• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Conformational effect on fluorescence emission of tetraphenylethylene-based metallacycles

    2021-11-06 03:18:20ZhewenGuoJunZhoYuhngLiuGungfengLiHengWngYliHouMingmingZhngXiopengLiXuzhouYn
    Chinese Chemical Letters 2021年5期

    Zhewen Guo,Jun Zho,Yuhng Liu,Gungfeng Li,*,Heng Wng,Yli Hou,Mingming Zhng,Xiopeng Li,Xuzhou Yn,*

    a School of Chemistry and Chemical Engineering,Frontiers Science Center for Transformative Molecules,Shanghai Jiao Tong University,Shanghai 200240,China

    b College of Chemistry and Environmental Engineering,Shenzhen University,Shenzhen 518055,China

    c State Key Laboratory for Mechanical Behavior of Materials,Shaanxi International Research Center for Soft Matter,School of Materials Science and Engineering,Xi’an Jiaotong University, Xi’an 710049,China

    ABSTRACT Herein,we designed and constructed two metallacycles,1 and 2,to illustrate the conformational effect of isomeric AIE fluorophores on the platform of supramolecular coordination complexes(SCCs).Specifically,the dangling phenyl rings in TPE units of the metallacycle 1 align completely outside the main cyclic structure, while in the metallacycle 2, these phenyl rings align half inside and half outside.The experimental results showed that two metallacycles exhibited different behaviors in terms of AIE fluorescence and chemical sensing, which could be attributed to the subtle structural difference of the TPE units.This work represents the unification of topics such as self-assembly,AIE,and chemical sensing,and further promotes the understanding for the structure-property relationship of isomeric AIE fluorophores.

    Keywords:Conformational effect Structure-property relationship Aggregation-induced emission Coordination-driven self-assembly Metallacycles

    In recent years, fluorescent materials are undergoing accelerated and sustained growth.They have gained considerable attention due to widespread applications in environmental sensing, bioimaging, lighting devices and so on [1-4].However,traditional fluorophores only work well in dilute conditions.The fluorescence would quench abruptly if they accumulate in the condensed phase, which is known as the frustrating aggregationcaused quenching (ACQ) phenomenon [5,6].This troublesome problem was subtly tackled when Tang et al.reported an entirely opposite phenomenon called aggregation-induced emission (AIE)[7,8].In this case,some typical chromophores emit faintly in dilute solutions but intensively in concentrated solutions.Such brandnew properties could be attributed to the restriction of intramolecular rotation and vibration of chromophores in the aggregated state.These AIE-active fluorogens bridged the gaps in traditional luminous materials,thus driving a huge bulk of researches[9-12].Although sophisticated structures and delicate design of AIE molecules/assemblies have been reported[13-15],the relationship between the conformation of AIE units and the resulting photophysical properties has rarely been studied.

    Supramolecular coordination complexes (SCCs), prepared by means of coordination-driven self-assembly, provide a suitable platform for further study of AIE chemistry [16,17].Discrete metallacycle, a certain type of SCCs, can be efficiently achieved through self-assembly of ligands and central metals via labile coordination bonds.Were the angularities, directionalities, and stoichiometries defined, these building blocks would then contribute to the assumed exquisite structures through reversible bonds efficiently [18-21].Owing to their controllable structures and properties,the detailed structure-property relationship of AIE moieties could be explored at the (supra)molecular level.Tetraphenylethylene (TPE) group is one of the most frequently used AIE units due to its facile synthesis and excellent stability[22,23].Its original free rotation of phenyl rings and double bond could be restricted in the aggregated state, thus leading to the emission of fluorescence.After being fabricated by pyridine groups, TPE ligands could be implanted in the SCC systems.In recent years, we have reported the construction of light-emitting metal-organic materials on the SCC platforms and then investigated the influence on their AIE performance in terms of shapes,counter anion, number of chromophores and so on [24].

    However, the relationship between the fine structure of AIE units and the corresponding fluorescence remains unsettled.It is plausible that any fine modulation may bring about a profound influence on the fluorescent behavior,resulting from the difference of rotating restriction.For example, the more confined a TPE molecule is, the more salient AIE behavior it would display.

    Herein, we designed two similar metallacycles, 1 and 2, with different conformations of TPE groups via coordination-driven self-assembly.In the structure of 1, the dangling phenyl rings are totally aligned outside of the core of metallacycle and the TPE units are restrained through two adjacent vertexes.While in the structure of 2, only half of the dangling phenyl rings are outside and the other half are inside the metallacycle.The TPE units are restrained through two opposite vertexes, which make TPE units rotate or vibrate more restrictively.The key principle in our design is to ensure that,with the metal acceptors and counterpart anions being the same,the only difference of two metallacycles lies in the conformation of the TPE units.It is logically predicable that these two metallacycles would show different light-emitting behaviors which are worthy of investigation in detail.

