• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of two spirobifluorene derivatives containing arylamine groups in organic light emitting diodes and fluorescent probe for water

    2021-11-05 07:33:38QIULyumingLUYuhaoZHANGPengtingQINDongshengXIAOHaibo

    QIU Lyuming,LU Yuhao,ZHANG Pengting,QIN Dongsheng,XIAO Haibo

    (College of Chemistry and Materials Science,Shanghai Normal University,Shanghai 200234,China)

    Abstract: Two novel spirobifluorene derivatives(SPF-1 and SPF-2)incorporating arylamine groups were prepared.The fluorescent intensity of SPF-1 can be made to measure the water content of organic solvents.The detection limits are respectively estimated at 0.049%in tetrahydrofuran(THF)and 0.018%in 1,4-dioxane,which are superior to most reported results in the literature.The electroluminescence(EL)devices,where SPF-1 and SPF-2 serve as emitting materials,exhibit a peak around 506 nm with CIE coordinates of(0.24,0.48)for SPF-1 and dual band emissions at 471 and 502 nm with CIE coordinates of(0.31,0.54)for SPF-2,respectively.These devices showed excellent performance with low turn-on voltages and high thermal stability.The maximum brightness,maximum current efficiencies and power efficiencies are 1 660 cd·m-2,2.1 cd·A-1 and 1.28 lm·W-1 for SPF-1,and 1 653 cd·m-2,2.55 cd·A-1 and 1.23 lm·W-1 for SPF-2,respectively.

    Key words: fluorescent sensor;water content;electroluminescent property;spirobifluorene;arylamine;thermal stability

    1 Introduction

    During the last decades,great efforts have been focused on the development of novel electroluminescent materials with intense luminescent efficiency,high thermal and optical stability,desirable film morphology,and the fabrication of high-performance organic light emitting diodes(OLEDs)devices[1-5].Low molecular weight molecules are generally vacuum deposited as thin films in device fabrication.Therefore,film-forming properties and their temporal stability are prerequisite to the performance and longevity of devices.Amorphous materials possessing high glass transition temperatures(Tg)should be beneficial for forming glasses and avoiding crystal formation which leads to grain boundary problems.The 9,9′-spirobifluorene unit appears to be a very promising building block for the construction of high Tgmaterials for high performance electroluminescent devices[1,3,6].

    Water is a common impurity in many organic solvents that is usually detrimental to many chemical and industrial production processes,especially to electronics and fine chemicals.Thus,devising a convenient system for the detection of water content in organic solvents is very important,and is attracting more and more attentions in recent years[7].Although colorimetric,electrochemical,and chromatographic analytical methods,have been adopted to detect H2O,the fluorescence analysis stood out to be the most eye-catching one due to its low cost,high sensitivity,simple and fast detection.

    Arylamine units have been widely applied in OLEDs and organic field-effect transistors(OFETs)due to their easily oxidated nitrogen centers and their ability to transport charge carriers via the radical cation species with high stability[8].Additionally,a substantial number of non-linear materials and probes with arylamine as electron donor were also developed in recent years[8].Herein,two novel dyes were obtained,in which the spirobifluorene backbones wereπ-extented with the different arylamine units.The synthetic pathways are shown in figure 1.The probing behaviors toward water content variations were investigated.Multilayered organic light emitting diodes were fabricated by using two dyes as the emitting layer,respectively.

    2 Experimental

    2.1 Reagents and instruments

    The starting material 1 was prepared starting from 4,4′-dimethylbiphenyl according to our previous method[9].Melting points were determined with an XT-4A apparatus without corrected.Mass spectral studies were carried out using a VG12-250 mass spectrometer.1H NMR and13C NMR spectra were obtained on a Bruker DRX 400 MHz spectrometer.Chemical shifts were relative to a Me4Si standard.Elemental analyses were performed by Atlantic Microlab.Steady-state emission spectra were recorded on a Perkin Elmer LS55 instrument.Visible absorption spectra were determined on a Perkin Elmer Lambda 35 spectrophotometer.TGA/DTA measurements were performed at heating rate of 10℃·min-1in the temperature range of 25-600℃,under nitrogen flow of 10 mL·min-1by a Shimadzu DT-40.Approximately 10 mg of sample was placed in standard aluminum crucible(40μL).Reagents used are abbreviated as follows:toluene(TOL),THF,dichloromethane(DCM),dimethylsulfoxide(DMSO),dimethylformamide(DMF),ethyl acetate(EA).

