• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Functionalized multi-walled carbon nanotubes reinforced coating for metal protection

    2021-11-05 07:33:34JIANGYueyueLIShoutingFANJuanjuanLIUZequnGUOXiaoyuYINGYeYANGHaifeng

    JIANG Yueyue,LI Shouting,F(xiàn)AN Juanjuan,LIU Zequn,GUO Xiaoyu,YING Ye,YANG Haifeng

    (College of Chemistry and Materials Science,Shanghai Normal University,Shanghai 200234,China)

    Abstract: Polydopamine(PDA)layers were wrapped over functionalized multi-walled carbon nanotubes(PDA@FMWCNT)by the spontaneous oxidative polymerization of dopamine.PDA@FMWCNT-based composites film was constructed at the surface of copper(Cu)by taking advantage of the easy attachment capability of PDA.The structure of composites material was characterized by Raman spectroscopy,F(xiàn)ourier transform infrared(FT-IR)spectroscopy,X-ray photoelectron spectroscopy(XPS),and scanning electron microscopy(SEM).The protection performance of PDA@FMWCNT for the metal in saline solution was evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy(EIS).Consequently,PDA@FMWCNT composites film showed excellent corrosion inhibition and the protection mechanism was depicted in detail.

    Key words: polydopamine(PDA);multi-walled carbon nanotubes(MWCNT);corrosion protection;composites film

    1 Introduction

    Huge economic losses and major casualties would be caused by metal corrosion,especially the corrosion of copper(Cu)and its alloy.Therefore,corrosion protection methods have been explored[1-2]and the organiccoating-based protection method has attracted great attention[3-4].

    Polydopamine(PDA)which contains plenty of catechol and amino groupscan easily adhere to almost every material[5-6].Nevertheless,for corrosion inhibition,PDA coating is effective,yet easy to be destroyed since the corrosive media could invade into the coating due to the surface defects[7].Hence,one of sufficient methods to enhance PDA’s corrosion-proofing ability is to introduce nanomaterials,for instance,Si O2and carbon nanotubes(CNT)[8].

    CNT with lightweight,high specific surface area,good corrosion inhibition ability,good thermal stability,and good mechanical performance[9-10]should be an alternative material to elevate anti-corrosion performance.Previous research showed that corrosion inhibition coating doped with multi-walled carbon nanotubes(MWCNT)exhibited promising corrosion resistance[11-12].Unfortunately,the insolubility of MWCNT in water limits its wide applications.A possible way to increase its water solubility is the acidification of MWCNT via functionalization and introduction of carboxyl groups and hydroxyl groups(donated as FMWCNT).Furthermore,PDA can also easily wrap MWCNT to form uniform and high dispersion nanocomposites in water as well as to improve their mechanical properties,along with their resistance to high temperature and different chemical solvents relative to their individual components.

    In this work,a simple strategy was adopted to synthesize PDA layers wrapped over functionalized multiwalled carbon nanotubes FMWCNT(PDA@FMWCNT)for construction of composites coating.In comparison with PDA and PDA wrapped MWCNT(PDA@MWCNT),PDA@FMWCNT demonstrated a great inhibition efficiency of corrosion(η=98.9%)in 3.5%(mass fraction)NaCl solution.FMWCNT was observed by X-ray diffraction(XRD),Raman spectroscopy,F(xiàn)ourier transform infrared(FT-IR)spectroscopy,scanning electron microscopy(SEM),transmission electron microscope(TEM),and X-ray photoelectron spectroscopy(XPS).The corrosion inhibition mechanism of the composites film was studied by electrochemical methods and discussed in detail.

    2 Experimental

    2.1 Materials

    Nitric acid,sulfuric acid,ethanol,sodium chloride(AR),2-amino-2-hydroxymethylpropane-1,3-diol(Tris,pH=8.5,10 mmol·L-1,AR)and dopamine hydrochloride(mass fraction 98%)were obtained from Sigma-Aldrich Corporation.MWCNT(10-20 nm in diameter)was acquired from Shenzhen Nanotech Port.Milli-Q water(18 MΩ·cm)was used to prepare all solutions.

    2.2 Electrode pretreatment

    The working electrode(a geometric area of 0.031 4 cm2)was constructed by embedding the copper rod(mass fraction 99.999%)into Teflon sheath.First,500-and 1 000-grits papers,and 0.3μm alumina were used to polish the Cu electrode for a mirror-like surface,successively.And to completely remove loose copper rust,the polished electrode was then thoroughly rinsed three times(i.e.Milli-Q water,pure ethanol and Milli-Q water,respectively).

    2.3 Preparation of FMWCNT

    The suspension of 100 mL V(H2SO4)∶V(HNO3)=3∶1 containing 1 g MWCNT,was mixed uniformly by stirring for 24 h at room temperature.After pH value was controlled at 7.0,under vacuum,the functionalized MWCNT were dried at 50℃for 12 h.