    In this study,we combined two different 0°TPE-based dipyridyl ligands 4 and 5, and a di-Pt(II) acceptor 3, to construct metallacycles 1 and 2,respectively.Ligands 4 and 5 were readily prepared by Suzuki coupling and further purified.The mixture of di-Pt(II)acceptor 3 with ligand 4 or 5 in a 1:1 ratio was stirred in CD2Cl2at room temperature for 8 h, and thus two self-assembled metallacycles 1 and 2, were formed, respectively (Fig.1).

    Fig.1.Schematic representation of the formation of metallacycles 1 and 2 via coordination-driven self-assembly.

    Metallacycles 1 and 2 displayed a similar characteristic in the1H NMR spectra(Figs.2a-f).All the hydrogen protons of the pyridine and phenyl rings exhibited downfield shifts to various degrees compared to those of original TPE ligands and Pt(II) acceptor.The peaks corresponding to the pyridine rings downfield shift by a large margin owing to the loss of electron density after metalcoordination.The31P{1H} NMR spectra of 3, 1, and 2, displayed sharp singlets(ca.19.03 ppm for 3,12.84 ppm for 1,and 12.86 ppm for 2) with concomitant195Pt satellites in correspondence to a single phosphorus environment (Figs.2g-i).The peaks of metallacycles 1 and 2 are shifted upfield from the di-Pt(II) acceptor by approximately 6.19 and 6.17 ppm,respectively,due to the electron backdonation effect of the Pt centers.Meanwhile, the coupling of the lateral195Pt satellites decreased(ca.ΔJ=-164.0 Hz for 1,ΔJ=-154.5 Hz for 2)due to the same electron back-donation effect.It was worth noting that the chemical shifts of 1 and 2 are very close,which implies two phosphorus ligands in different metallacycles were in similar environments.The clear-cut signals in both31P{1H}and1H NMR spectra of these species together with the favorable solubility actively support the molecularity of these dual-TPE metallacycles.

    Electrospray ionization time-of-flight mass spectrometry (ESITOF-MS) is an efficient and reliable tool for confirmation of the stoichiometry of multi-charged supramolecular species.The ESITOF-MS characterizations further convinced the existence of dual-TPE metallacycles 1 and 2.In the mass spectrum of 1,three peaks assigned demonstrate the formation of a[2+2]assembly(Figs.S7 and S10 in Supporting information).These peaks corresponded to the intact entity with different numbers of remaining counterions(m/z=712.27 for [M-4OTf]4+, m/z=1000.00 for [M-3OTf]3+(Fig.2j), m/z=1573.50 for [M-2OTf]2+, where M represents the intact assembly).Given metallacycle 2 has the same molecular weight with 1, its fragments were similar to those in 1(m/z=712.26 for [M-4OTf]4+, m/z=1000.02 for [M-3OTf]3+(Fig.2k), m/z=1573.50 for [M-2OTf]2+).All the assigned peaks have been isotopically resolved and were consistent with their computational distributions, indicating the formation of discrete metallacycle structure.

    Due to the highly regular structure, the metallacycle 1 could pile up compactly,and therefore it is relatively easy to grow single crystals.As to the metallacycle 2, however, providing that the benzene rings were half inside and half outside,metallacycles were difficult to get close to each other and the process of accumulation was hindered.Therefore, many methods applied were failed to grow single crystals suitable for X-ray scattering.The crystal structure of metallacycle 1 was displayed in the Fig.2l with counterions and ethyl groups removed for clarity.Instead, a DFT calculation was carried out to further understand the structure of metallacycle 2 (Fig.2m).Both the single-crystal of 1 and the molecular simulation of 2 showed very similar, roughly planar structure.Their similar frameworks laid a solid foundation that different luminous behaviors could be attributed to the TPE conformation.

    Fig.2.Partial1H NMR spectra(400 MHz,CD2Cl2,293 K)(a-f)and31P{1H}spectra(161.9 MHz,CD2Cl2,293 K)(g-i)of ligands 4(c),5(f),acceptor 3(a,d and g),metallacycles 1(b, h),and 2(e,i).Experimental(red)and calculated(blue)ESI-TOF-MS spectra of 1[M-3OTf]3+(j)and 2[M-3OTf]3+(k).Ball-stick views of the X-ray structure of metallacycle 1(l)and optimized(B3LYP/6-31G(d,p))structure of metallacycle 2(m).Carbon atoms of ligands 4 and 5 are green,carbon atoms of acceptor 3 are blue,nitrogen atoms are yellow, phosphorus atoms are purple, and platinum atoms are grey.Hydrogens and counterions OTf- (trifluoromethanesulfonate) anions are omitted for clarity.