    2.2 Preparation of 4,4′-(2′,7′-bis((E)-4-(dimethylamino)styryl)-9,9′-spirobifluorene-2,7-diyl)bis(N,N-diphenylaniline)(SPF-1)

    A mixture of 300 mg(0.57 mmol)4-((iodotriphenylphosphoranyl)-methyl)-N,N-dimethylaniline,14 mg NaH and 6 mL dried THF was stirred at 0℃in an ice-water bath for 30 min,and then a solution of compound 1(200 mg,0.23 mmol)in 8 mL THF was added dropwise.The reaction mixture was continually stirred for 5 h.The solvent was evaporated and 10 mL water was added.The resulting mixture was extracted with dichloromethane(10 mL×3).The organic layer was dried(MgSO4),concentrated,and purified by column chromatography(V(petroleum ether)∶V(dichloromethane)=2.5∶1)affording SPF-M as a yellow solid(145 mg,yield 58.7%).m.p.>280℃.1H NMR(400 MHz,CDCl3)∶7.96(d,2H,J=8.0 Hz),7.79(d,2H,J=8.0 Hz),7.66(d,2H,J=8.0 Hz),7.50(d,2H,J=12.0 Hz),7.35(d,4H,J=8.0 Hz),7.31(d,4H,J=8.0 Hz),7.22(m,8H),7.07(d,8H,J=8.0 Hz),7.00(m,10H),6.90(d,4H,J=16.0 Hz),6.79(d,2H,J=16.0 Hz),6.68(d,4H,J=8.0 Hz),2.96(s,12H),13C NMR(100 MHz,CDCl3)∶150.0,149.9,149.5,148.9,147.6,140.3,137.8,134.9,129.1,126.1,124.2,122.7,121.5,120.0,112.3,65.9,40.4.HRMS(TOF MS ESI+)m/z∶calculated for C81H65N4(M+H+)∶1 093.520 9;found:1 093.522 0.

    2.3 Preparation of 4,4′-(2′,7′-bis((E)-4-(diphenylamino)styryl)-9,9′-spirobifluorene-2,7-diyl)bis(N,N-diphenylaniline)(SPF-2)

    A mixture of 240 mg(0.25 mmol)compound 1,647 mg(1 mmol)4-((iodotriphenylphosphoranyl)methyl)-N,N-diphenylaniline,60 mg(1.5 mmol)NaH and 5 mL dried THF was stirred at 0℃in an icewater bath for 24 h.The solvent was evaporated,and the residue was subjected to column chromatography on silica gel eluenting with petroleum ether and dichloromethane(V(petroleum ether)∶V(dichloromethane)is 4∶1 to 1∶2)to give 160 mg yellow solid(yield 8%).m.p.=165-167℃.1H NMR(400 MHz,CDCl3)δ7.86(d,J=8.0 Hz,2H),7.72(d,J=8.0 Hz,2H),7.56(d,J=8.0 Hz,2H),7.43(d,J=8.0 Hz,2H),7.26(d,J=12.0 Hz,4H),7.19-7.10(m,20H),7.00-6.88(m,32H),6.88(s,2H),6.83(s,2H),6.79(d,J=4.0 Hz,4H).13C NMR(100 MHz,CDCl3)∶150.3,150.0,149.6,149.0,147.8,141.3,137.6,135.0,129.4,126.6,124.7,122.8,121.8,120.3,112.4,66.3.HRMS(MALDI-TOF)m/z∶calculated for C101H72N4(M+H+)∶1 341.579 1;found:1 341.571 6.

    2.4 OLEDs fabrication and characterization[10]

    Commercial indium tin oxide(ITO)coated glass with sheet resistance of 10Ω·sq-1was used as the starting substrates.Before device fabrication,the ITO glass substrates were precleaned through ultrasonic bath in ethanol and acetone,respectively,washed by special active detergent,dried at 120℃,and then treated by oxygen plasma for 2 min.All layers were grown by thermal evaporation in a high vacuum system with pressure of less than 5×10-4Pa without breaking the vacuum.In the deposition of the doping layers,deposition rates of both host and guest were controlled with their correspondingly independent quartz crystal oscillators.The evaporation rates were monitored by frequency counter,and calibrated by Dektak 6 mol·L-1Profiler(Veeco).The overlap between ITO and Al electrodes was 4 mm×4 mm as the active emissive area of the devices.Current density-voltage brightness characteristics were measured by using a Keithley source measurement unit(Keithley 2400 and Keithley 2000)with a calibrated silicon photodiode.The EL spectra were measured by JY SPEX CCD3000 spectrometer.Four testing points for each device were made under the same experimental conditions.All the measurements were carried out in ambient conditions without encapsulation soon after the devices being taken out of the vacuum.The medial experimental data were selected among the four testing points.

    3 Rusults and discussions

    3.1 Optical properties

    Photophysical properties of SPF-1 and SPF-2 were analyzed using the UV-vis and photoluminescence(PL)spectrometers.Figure 2 shows the UV-vis and PL spectra of SPF-1 in different solvents.SPF-1 exhibits two distinct absorption bands at 300 nm and 382 nm,with a few shoulder bands at the low energy region(>400 nm).The absorbance bands located at about 300 nm are mainly attributed to n-π*transitions derived from the triphenylamine unit[11-12],whereas the strong absorption peaks around 382 nm result from theπ-π*transition of the aromatic amine-capped biphenyl branches[13-15].The emission spectra of SPF-1 showed strong solvent-polarity dependence.In toluene solution,SPF-1 exhibits an intense emission at 458 nm.When the polarity of the solvent increases,the emission peaks were shifted to the longer wavelength accompanied by the decrease of the fluorescence quantum yield(table 1).