    2.4 Preparation of PDA@MWCNT and PDA@FMWCNT nanocomposites

    Mixture of 400 mg FMWCNT,200 mg dopamine and 100 mL Tris-HCl buffer was magnetically stirred at room temperature for 24 h.The solution color changed to dark brown due to self-oxidation,remarking the formation of PDA.The solution was centrifuged,rinsed with water,and then dried under vacuum at 50℃for 24 h to obtain PDA@FMWCNT nanocomposites.PDA@MWCNT nanocomposites was made by the same procedure.

    2.5 Modification of copper surface

    PDA@Cu was obtained by immersion of copper in Tris-HCl buffer with 1 mg·mL-1(pH=8.5)dopamine for 2 h.The 1 mg·mL-1PDA@FMWCNT or PDA@MWCNT nanocomposites were dipped onto the pretreated Cu surface,respectively.The resultant coating modified coppers were dried in ambient condition,recorded as PDA@FMWCNT@Cu and PDA@MWCNT@Cu,respectively.The modification process of copper surface was depicted in figure 1.

    2.6 Characterization

    Fourier transform infrared spectroscopy spectra were acquired with 1 cm-1resolution in transmission mode by FTIR spectroscope(Thermo Fisher Nicolet iS5,USA)with KBr pellets.Raman spectra were recorded with a confocal Raman instrument(Super LabRam II system,Dilor,F(xiàn)rance).A multichannel air cooled 1 024×800 pixels charge-coupled device(CCD),and a 50×long-working-length objective were employed as a detector,and an objective,respectively.5 mW He-Ne laser was focused on the sample surface through 1 000μm pinhole and 100μm slit.Each Raman spectrum was the average of 10 s integration time by 3 times accumulations,and calibrated using 519 cm-1for silicon.The elementary composition of the nanocomposites were determined using X-ray photoelectron spectroscopy(XPS,PHI 5000 Versa Probe,Japan).SEM and TEM images were conducted using a Hitachi S-4800 scanning electron microscope,and a 200 kV JEOL JEM-2000 FX with S-3 energy dispersive spectrometer,respectively.

    2.7 Electrochemical experiments

    A Versa STAT4 electrochemical workstation(AMETEK,princeton applied research)was used to observe the electrochemical behavior of coatings in 3.5%(mass fraction)NaCl aqueous solution at ambient temperature.In a traditional three-electrode cell,a saturated calomel electrode(SCE),a platinum foil and a Cu electrode with or without composites films were acted as reference,counter and working electrodes,respectively.The open circuit potential(OCP vs.SCE)was conducted before every electrochemical measurement.For bare Cu and modified electrodes,the stable OCP could be accomplished under 3 000 s and 10 000 s,respectively,after immersing electrodes in 3.5%(mass fraction)NaCl aqueous solution.Electrochemical impedance spectroscopy(EIS)results,acquired in the frequency range from 100 kHz to 10 MHz,under an OCP with 0.005 V,were fitted with ZSimpW in software.

    3 Results and discussion

    3.1 Raman spectroscopy

    As shown in the figure 2,for Raman spectra of the MWCNT and FMWCNT,the peaks at 1 320 cm-1and 1 570 cm-1belong to D-and G-bands,respectively,which are regarded as the structural defects and graphitic carbon atoms vibration.The appearance of high frequency shoulder of D-band of MWCNT(Dí-band)[13]is a double-resonance band caused by disorder and defects.For IDand IGare the intensity ratios of Dí-band and Gí-band,respectively.The intensity ratios(ID/IG)are 1.74 and 1.83 obtained for MWCNT and FMWCNT,respectively.Therefore,the successful oxidization of MWCNT could be demonstrated due to the increase of ID/IGratio after the functionalization,since higher ID/IGratio value indicates more surface defects and less graphitization degree[14].

    3.2 TEM images

    Figure 3(a)is the TEM morphologies of the pure MWCNT,and figure 3(b)and figure 3(c)depicted TEM morphologies of the PDA@MWCNT and PDA@FMWCNT.Figure 3(d)is the magnification of PDA@MWCNT in the figure 3(c).In comparison with pure MWCNT in figure 3(a),the diameters of PDA@MWCNT and PDA@FMWCNT increased,indicating that PDA was successfully wrapped over both CNTs.Obviously,the PDA layers at MWCNT were ragged and partially covered whilst the PDA@FMWCNT were homogeneous and well dispersed.

    Figure 1 Synthesis procedures for construction of(a)PDA@FMWCNT@Cu and(b)PDA@MWCNT@Cu

    Figure 2 Raman spectra of FMWCNT and MWCNT

    Figure 3 TEM micrographs of(a)MWCNT,(b)PDA@MWCNT and(c)PDA@FMWCNT,(d)is the magnification of(c)

    Figure 4 FT-IR spectra of(a,b)FMWCNT,(c,d)PDA,and(e,f)PDA@FMWCNT

    Figure 5 XPS spectra of(a)PDA@FMWCNT@Cu,(b)C 1s spectra peak,(c)N 1s spectra peak,(d)O 1s spectra peak,(e)Cu 2p3 spectra peak and(f)the deconvolution of C 1s spectrum