    The normalized absorption spectra of ligands 4, 5 and metallacycles 1,2 are shown in Fig.3a.Ligands 4 and 5 exhibited a broad absorption band centered at 300 and 325 nm, respectively.After coordination, the absorption band of 1 displayed a red-shifted to 316 nm while 2 red-shifted to 331 nm, compared to relative ligands.The fluorescence emission spectra of ligands 4 and 5 as well as metallacycles 1 and 2 were also measured(Fig.3b).Ligands 4 and 5 both exhibited a broad band and were weakly emissive at ca.454 and 462 nm in CH2Cl2at room temperature, respectively.The relatively low emission was attributed to the non-radiative relaxation pathway via intramolecular rotations of the phenyl and pyridyl rings.After the metallacycles were assembled, the emission intensity enhanced by a large scale.Both metallacycles 1 and 2 displayed single bands with maximum emission wavelength red-shifted to 476 and 508 nm,respectively.According to the fluorescent mechanism, a coplanar phenyl ring promoting π-electron conjugation contributes to hyperchromic effect while a perpendicular conformation weakening π-electron conjugation results in a blue shift.Consequently,a given emission wavelength shift is oftentimes related to a definite conformation of the phenyl rings.The phenyl rings in metallacycle 1 are not as rigid or conjugated as those in 2,which makes the metallacycle 1 possess an enhanced redshift spectrum.In both metallacycles, the fluorescence enhancement was yet limited, suggesting that the TPE units are not hardened adequately to eliminate the nonradiative relaxation pathways.

    Fig.3.Absorption(a)and fluorescence emission(b)spectra of ligands 4 and 5,and metallacycles 1 and 2 in CH2Cl2.Fluorescence emission spectra and plots of maximum emission intensity of metallacycles 1 (c, d) and 2 (e,f) versus hexane fraction in CH2Cl2/hexane mixtures (λex= 350 nm, c=10.0 μmol/L).

    In order to study the AIE properties of metallacycles 1 and 2,the emission spectra were recorded in CH2Cl2and CH2Cl2/hexane mixed solutions.In dilute CH2Cl2solutions (Figs.3c and d), the fluorescence of 1 was exceedingly weak and the emission intensity remained low in mixed solutions when the hexane content was less than 60%.In sharp contrast, when the hexane content increased to 90%,the fluorescence intensity increased overwhelmingly.It is presumable that the pendant phenyl rings which provided non-radiative relaxation pathways became rigid upon aggregation, resulting in apparent emission enhancement.Accordingly, metallacycle 2 displayed a similar AIE phenomenon(Figs.3e and f).It was not until the hexane fraction reached 60%that the emission intensity remained inconspicuous.Their behavior in mixed solutions indicated both of the metallacycles were AIE-active.Yet some subtle differences could be found in two metallacycles.The structure with half phenyl rings inside in the metalacyclic skeleton probably brought about a decrease in solubility, which ultimately interpreted that aggregation started to occur at a lower percentage of hexane compared to that of metallacycle 1.

    The quantum yields of the two metallacycles were recorded in solvent medium as well as in solid-state.In dilute CH2Cl2solution(c = 10.0 μmol/L), the quantum yield of metallacycle 1 was measured to be 0.17% while metallacycle 2 was measured to be 0.67%.The weak emission in solvent was owing to the slight restriction of intramolecular rotation of TPE units in the metallacycles.And in the solid state,the ΦFvalues of 1 and 2 reached 24%and 33%, respectively.Notably, the trans-metallacycle 2 displayed higher ΦFvalue than that of cis-metallacycle 1.It is reasonable that the rigid structure of 2 with half phenyl rings inside restricts TPE units more tightly,and this restriction was enhanced when in the concentrated state.On the contrary, 1 showed relatively poorer fluorescent performance both in dilute solutions and in the solid state since the rotation of the phenyl rings is not highly restrained.The distinct difference between quantum yields suggests that the conformation of fluorogens has a considerable influence on the luminous properties of TPE-based metal-organic materials.

    Fig.4.Fluorescence emission spectra of metallacycles 1 (a) and 2 (b) in 10%/90% CH2Cl2/hexane mixture containing different amounts of picric acid (PA) (λex= 350 nm,c=10.0μmol/L).(c) Plot of relative fluorescence intensities (I0/I, I=peak intensity and I0=peak intensity at [PA]= 0μmol/L) versus picric acid concentrations in 10%/90%CH2Cl2/hexane mixture (λex= 350 nm, c=10.0 μmol/L).