    Figure 1 The synthesis routes of SPF-1 and SPF-2(THF is the abbreviation of tetrahydrofuran)

    Figure 2 One-photon absorption(normalized)and fluorescent emission spectra of SPF-1 in different solvents(concentration is 10μmol·L-1)

    Figure 3 On e-photon absorption(normalized)and fluorescent emission spectra of SPF-2 in different solvents(concentration is 10μmol·L-1)

    Figure 4 Changes in one-photon(a)absorption spectra and(b)fluorescence spectra(excited at 380 nm)of SPF-1 as a function of water content in THF([SPF-1]=1.0×10-5 mol·L-1)

    Figure 5 Changes in on e-photon(a)absorption spectra and(b)fluorescence spectra(excited at 380 nm)of SPF-1 as a function of water content in 1,4-dioxane(mole concentration of SPF-1 is 1.0×10-5 mol·L-1)

    Figure 6 The relationship between fluorescence peak intensities of SPF-1 and water content in the organic solvents.(a)THF;(b)1,4-dioxane(mole concentration of SPF-1 is 3.6×10-6 mol·L-1,λexc=380 nm)

    Figure 7 TGA and DTA curve of(a)SPF-1 and(b)SPF-2

    The results can be explained by the highly charged excited states of SPF-1 due to the photoinduced charge transfer process[16].The absorption and emission behaviors of SPF-2 are very similar to that of SPF-1(figure 3).The results can be seen from table 1.The solvatochromic effect of SPF-1 is larger than that of SPF-2,indicating higher polar character of SPF-1[1].

    Table 1 Linear optical properties of SPF-1 and SPF-2

    3.2 Sensing properties

    Because the spectral changes induced by the addition of water content in THF and 1,4-dioxane,SPF-1 could be used as a probe to measure the water content in these common organic solvents.

    As shown in figure 4,the absorption spectra of SPF-1 undergo only small changes on changing the solvents from THF to THF containing 2%(volume fraction)water.Upon the increasing of water content from 2%(volume fraction)to 70%(volume fraction),the values of the molar absorptivity were decreased significantly,together with an isosbestic point at 440 nm[12].In the corresponding fluorescence spectra,the values of the relative fluorescence intensity decreased with a red shift from 490 nm to 510 nm.The similar changes in both absorption and fluorescence spectra were also observed in 1,4-dioxane medium.

    Furthermore,the detection limit(DL)values of SPF-1 for water were calculated by the following equation[13]:DL is 3σs/ms,whereσsis the standard deviation of blank sample andmsis the slope of calibration curve(figure 4,figure 5)in the region of the low water content(below volume fraction 1.0%).The DL values are calculated about 0.049%in THF and 0.018%in 1,4-dioxane,which are superior to most reported results in the literature[17-19].

    The fluorescence intensities were plotted against the water fraction in both organic solvents.As shown in figure 6,the fluorescence intensities of SPF-1 in both THF and 1,4-dioxane solutions were decreased linearly in certain range of water content.The calibration curves for the determination of water in organic solvents were calculated as follows[14]:

    THF:F=2 226-138C,Cis the volume fraction of H2O(0~1.60%),R2=0.995 8,as shown in figure 6(a).

    1,4-dioxane:F=3186-540C,Cis the volume fraction of H2O(0~1.20%),R2=0.993 3,as shown in figure 6(b).

    The fluorescence quenching phenomenons of SPF-1 were also observed when the high polar solvent DMSO was added to the solutions of SPF-1 in both THF and 1,4-dioxane solutions instead of water.According to the results,it is reasonable to presume here that the spectra response of SPF-1 to varying water content is attributable to the water-induced increase of solvents polarity[15].

    In the THF and 1,4-dioxane solutions,the corresponding absorption and emission spectra of SPF-2 exhibit the less pronounced changes with varying water contents.The results may be assigned to the weak solvatochromic effect of SPF-2.

    3.3 Thermal properties

    The thermal properties of these spirobifluorene derivatives were characterized with DTA and TGA in the nitrogen atmosphere(figure 7).An obvious exothermic peak(Tc)due to crystallization of SPF-1 was observed at 340℃.On the other hand,SPF-2 exhibited a glass transition process(Tg)at 295℃.

    As shown in figure 7,the thermal properties of SPF-1 and SPF-2 are similar.In the first stage(0-200℃),the weight loss curve is gentle,and the mass loss of the compound is mainly due to the escape of adsorbed water and residual solvent.In the second stage(200-400℃),the mass loss of the compound becomes faster due to the decomposition of aromatic amine parts and double bonds.In the third stage(400-700℃),the mass of the compound is rapidly lost,and the spirofluorene carbon skeleton begins to decompose.The compound is completely decomposed until 800℃.The decomposition temperature(Td,temperature at which 5%mass loss occurs during heating)were found at 290℃for SPF-1 and 320℃for SPF-2,respectively.The Tcof SPF-1 and Tgof SPF-2 are both higher compared to the previous reports[20-21].The results support our anticipation that the incorporation of spirobifluorene is beneficial to raising the thermally stability of the small molecules[1].The high thermal stabilities of SPF-1 and SPF-2 implicated that they could form morphologically stable and uniform amorphous films upon thermal evaporation,which were highly important to improve the efficiency and lifetime of OLEDs[6].

