| 国产成人精品福利久久| 18禁裸乳无遮挡免费网站照片| 国产精品一区二区性色av| 国产成人aa在线观看| 中文在线观看免费www的网站| 亚洲精品aⅴ在线观看| 最近的中文字幕免费完整| 成人毛片a级毛片在线播放| 国产黄色视频一区二区在线观看| 午夜日本视频在线| 美女高潮的动态| 久久久久精品久久久久真实原创| 涩涩av久久男人的天堂| 久久久国产一区二区| kizo精华| 综合色丁香网| .国产精品久久| 热99国产精品久久久久久7| 久久久亚洲精品成人影院| 啦啦啦啦在线视频资源| 黄片wwwwww| 亚洲不卡免费看| 一本—道久久a久久精品蜜桃钙片| 一级毛片aaaaaa免费看小| 成人影院久久| 日日摸夜夜添夜夜添av毛片| 久久人人爽av亚洲精品天堂 | 各种免费的搞黄视频| 少妇的逼水好多| 久久97久久精品| 久久久久性生活片| 七月丁香在线播放| 亚洲国产日韩一区二区| 久久久久国产精品人妻一区二区| 十分钟在线观看高清视频www | 一级毛片黄色毛片免费观看视频| 久热久热在线精品观看| 精品久久国产蜜桃| 美女脱内裤让男人舔精品视频| 嘟嘟电影网在线观看| 又粗又硬又长又爽又黄的视频| 人人妻人人爽人人添夜夜欢视频 | 欧美精品亚洲一区二区| 亚洲欧美成人综合另类久久久| 尾随美女入室| 久久久久网色| 国产成人91sexporn| 男人添女人高潮全过程视频| 观看美女的网站| 亚洲激情五月婷婷啪啪| 在线观看一区二区三区激情|