    It has been reported that TPE-based metallacycles could act as chemosensors for nitroaromatic molecules and the detection sensitivity is related to the fine structure of metallacycle.Herein,we utilized picric acid (PA)as a typical nitroaromatic molecule to measure the potential sensing abilities of metallacycles 1 and 2.The aggregated complexes in the 90% hexane content of CH2Cl2/hexane mixture were considered as turn-off fluorescent probes.Generally, emission intensity becomes attenuated in response to PA addition on account of a static quenching mechanism.Hence,the quenching processes could be monitored by the change of emission intensity.As is shown in Figs.4a and b,the fluorescence quenching was distinctly observed even the PA concentration was as low as 0.1 μg/mL or 0.1 ppm,which is comparable to the related reports [25].When the PA concentration kept increasing, the fluorescence decreased correspondingly.Even though two metallacycles have similar structures,2 did not show the same extent of quenching efficiency of 1.To conduct semi-quantitative analysis,we applied a linear Stern-Volmer equation I0/I=K[PA]+1[26].By means of linear fitting, the quenching constants K of the two metallacycles were calculated to be 6.13×104L/mol for 1 and 3.51×104L/mol for 2 (Fig.4c).It is plausible that metallacycle 2,with crowded steric effect, may hamper the approach of PA molecules to form nonemissive ground-state complexes.

    In summary,we have not only synthesized and characterized two dual-TPE-based metallacycles, but also used the metallacycles as the platform to study the relationship between conformations of the TPE units and corresponding photophysical properties.In detail,two metallacycles,1 and 2,were constructed by virtue of coordination driven self-assembly.In metallacycle 1,TPE units were totallyarranged outside.The metallacycle 2 had half TPE units embedded within the metallacycle,leaving TPE groups in a more constrained conformation.During molecular aggregation,two metallacycles experienced marked fluorescence enhancement.Given the metallacycle 2 in a more constrained state, it behaved more apparent AIE behavior and owned a higher quantum yield.Moreover,the two metallacycles exhibited highly sensitive to picric acid.These findings provide an extensive understanding of the influence of the fine structure of AIEgens on the fluorescent properties as well as sensing applications of AIE-active metallacycles.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by the National Natrual Science Foundation of China(Nos.21901161 and 22071152),Natural Science Foundation of Shanghai (No.20ZR1429200), the China Postdoctoral Science Foundation (No.2020M671094), and Basic Research Program of Xi’an Jiaotong University(No.XZY022020018).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,inthe online version,at doi:https://doi.org/10.1016/j.cclet.2020.12.028.