    3.4 Electroluminescence(EL)properties

    In order to explore the emitting characteristics of SPF-1 and SPF-2,we have fabricated a type of OLEDs device,consisting of ITO/molybdenum trioxide(MoO3)(10 nm),4,4′-bis(N-(1-naphthyl)-N-phenyl)biphenyldiamine(NPB)(70 nm),emitting layer(20 nm),1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene(TPBi)(30 nm),LiF(1 nm),Al(100 nm).MoO3was used as the hole injection layer(HIL),NPB was used as the hole transporting layer(HTL),SPF-1 and SPF-2 were used as the emitting layers(EML),TPBi was used as the electron transporting layer(ETL),and Li F was used as the electron injection layer(EIL),respectively[5].Figure 8 shows the current density-voltage-luminance characteristics,and figure 9 is the power efficiency vs current density characteristics of two devices.

    Figure 8 The current density-voltage-luminance characteristics of the devices for(a)SPF-1 and(b)SPF-2

    Figure 9 The current density-voltage-l uminance characteristics of the devices for(a)SPF-1 and(b)SPF-2

    Figure 10 EL spectra of the devices for(a)SPF-1 and(b)SPF-2

    Figure 11 EL spectrum of SPF-1 and SPF-2 with the corresponding color placed on the CIE-1931 chromaticity diagram

    Table 2 EL performance of SPF-1 and SPF-2

    The EL performances of two devices are summarized in table 2.The maximum luminance,maximum current and power efficiencies of SPF-1 were respectively determined as 1 796 cd·m-2(at 15.5 V),2.09 cd·A-1,1.28 lm·W-1.The obtained device has an onset voltage(defined as the voltage required to obtain a luminance of 1 cd·m-2)of 5.3 V.On the other hand,SPF-2 shows the higher maximum current efficiency of 2.55 cd·A-1,the lower onset voltage of 3.5 V,and the higher maximum luminance of 1 820 cd·m-2(at 13.5 V)than that of SPF-1.The maximum power efficiency of SPF-2 is calculated at 1.23 lm·W-1.

    The EL spectra of SPF-1 showed an emission peak at 506 nm(figure 10(a))[22].For SPF-2,the dual band electroluminescent emissions at 471 nm and 502 nm were observed as shown in figure 10(b).The chromatic coordinates calculated from the EL spectra in the CIE1931 chromaticity diagram are(0.24,0.48)for SPF-1 and(0.31,0.54)for SPF-1(figure 11).Moreover,the EL spectra show no difference between their performance over a wide range of operation conditions(figure 10),suggesting the good EL stability of both compounds.

    4 Conclusion

    In summary,we have developed two novel spirobifluorene derivatives containing aromatic amine groups.SPF-1 can be applied as the fluorescent sensor for measuring water content in both THF and 1,4-dioxane.The detection limits of SPF-1 for water were about 0.049%and 0.018%in both solvents that were superior to most reported results in the literature.Furthermore,both compounds can be used as emission layer in the OLEDs that output good EL performance.Because SPF-1 and SPF-2 exhibit very high thermal stability in above devices,this work has provided an efficient strategy for design stable emission layer materials of OLEDs based on the introduction of spirobifluorene segment.