    91精品国产九色| av.在线天堂| 一区在线观看完整版| 精品一区在线观看国产| 五月天丁香电影| 成年av动漫网址| 内射极品少妇av片p| 国产乱人视频| 多毛熟女@视频| 最近手机中文字幕大全| 少妇精品久久久久久久| 国产av精品麻豆| 看非洲黑人一级黄片| a级毛片免费高清观看在线播放| 色婷婷久久久亚洲欧美| 国产成人精品一,二区| 99视频精品全部免费 在线| 欧美bdsm另类| 卡戴珊不雅视频在线播放| 久久人人爽人人片av| 日韩一区二区视频免费看| 欧美xxⅹ黑人| 啦啦啦在线观看免费高清www| 能在线免费看毛片的网站| 熟妇人妻不卡中文字幕| 欧美区成人在线视频| 国产精品av视频在线免费观看| 精品少妇久久久久久888优播| 久久久久性生活片| 亚洲久久久国产精品| 国产精品国产三级专区第一集| 夫妻午夜视频| 国产精品国产三级国产专区5o| 成人午夜精彩视频在线观看| 亚洲精品日韩在线中文字幕| 国产精品爽爽va在线观看网站| 黄色视频在线播放观看不卡| 熟女av电影| 亚洲精品久久久久久婷婷小说| 丰满乱子伦码专区| 国产乱来视频区| 少妇的逼水好多| 22中文网久久字幕| 青春草亚洲视频在线观看| 亚洲欧美一区二区三区国产| 91狼人影院| 国产精品99久久久久久久久| 日产精品乱码卡一卡2卡三| 激情五月婷婷亚洲| 成人二区视频| 国产黄片美女视频| 黄片无遮挡物在线观看| 欧美日韩精品成人综合77777| videos熟女内射| 80岁老熟妇乱子伦牲交| 国产精品一区二区性色av| 日日撸夜夜添| 毛片一级片免费看久久久久| 国产精品久久久久久久久免| 在线播放无遮挡| 国产永久视频网站| 啦啦啦在线观看免费高清www| 美女cb高潮喷水在线观看| 亚洲av在线观看美女高潮| 岛国毛片在线播放| 亚洲欧美精品专区久久| 搡老乐熟女国产| 亚洲欧美一区二区三区国产| h视频一区二区三区| 亚洲国产高清在线一区二区三| 精品人妻视频免费看| 国内揄拍国产精品人妻在线| 精品一区二区免费观看| 又粗又硬又长又爽又黄的视频| 国产精品爽爽va在线观看网站| 好男人视频免费观看在线| 下体分泌物呈黄色| 亚洲精品国产av蜜桃| 2022亚洲国产成人精品| 日韩中字成人| 一级a做视频免费观看| 久久精品久久精品一区二区三区| 日韩免费高清中文字幕av| 少妇 在线观看| 老女人水多毛片| 久久毛片免费看一区二区三区| 边亲边吃奶的免费视频| 欧美一区二区亚洲| 蜜桃久久精品国产亚洲av| 亚洲精品日本国产第一区| 又黄又爽又刺激的免费视频.| 欧美三级亚洲精品| 搡老乐熟女国产| 韩国高清视频一区二区三区| av福利片在线观看| 最近最新中文字幕免费大全7| 国语对白做爰xxxⅹ性视频网站| av在线老鸭窝| 蜜臀久久99精品久久宅男| 国产综合精华液| 国产乱来视频区| 国产在线视频一区二区| 日韩不卡一区二区三区视频在线| 日韩免费高清中文字幕av| 免费少妇av软件| 久久久久久九九精品二区国产| 伦理电影免费视频| 亚洲不卡免费看| 欧美日韩综合久久久久久| 97超视频在线观看视频| 51国产日韩欧美| 久久亚洲国产成人精品v| 哪个播放器可以免费观看大片| 国产精品久久久久久av不卡| 成人一区二区视频在线观看| 一区在线观看完整版| 美女内射精品一级片tv| h视频一区二区三区| 蜜臀久久99精品久久宅男| 国产高清有码在线观看视频| 精品久久久噜噜| 国产乱人视频| 午夜福利视频精品| 久热这里只有精品99| 国产亚洲5aaaaa淫片| 啦啦啦中文免费视频观看日本| 亚洲美女搞黄在线观看| 国内少妇人妻偷人精品xxx网站| 美女xxoo啪啪120秒动态图| 极品教师在线视频| 国产免费福利视频在线观看| 成人漫画全彩无遮挡| 在线亚洲精品国产二区图片欧美 | 在线观看一区二区三区| 国产精品国产三级国产av玫瑰| 黄色怎么调成土黄色| 亚洲国产精品成人久久小说| 尤物成人国产欧美一区二区三区| 岛国毛片在线播放| 国产精品无大码| 少妇裸体淫交视频免费看高清| 麻豆乱淫一区二区| 赤兔流量卡办理| www.av在线官网国产| 精品熟女少妇av免费看| 汤姆久久久久久久影院中文字幕| 国内少妇人妻偷人精品xxx网站| 国产精品av视频在线免费观看| 舔av片在线| 99久久精品国产国产毛片| 香蕉精品网在线| 亚洲av中文字字幕乱码综合| 熟女电影av网| 成人黄色视频免费在线看| 