    国产亚洲欧美98| 国产欧美日韩一区二区精品| 成年免费大片在线观看| 国产探花在线观看一区二区| 国产老妇女一区| 人人妻人人澡欧美一区二区| 丰满人妻一区二区三区视频av| 成人漫画全彩无遮挡| 亚洲精品国产av成人精品 | 国产精品一区二区三区四区免费观看 | 亚洲精品成人久久久久久| 久久久久久久午夜电影| 午夜爱爱视频在线播放| 麻豆一二三区av精品| 亚洲电影在线观看av| 男女做爰动态图高潮gif福利片| 久久精品综合一区二区三区| 久久久国产成人免费| 国产av一区在线观看免费| 亚洲性久久影院| 日韩一本色道免费dvd| 国产精品人妻久久久影院| 亚洲婷婷狠狠爱综合网| 精品久久久久久成人av| 三级经典国产精品| 男女下面进入的视频免费午夜| 俄罗斯特黄特色一大片| 亚洲一区高清亚洲精品| 国产成人freesex在线 | 欧美国产日韩亚洲一区| 免费av不卡在线播放| 欧美bdsm另类| 丝袜美腿在线中文| 久久午夜福利片| 搡老岳熟女国产| 白带黄色成豆腐渣| 欧美日韩一区二区视频在线观看视频在线 | 高清日韩中文字幕在线| 亚洲最大成人av| 免费大片18禁| 乱人视频在线观看| 亚洲av一区综合| av视频在线观看入口| 亚洲精品久久国产高清桃花| 亚洲欧美日韩高清专用| 久久九九热精品免费| 高清毛片免费观看视频网站| 一区二区三区四区激情视频 | 人妻少妇偷人精品九色| 精品99又大又爽又粗少妇毛片| 欧美潮喷喷水| 欧美不卡视频在线免费观看| 亚洲欧美精品自产自拍| 97碰自拍视频| 菩萨蛮人人尽说江南好唐韦庄 | 男人和女人高潮做爰伦理| 春色校园在线视频观看| 97超级碰碰碰精品色视频在线观看| 天堂影院成人在线观看| 黄色配什么色好看| 99国产极品粉嫩在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 一级黄片播放器| 校园春色视频在线观看| 精品久久久噜噜| 可以在线观看毛片的网站| 老熟妇乱子伦视频在线观看| 22中文网久久字幕| 国产精品av视频在线免费观看| 精品久久久久久久久av| 综合色丁香网| videossex国产| 成人二区视频| 日本一本二区三区精品| 啦啦啦韩国在线观看视频| 国产亚洲精品av在线| 不卡视频在线观看欧美| 亚洲人成网站在线播放欧美日韩| av在线蜜桃| 国产三级在线视频| 97超视频在线观看视频| 免费看美女性在线毛片视频| 激情 狠狠 欧美| 久久精品国产亚洲av涩爱 | 亚洲第一电影网av| 大又大粗又爽又黄少妇毛片口| 国产伦一二天堂av在线观看| 精品不卡国产一区二区三区| 精品午夜福利在线看| 日本欧美国产在线视频| 中国美白少妇内射xxxbb| 久久欧美精品欧美久久欧美| 听说在线观看完整版免费高清| 秋霞在线观看毛片| 黄色一级大片看看| 免费电影在线观看免费观看| 精品人妻熟女av久视频| 欧美最黄视频在线播放免费| 99久久九九国产精品国产免费| 男人的好看免费观看在线视频| 97超级碰碰碰精品色视频在线观看| 久久久久久久久久久丰满| 午夜日韩欧美国产| 国内少妇人妻偷人精品xxx网站| 亚洲熟妇中文字幕五十中出| 高清毛片免费观看视频网站| 一本精品99久久精品77| 日韩,欧美,国产一区二区三区 | 亚洲电影在线观看av| 少妇人妻一区二区三区视频| 淫秽高清视频在线观看| 午夜激情欧美在线| 成人欧美大片| 免费观看在线日韩| 看非洲黑人一级黄片| 日本爱情动作片www.在线观看 | 国产黄片美女视频| 午夜影院日韩av| 免费电影在线观看免费观看| 久久久久久国产a免费观看| 欧美激情在线99| 国产黄色视频一区二区在线观看 | 成人漫画全彩无遮挡| 麻豆av噜噜一区二区三区| 成人高潮视频无遮挡免费网站| 在线观看一区二区三区| 亚洲av免费高清在线观看| 大又大粗又爽又黄少妇毛片口| 天天躁夜夜躁狠狠久久av| 黄色视频,在线免费观看| 啦啦啦啦在线视频资源| 成人亚洲欧美一区二区av| 国产精品免费一区二区三区在线| 久久久久性生活片| 亚洲av五月六月丁香网| 国产亚洲91精品色在线| 男人狂女人下面高潮的视频| 国产亚洲精品久久久久久毛片| 国产男人的电影天堂91| 国产亚洲欧美98| 色综合色国产| 国产精品,欧美在线| 麻豆成人午夜福利视频| 又黄又爽又免费观看的视频| 亚洲18禁久久av| 国产精品美女特级片免费视频播放器| 日本熟妇午夜| 日本精品一区二区三区蜜桃| 日韩 亚洲 欧美在线| 日韩成人伦理影院| 国产蜜桃级精品一区二区三区| 春色校园在线视频观看| 亚洲,欧美,日韩| 亚洲欧美成人综合另类久久久 | 俄罗斯特黄特色一大片| av视频在线观看入口| 国内少妇人妻偷人精品xxx网站| www日本黄色视频网| 亚洲av成人av| 免费人成视频x8x8入口观看| 国产真实乱freesex| 精品久久久久久久久久久久久| 国产伦一二天堂av在线观看| 天天躁夜夜躁狠狠久久av| 综合色丁香网| 精品一区二区三区av网在线观看| 2021天堂中文幕一二区在线观| 69av精品久久久久久| 午夜久久久久精精品| 精品人妻偷拍中文字幕| 男女视频在线观看网站免费| 日韩一区二区视频免费看| 国产精品福利在线免费观看| 男人的好看免费观看在线视频| 看片在线看免费视频| av国产免费在线观看| 亚洲精品国产av成人精品 | 国产男人的电影天堂91| 久久草成人影院| 成人亚洲欧美一区二区av| 九色成人免费人妻av| 卡戴珊不雅视频在线播放| 午夜激情福利司机影院| 看片在线看免费视频| 久久久久免费精品人妻一区二区| 日韩,欧美,国产一区二区三区 | 久久久a久久爽久久v久久| 亚洲欧美日韩东京热| 大型黄色视频在线免费观看| 狂野欧美激情性xxxx在线观看| 精品欧美国产一区二区三| 亚洲不卡免费看| 免费看光身美女| 亚洲精品亚洲一区二区| 亚洲性夜色夜夜综合| 美女cb高潮喷水在线观看| 啦啦啦啦在线视频资源| 色av中文字幕| 亚洲成人久久爱视频| 97热精品久久久久久| 又爽又黄无遮挡网站| 亚洲图色成人| 18禁在线无遮挡免费观看视频 | 欧美日韩国产亚洲二区| 一级a爱片免费观看的视频| 欧美成人a在线观看| 精品久久久噜噜| 人人妻人人澡欧美一区二区| 日本爱情动作片www.在线观看 | 97超视频在线观看视频| 在线观看午夜福利视频| av国产免费在线观看| 天天躁日日操中文字幕| 熟女人妻精品中文字幕| 日韩强制内射视频| 亚洲av免费在线观看| 国产一区二区在线av高清观看| 久久久久国内视频| 欧美激情在线99| 免费观看的影片在线观看| 亚洲图色成人| 国产探花在线观看一区二区| a级毛色黄片| 久久草成人影院| 欧美日本视频| 国产激情偷乱视频一区二区| 天天一区二区日本电影三级| 国产免费男女视频| 我的老师免费观看完整版| 1000部很黄的大片| 成人特级黄色片久久久久久久| 搡女人真爽免费视频火全软件 | 嫩草影视91久久| 91av网一区二区| 亚洲最大成人av| 最新在线观看一区二区三区| 男女那种视频在线观看| 99热全是精品| 一个人看的www免费观看视频| 亚洲精品在线观看二区| 日本 av在线| 两个人视频免费观看高清| 卡戴珊不雅视频在线播放| 国产日本99.免费观看| 91精品国产九色| 欧美潮喷喷水| 欧美高清成人免费视频www| 身体一侧抽搐| 国产精品三级大全| 18禁裸乳无遮挡免费网站照片| 免费看av在线观看网站| 日韩欧美在线乱码| 我的老师免费观看完整版| 99热只有精品国产| 久久久久久大精品| 一边摸一边抽搐一进一小说| 午夜福利视频1000在线观看| 日韩 亚洲 欧美在线| 国产aⅴ精品一区二区三区波| 少妇熟女aⅴ在线视频| 久久精品91蜜桃| 久久99热这里只有精品18| 国产成人福利小说| 在现免费观看毛片| 国产精品久久久久久久久免| 18+在线观看网站| 午夜福利在线观看免费完整高清在 | 久久久久久伊人网av| 久久午夜福利片| 女人被狂操c到高潮| 国产精品久久久久久久久免| 精品熟女少妇av免费看| 有码 亚洲区| 老司机午夜福利在线观看视频| 国产毛片a区久久久久| 自拍偷自拍亚洲精品老妇| 床上黄色一级片| 欧美色欧美亚洲另类二区| 色综合色国产| 有码 亚洲区| 欧美3d第一页| 亚洲经典国产精华液单| 成人国产麻豆网| 国产成人影院久久av| 国产精品一区二区免费欧美| 此物有八面人人有两片| 舔av片在线| 久久久国产成人精品二区| 日本熟妇午夜| 日韩欧美一区二区三区在线观看| 99久国产av精品国产电影| 久久久欧美国产精品| 亚洲乱码一区二区免费版| 日日干狠狠操夜夜爽| 日本三级黄在线观看| 国产熟女欧美一区二区| 亚洲18禁久久av| 在线免费观看不下载黄p国产| 国产免费男女视频| 最新中文字幕久久久久| 日本一二三区视频观看| 久久久久久久亚洲中文字幕| 国产一级毛片七仙女欲春2| 国产成人福利小说| 国产黄色视频一区二区在线观看 | 一级毛片久久久久久久久女| 老司机午夜福利在线观看视频| 