麻豆国产97在线/欧美| 天天躁日日操中文字幕| 少妇熟女欧美另类| 黄色欧美视频在线观看| 亚洲成人av在线免费| 亚洲伊人久久精品综合| 天天躁日日操中文字幕| 久久精品国产亚洲av天美| 欧美激情国产日韩精品一区| 国产爱豆传媒在线观看| 欧美日韩精品成人综合77777| 国产高清国产精品国产三级 | 黄片wwwwww| 高清欧美精品videossex| 99久久精品一区二区三区| 国产真实伦视频高清在线观看| 久久午夜福利片| 久久婷婷青草| 3wmmmm亚洲av在线观看| 最近2019中文字幕mv第一页| 国产黄片美女视频| 国产精品精品国产色婷婷| 欧美高清性xxxxhd video| 三级国产精品欧美在线观看| 国产精品女同一区二区软件| 中文在线观看免费www的网站| 中文字幕av成人在线电影| 日本爱情动作片www.在线观看| videos熟女内射| 国产黄色免费在线视频| 亚洲高清免费不卡视频| 国产精品人妻久久久久久| 少妇人妻 视频| 在线 av 中文字幕| 不卡视频在线观看欧美| 国产国拍精品亚洲av在线观看| 日本黄色片子视频| 寂寞人妻少妇视频99o| 久久人人爽av亚洲精品天堂 | 国国产精品蜜臀av免费| 亚洲av在线观看美女高潮| 亚洲激情五月婷婷啪啪| 国产亚洲精品久久久com| 国产毛片在线视频| 久久人人爽人人爽人人片va| 亚洲美女搞黄在线观看| 国产精品福利在线免费观看| 男人和女人高潮做爰伦理| 99re6热这里在线精品视频| 99热网站在线观看| 亚洲精品456在线播放app| 亚洲欧美一区二区三区黑人 | 国产精品久久久久久久久免| 男人舔奶头视频| 国产成人a∨麻豆精品| a级一级毛片免费在线观看| 中文天堂在线官网| 欧美xxxx黑人xx丫x性爽| av专区在线播放| 在线观看一区二区三区| 少妇熟女欧美另类| av在线蜜桃| 日韩成人av中文字幕在线观看| 精品亚洲成国产av| 亚洲成人中文字幕在线播放| 老司机影院成人| 亚洲性久久影院| 成人国产av品久久久| 黄色怎么调成土黄色| 国产成人a区在线观看| 91aial.com中文字幕在线观看| 亚洲va在线va天堂va国产| 亚洲精品一二三| 精品一区二区免费观看| 免费看日本二区| 永久免费av网站大全| 91在线精品国自产拍蜜月| 大又大粗又爽又黄少妇毛片口| 亚洲成人中文字幕在线播放| 国产视频内射| 中文天堂在线官网| 99久久精品国产国产毛片| 国产在线视频一区二区| 99九九线精品视频在线观看视频| av专区在线播放| 精品一区二区免费观看| 久久久久久久大尺度免费视频| 久久久久久九九精品二区国产| 六月丁香七月| 日韩国内少妇激情av| 国产亚洲91精品色在线| 国产 一区 欧美 日韩| 日本与韩国留学比较| 国产亚洲精品久久久com| 亚洲欧美日韩东京热| 夫妻午夜视频| 国产 一区 欧美 日韩| 日本午夜av视频| 乱系列少妇在线播放| 久久久久久久久久人人人人人人| 成人漫画全彩无遮挡| 精品久久久噜噜| 精品国产三级普通话版| 国产精品久久久久久精品古装| 三级国产精品欧美在线观看| 一级毛片我不卡| 日日摸夜夜添夜夜添av毛片| 欧美国产精品一级二级三级 | 欧美三级亚洲精品| 国产成人免费无遮挡视频| 亚洲精华国产精华液的使用体验| 男女边吃奶边做爰视频| 99热这里只有是精品50| 七月丁香在线播放| 久久精品国产a三级三级三级| av在线观看视频网站免费| 久久国内精品自在自线图片| 老司机影院毛片| 人人妻人人添人人爽欧美一区卜 | 亚洲av男天堂| 99久久人妻综合| 中文欧美无线码| 国产精品一区www在线观看| 夫妻性生交免费视频一级片| 久久青草综合色| 国产午夜精品一二区理论片| 亚洲欧洲日产国产| 男女无遮挡免费网站观看| 久久久成人免费电影| 国产一级毛片在线| 男女啪啪激烈高潮av片| 老司机影院成人| 免费av不卡在线播放| 18禁在线播放成人免费| 97超碰精品成人国产| 啦啦啦在线观看免费高清www| 久久久久久久久久久丰满| 国产真实伦视频高清在线观看| 欧美精品亚洲一区二区| 22中文网久久字幕| 国产 精品1| 免费观看在线日韩| 天天躁日日操中文字幕| 一个人看的www免费观看视频| 一级毛片久久久久久久久女| 久久av网站| 国国产精品蜜臀av免费| 久久久精品免费免费高清| 日韩大片免费观看网站| 国产日韩欧美亚洲二区| 亚洲国产av新网站| 