人妻制服诱惑在线中文字幕| 亚洲美女视频黄频| 国产亚洲av嫩草精品影院| 在线播放无遮挡| 精品久久久久久久久亚洲| 国产精品久久视频播放| 欧美高清性xxxxhd video| 在线观看66精品国产| 免费电影在线观看免费观看| 简卡轻食公司| 久久久久久久久久成人| 少妇人妻一区二区三区视频| 欧美zozozo另类| 极品教师在线视频| 日本熟妇午夜| 久久精品夜夜夜夜夜久久蜜豆| 女人十人毛片免费观看3o分钟| 午夜福利成人在线免费观看| 国产白丝娇喘喷水9色精品| 久久99热这里只有精品18| 午夜老司机福利剧场| 国产激情偷乱视频一区二区| 美女免费视频网站| 卡戴珊不雅视频在线播放| 丝袜喷水一区| 国内少妇人妻偷人精品xxx网站| 日产精品乱码卡一卡2卡三| а√天堂www在线а√下载| 99久久成人亚洲精品观看| 国产极品精品免费视频能看的| or卡值多少钱| av在线老鸭窝| 1000部很黄的大片| 国产一区二区三区在线臀色熟女| 成年av动漫网址| 国产极品精品免费视频能看的| 免费观看人在逋| 亚洲不卡免费看| 国产又黄又爽又无遮挡在线| 日本-黄色视频高清免费观看| 精品久久久久久久久av| 日韩 亚洲 欧美在线| 熟妇人妻久久中文字幕3abv| 国产av在哪里看| av在线播放精品| 日本三级黄在线观看| 老熟妇仑乱视频hdxx| 国产精品三级大全| 麻豆乱淫一区二区| 伦精品一区二区三区| 婷婷色综合大香蕉| 男女视频在线观看网站免费| 国产在线精品亚洲第一网站| 亚洲第一区二区三区不卡| or卡值多少钱| 91精品国产九色| 国产极品精品免费视频能看的| 国产男人的电影天堂91| 亚洲成人久久爱视频| 欧美激情久久久久久爽电影| 黄片wwwwww| 99riav亚洲国产免费| 小蜜桃在线观看免费完整版高清| 五月伊人婷婷丁香| 日韩欧美精品免费久久| 精品久久久久久久久久免费视频| av中文乱码字幕在线| 插阴视频在线观看视频| 精品国内亚洲2022精品成人| 美女大奶头视频| 好男人在线观看高清免费视频| 国产探花在线观看一区二区| 看非洲黑人一级黄片| 国产成人影院久久av| 国产亚洲精品综合一区在线观看| 亚洲国产精品sss在线观看| 99久久无色码亚洲精品果冻| 天堂网av新在线| 色在线成人网| 毛片女人毛片| 久久亚洲国产成人精品v| 国产成人91sexporn| 51国产日韩欧美| 亚洲成人av在线免费| a级毛片a级免费在线| 亚洲久久久久久中文字幕| 老熟妇仑乱视频hdxx| 日本爱情动作片www.在线观看 | 一区福利在线观看| 精品欧美国产一区二区三| 国产成人freesex在线 | 午夜精品一区二区三区免费看| 亚洲精品亚洲一区二区| 最近手机中文字幕大全| 欧美高清成人免费视频www| eeuss影院久久| 一本一本综合久久| 免费看光身美女| 国产av不卡久久| 一卡2卡三卡四卡精品乱码亚洲| 亚洲激情五月婷婷啪啪| 日日干狠狠操夜夜爽| 日本熟妇午夜| 欧美性猛交╳xxx乱大交人| 淫妇啪啪啪对白视频| 97超视频在线观看视频| 日本撒尿小便嘘嘘汇集6| av中文乱码字幕在线| 久久人人爽人人片av| 日韩一本色道免费dvd| 好男人在线观看高清免费视频| 人人妻人人澡人人爽人人夜夜 | 中国美女看黄片| 成人综合一区亚洲| 成人国产麻豆网| 国产黄色视频一区二区在线观看 | 欧美bdsm另类| 一本久久中文字幕| 在线国产一区二区在线| 亚洲av美国av| 蜜桃亚洲精品一区二区三区| 成人毛片a级毛片在线播放| 亚洲欧美日韩卡通动漫| 国产探花在线观看一区二区| 九九久久精品国产亚洲av麻豆| 99热6这里只有精品| 欧美绝顶高潮抽搐喷水| 天堂动漫精品| 特大巨黑吊av在线直播| 精品一区二区三区人妻视频| 乱人视频在线观看| 青春草视频在线免费观看| 国产不卡一卡二| 99热全是精品| 在线a可以看的网站| 超碰av人人做人人爽久久| 大又大粗又爽又黄少妇毛片口| 日韩制服骚丝袜av| 性欧美人与动物交配| 国产极品精品免费视频能看的| 亚洲欧美日韩卡通动漫| 波多野结衣巨乳人妻| 波多野结衣高清作品| 又爽又黄无遮挡网站| 久久精品人妻少妇| 国产精品久久久久久av不卡| 国产精品不卡视频一区二区| 免费av毛片视频| 校园春色视频在线观看| 97碰自拍视频| 国产亚洲精品久久久com| 中文在线观看免费www的网站| 国内精品一区二区在线观看| 久久久精品94久久精品| 日本熟妇午夜| 国产黄a三级三级三级人| 