亚洲图色成人| 久久99热这里只有精品18| 热re99久久精品国产66热6| 永久免费av网站大全| 亚洲va在线va天堂va国产| 伦理电影大哥的女人| 搡老乐熟女国产| 国产欧美日韩精品一区二区| 亚洲婷婷狠狠爱综合网| 美女视频免费永久观看网站| 亚洲欧美成人精品一区二区| 这个男人来自地球电影免费观看 | 国产人妻一区二区三区在| 免费黄频网站在线观看国产| 成年美女黄网站色视频大全免费 | 亚洲经典国产精华液单| 国产精品一及| 人妻少妇偷人精品九色| 欧美+日韩+精品| 在线观看一区二区三区| 99久久精品国产国产毛片| 欧美高清成人免费视频www| 欧美bdsm另类| 国产亚洲精品久久久com| 18+在线观看网站| 婷婷色综合大香蕉| 亚洲欧美清纯卡通| 在线播放无遮挡| 我的女老师完整版在线观看| 最近的中文字幕免费完整| 色综合色国产| 人人妻人人添人人爽欧美一区卜 | 久久久国产一区二区| 免费黄频网站在线观看国产| 十分钟在线观看高清视频www | 偷拍熟女少妇极品色| 美女视频免费永久观看网站| h日本视频在线播放| 精品午夜福利在线看| 久久精品国产鲁丝片午夜精品| 国产精品福利在线免费观看| 免费观看性生交大片5| 国产精品一及| 人妻少妇偷人精品九色| 久久久久久久久久成人| 国产精品秋霞免费鲁丝片| 99久国产av精品国产电影| 亚洲国产日韩一区二区| 91久久精品国产一区二区成人| 少妇的逼水好多| 深夜a级毛片| 欧美精品一区二区大全| 婷婷色麻豆天堂久久| 男女国产视频网站| av黄色大香蕉| 免费人妻精品一区二区三区视频| 一级毛片我不卡| 久久久精品免费免费高清| 精品久久久久久久久亚洲| 国产在视频线精品| 国产在线视频一区二区| 国产成人免费无遮挡视频| 国产伦在线观看视频一区| 自拍欧美九色日韩亚洲蝌蚪91 | 97热精品久久久久久| 国产精品一区二区在线观看99| 毛片一级片免费看久久久久| 最近中文字幕2019免费版| 成人无遮挡网站| 夫妻性生交免费视频一级片| 免费观看的影片在线观看| 网址你懂的国产日韩在线| 六月丁香七月| 亚洲第一区二区三区不卡| 亚洲精品国产av成人精品| 亚洲第一区二区三区不卡| 男人和女人高潮做爰伦理| 身体一侧抽搐| 少妇 在线观看| freevideosex欧美| 成人二区视频| 日韩精品有码人妻一区| 亚洲图色成人| 五月玫瑰六月丁香| 欧美变态另类bdsm刘玥| 偷拍熟女少妇极品色| 伦精品一区二区三区| 久久久久久久精品精品| 国产白丝娇喘喷水9色精品| 六月丁香七月| 人体艺术视频欧美日本| 日韩亚洲欧美综合| 精品人妻偷拍中文字幕| 日韩一区二区三区影片| 少妇人妻一区二区三区视频| 狠狠精品人妻久久久久久综合| 亚洲欧洲国产日韩| av黄色大香蕉| 国产亚洲欧美精品永久| 久久婷婷青草| 深爱激情五月婷婷| 成人免费观看视频高清| 我要看黄色一级片免费的| 我的老师免费观看完整版| 精品一区二区三区视频在线| 国产精品国产三级专区第一集| 啦啦啦啦在线视频资源| 国内少妇人妻偷人精品xxx网站| 国产在视频线精品| 国产在线视频一区二区| 日日撸夜夜添| 狂野欧美激情性bbbbbb| 日本黄色日本黄色录像| 亚洲精品色激情综合| 中文字幕免费在线视频6| 亚洲激情五月婷婷啪啪| 高清欧美精品videossex| 岛国毛片在线播放| 深爱激情五月婷婷| 在线观看免费视频网站a站| 亚洲怡红院男人天堂| 国产精品久久久久久精品古装| 国产爱豆传媒在线观看| 国产在视频线精品| 久久久久久久久久久免费av| 久久人人爽av亚洲精品天堂 | 午夜激情久久久久久久| 久久精品国产亚洲av天美| 亚洲欧美日韩无卡精品| 午夜激情福利司机影院| 成人毛片60女人毛片免费| 日韩免费高清中文字幕av| 日本黄色日本黄色录像| 久久影院123| 男女无遮挡免费网站观看| 国产精品三级大全| 欧美+日韩+精品| 美女福利国产在线 | 超碰av人人做人人爽久久| 欧美老熟妇乱子伦牲交| 久久久精品94久久精品| 日韩电影二区| 丰满乱子伦码专区| 九草在线视频观看| av不卡在线播放| 久久久久久九九精品二区国产| 韩国高清视频一区二区三区| 亚洲国产av新网站| 成人一区二区视频在线观看| 视频中文字幕在线观看| av福利片在线观看| 国产 精品1| 亚洲精品久久久久久婷婷小说| 久久久久精品性色| 亚洲av欧美aⅴ国产| 国产片特级美女逼逼视频| 亚洲一区二区三区欧美精品| 极品教师在线视频| 免费不卡的大黄色大毛片视频在线观看| 日韩一区二区视频免费看| 天堂8中文在线网| av福利片在线观看| 精品人妻熟女av久视频| 亚洲精品日韩av片在线观看| av在线老鸭窝| 亚洲欧洲日产国产| 成人高潮视频无遮挡免费网站| 97热精品久久久久久| 国产高潮美女av| 欧美3d第一页| 一级毛片 在线播放| 亚洲av中文字字幕乱码综合| 亚洲欧美日韩卡通动漫| 日本黄大片高清| a级毛色黄片| 久久久久精品久久久久真实原创| 久久国产精品男人的天堂亚洲 | 性高湖久久久久久久久免费观看| 老司机影院成人| 国产精品成人在线| 伊人久久国产一区二区| 一级毛片电影观看| 看十八女毛片水多多多| 简卡轻食公司| 美女主播在线视频| 一级爰片在线观看| 一级二级三级毛片免费看| 夫妻性生交免费视频一级片| 国产美女午夜福利| 99热国产这里只有精品6| 久久久久久久亚洲中文字幕| 欧美少妇被猛烈插入视频| 看免费成人av毛片| 毛片女人毛片| 欧美日韩在线观看h| 尤物成人国产欧美一区二区三区| 精品一区在线观看国产| 亚洲成色77777| 国产精品一区www在线观看| av国产免费在线观看| 国产亚洲av片在线观看秒播厂| 日韩强制内射视频| 一个人看的www免费观看视频| 亚洲国产色片| 看非洲黑人一级黄片| 日本欧美视频一区| 精品少妇久久久久久888优播| 肉色欧美久久久久久久蜜桃| 日本黄色片子视频| 免费不卡的大黄色大毛片视频在线观看| 91精品一卡2卡3卡4卡| 国产精品久久久久久av不卡| 男女啪啪激烈高潮av片| 久久精品国产亚洲av天美| 亚洲国产欧美人成| 三级经典国产精品| 久久久久网色| 日韩伦理黄色片| 精品视频人人做人人爽| 日日摸夜夜添夜夜爱| 边亲边吃奶的免费视频| 欧美极品一区二区三区四区| 一级毛片 在线播放| 日本欧美视频一区| 成人国产麻豆网| 成人影院久久| 久久精品国产鲁丝片午夜精品| 成人国产麻豆网| 蜜桃久久精品国产亚洲av| 日本色播在线视频| 99热全是精品| 少妇人妻一区二区三区视频| 亚洲精品456在线播放app| 观看av在线不卡| 99久久人妻综合| 中国三级夫妇交换| 精品一区二区三卡| 久久ye,这里只有精品| 精品99又大又爽又粗少妇毛片| 欧美精品一区二区免费开放| 18禁动态无遮挡网站| 色婷婷av一区二区三区视频| 中文字幕亚洲精品专区| 哪个播放器可以免费观看大片| 国产精品久久久久成人av| 国产黄片视频在线免费观看| 国产在线视频一区二区| 一本久久精品| 男女边摸边吃奶| 如何舔出高潮| 黄片无遮挡物在线观看| 国产爽快片一区二区三区| 一本—道久久a久久精品蜜桃钙片| 国产高清三级在线| 亚洲精品国产色婷婷电影| 岛国毛片在线播放| 插阴视频在线观看视频| 亚洲av中文av极速乱| 免费黄网站久久成人精品| 丰满人妻一区二区三区视频av| 成人午夜精彩视频在线观看| 啦啦啦中文免费视频观看日本| 全区人妻精品视频| 狂野欧美白嫩少妇大欣赏| 欧美日韩视频精品一区| 国产在线一区二区三区精| 九色成人免费人妻av| 亚洲在久久综合| 一区二区三区乱码不卡18| 成人毛片a级毛片在线播放| 成年免费大片在线观看| 国内少妇人妻偷人精品xxx网站| 啦啦啦啦在线视频资源| 最黄视频免费看| 中文在线观看免费www的网站| 国产亚洲91精品色在线| 国产伦理片在线播放av一区| av卡一久久| 免费av不卡在线播放| 欧美成人a在线观看| 久久久久久久久久人人人人人人| av不卡在线播放| 欧美精品人与动牲交sv欧美| 久久精品国产亚洲网站| 91aial.com中文字幕在线观看| 99热这里只有精品一区| 国产成人免费观看mmmm| 亚洲三级黄色毛片| 99九九线精品视频在线观看视频| 岛国毛片在线播放| 日韩免费高清中文字幕av| 亚洲av欧美aⅴ国产| 热re99久久精品国产66热6| 国产精品av视频在线免费观看| 亚洲国产毛片av蜜桃av| 黑人猛操日本美女一级片| 亚洲久久久国产精品| 大片免费播放器 马上看| 大话2 男鬼变身卡| 久久99热6这里只有精品| 亚洲av成人精品一二三区| 国产高清三级在线| 成人影院久久| 国产精品一区二区三区四区免费观看| 日本欧美国产在线视频| 国内揄拍国产精品人妻在线| 日韩在线高清观看一区二区三区| 日韩亚洲欧美综合| www.色视频.com| 亚洲最大成人中文|