国产大屁股一区二区在线视频| 五月伊人婷婷丁香| 桃色一区二区三区在线观看| 12—13女人毛片做爰片一| 99riav亚洲国产免费| 免费无遮挡裸体视频| 99九九线精品视频在线观看视频| 黄色欧美视频在线观看| 欧美bdsm另类| 91精品国产九色| 日本五十路高清| 99久久精品国产国产毛片| 看十八女毛片水多多多| а√天堂www在线а√下载| 亚洲欧美成人精品一区二区| 国国产精品蜜臀av免费| 日本一本二区三区精品| 18禁黄网站禁片免费观看直播| 国产中年淑女户外野战色| 一进一出抽搐gif免费好疼| 男插女下体视频免费在线播放| 欧美激情久久久久久爽电影| 国产精品女同一区二区软件| 亚洲中文日韩欧美视频| 麻豆国产97在线/欧美| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美精品v在线| 少妇人妻精品综合一区二区 | 精品久久久噜噜| 草草在线视频免费看| 亚洲欧美精品综合久久99| 日日啪夜夜撸| 51国产日韩欧美| 国内少妇人妻偷人精品xxx网站| 国产片特级美女逼逼视频| 人妻夜夜爽99麻豆av| 国产亚洲av嫩草精品影院| 欧美三级亚洲精品| 久久国内精品自在自线图片| 成人亚洲欧美一区二区av| 亚洲aⅴ乱码一区二区在线播放| 伊人久久精品亚洲午夜| 成人漫画全彩无遮挡| 国产亚洲精品av在线| 激情 狠狠 欧美| 国产精品野战在线观看| 国产一区二区在线av高清观看| 国产在线精品亚洲第一网站| 国产精品免费一区二区三区在线| 欧美国产日韩亚洲一区| avwww免费| 99热这里只有精品一区| www日本黄色视频网| 蜜桃亚洲精品一区二区三区| 国产真实伦视频高清在线观看| 啦啦啦啦在线视频资源| 日韩欧美精品v在线| 一级av片app| 国产 一区精品| 性欧美人与动物交配| 日韩欧美精品v在线| 又爽又黄无遮挡网站| av中文乱码字幕在线| 久久人人爽人人片av| 欧美又色又爽又黄视频| 99热6这里只有精品| 99国产极品粉嫩在线观看| 夜夜夜夜夜久久久久| 日韩欧美精品v在线| 免费看日本二区| 国产不卡一卡二| 久久精品国产亚洲av天美| 精品一区二区免费观看| 免费黄网站久久成人精品| avwww免费| 国内久久婷婷六月综合欲色啪| 99热网站在线观看| 人妻丰满熟妇av一区二区三区| 国产精品三级大全| 日日摸夜夜添夜夜添av毛片| 免费观看人在逋| 久久久久久久久久成人| 69人妻影院| 白带黄色成豆腐渣| 久久天躁狠狠躁夜夜2o2o| 久久亚洲国产成人精品v| 九色成人免费人妻av| 国产亚洲精品综合一区在线观看| 亚洲自偷自拍三级| 国产探花在线观看一区二区| 香蕉av资源在线| av在线老鸭窝| 国产一区二区在线av高清观看| 亚洲欧美成人精品一区二区| 欧美性猛交╳xxx乱大交人| 国产毛片a区久久久久| 日韩av在线大香蕉| 免费av不卡在线播放| 成人午夜高清在线视频| 精品福利观看| 欧美xxxx黑人xx丫x性爽| 插逼视频在线观看| 99久国产av精品国产电影| 精品不卡国产一区二区三区| 国产成人a∨麻豆精品| 国产高清不卡午夜福利| 一边摸一边抽搐一进一小说| 国产视频一区二区在线看| 午夜福利视频1000在线观看| 91久久精品电影网| 亚洲国产色片| 亚洲精品亚洲一区二区| 中文字幕精品亚洲无线码一区| 神马国产精品三级电影在线观看| 久久精品夜色国产| ponron亚洲| aaaaa片日本免费| 成人三级黄色视频| 欧美成人精品欧美一级黄| www日本黄色视频网| 蜜桃久久精品国产亚洲av| 久久精品国产亚洲av香蕉五月| 国产大屁股一区二区在线视频| 国产一区二区在线av高清观看| 亚洲欧美日韩东京热| 欧美zozozo另类| 欧美最新免费一区二区三区| 一本久久中文字幕| 精品人妻偷拍中文字幕| 最新在线观看一区二区三区| 丰满的人妻完整版| 国产色爽女视频免费观看| 九九热线精品视视频播放| 成人永久免费在线观看视频| 卡戴珊不雅视频在线播放| 高清午夜精品一区二区三区 | 国产精品一区www在线观看| 男女啪啪激烈高潮av片| 欧美成人精品欧美一级黄| 草草在线视频免费看| 中文字幕久久专区| АⅤ资源中文在线天堂| 日韩欧美在线乱码| 亚洲高清免费不卡视频| 一进一出抽搐gif免费好疼| 色视频www国产| 少妇丰满av| 精品一区二区三区av网在线观看| 国产精品日韩av在线免费观看| 搞女人的毛片| 中国美女看黄片| 男女啪啪激烈高潮av片|