    Figure 6 Polarization curves of different copper samples recorded in 3.5%(mass fraction)NaCl aqueous solution

    Figure 7(a)Nyquist plots and(b)phase angle plots for different copper samples recorded in 3.5%(mass fraction)NaCl aqueous solution

    Figure 8 Electrochemical equivalent circuits simulated for the impedance of(a)bare copper,(b)PDA@Cu,(c)PDA@MWCNT@Cu and PDA@FMWCNT@Cu

    Figure 9 SEM images of the(a,b)bare copper,(c,d)PDA@Cu,(e,f)PDA@MWCNT@Cu and(g,h)PDA@FMCNTs@Cu before and after immersed in 3.5%(mass fraction)NaCl aqueous solution for 7 d

    3.3 FT-IR characterization

    FT-IR spectra of FMWCNT,PDA,and PDA@FMWCNT were acquired in figure 4.As presented in figure 4(a)and figure 4(b),stretching vibrations of C-H bonds and-OH groups arecontributed to the peaks at 2 917 cm-1and 2 849 cm-1,and intensive bands near 3 418 cm-1,respectively.The peaks at 1 649 cm-1and 1 260 cm-1belong to the C=O and C-O in FMWCNT,respectively,validating the successful oxidation of the MWCNT.In case of FT-IR spectrum of PDAin figure 4(c)and figure 4(d),a broad band at 3 356 cm-1and a strong peak at 1 575 cm-1are respectively attributed to catechol-OH groups and aromatic rings[15].In FT-IR spectrum of PDA@FMWCNT compositesin figure 4(e)and figure 4(f),the spectral profile was almost the mixed characteristic peaks of PDA and FMWCNT.It should be noted that with comparison of figures 4(a)and 4(b),the-OH and C=O vibrations red-shifted to lower wavenumbers,which could be attributed to the hydrogen bond formation of either-OH between PDA and FMWCNT or the-NH2in PDA and-COOH in the FMWCNT[16].It should reinforce the coating of PDAby FMWCNT,which was beneficial to improve the PDAcapability against salt corrosion.

    3.4 XPS characterization

    In figure 5(a),the carbon(284.6 eV),nitrogen(400.1 eV),oxygen(531.6 eV),and copper(932.6 eV)elements could be visible in the scanning bonding energy range from 0-1 200 eV,validating the successful modification of the PDA@FMWCNT film on the copper surface.The scaled XPS spectra of C,N,O,Cu elements were shown in figures 5(b)-5(e),respectively.The correlated atomic contents were 59.37%,7.89%,26.05%,and 6.69%for C,N,O,and Cu elements,respectively.As shown in figure 5(f),the high resolution C1s XPS spectra of PDA@FMWCNT film could be fitted to five component peaks which are 284.3 eV(sp2C=C/sp3C-C),285.3 eV(C-N),286.3 eV(C-O),287.6 eV(C=O),and 288.8 eV(O-C=O),respectively.Clearly,the groups of O-C=O were introduced by the FMWCNT preparation process,which could increase the hydrophilicity as well as prohibit the smooth coating of the PDA layers via decreasing the conjugate structure of MWCNT[17].The presence of C-N peak indicated covalent binding of PDA molecules onto the surface of FMWCNT.

    3.5 Electrochemical measurements

    The corrosion properties of copper without and with different composite films were examined in 3.5%(massfraction)NaCl solution by potentidynamic polarization.By the Tafel extrapolation in figure 6,the corrosion potential(Ecorr),corrosion current density(Icorr),and the anodic and cathodic Tafel slopes(βaand βc),were tabulated in table 1.Clearly,the Icorrdecreased after modification of surface by coatings.Lower current densities,in both cathodic and anodic directions,could be observed in all of the modified electrodes,compared to bare ones.In addition,PDA@FMWCNT@Cu presented the lowest Icorrvalue.It is worth mentioning that no pitting corrosion happened in case of PDA@FMWCNT@Cu,indicating that the relatively perfect coating for protection of copper from corrosion effectively delay the reaction of anode dissolution and cathodic hydrogen evolution by forming a more compact membrane on the copper surface.It is further shown that functionalized MWCNT can overcome the shortcomings of ordinary materials and have a stronger interaction with PDA.

    Table 1 Corrosion parameters obtained from potentiodynamic polarization curves for different samples in 3.5%(mass fraction)NaCl aqueous solution

    As shown in figure 7(a),for Nyquist plots of each copper surface,a depressed semicircle at high frequencies exhibited the resistance of charge transfer.The occurrence of the Warburg impedance(straight line)in lower frequencies for bare Cu and PDA@Cu electrode was associated with the diffusion of CuCl2[18].After formation of composite films at the copper surface,the Warburg impedance disappeared and the radius of the capacitive loops increased,suggesting that the bare copper was readily corroded,while the surface modification could enhance the corrosion resistance.In case of the phase angle plots in figure 7(b),the bare Cu showed only a time constant,whilst the modified coppers presented two ones.The PDA@FMWCNT nanocomposites coating presented the maximum phase angle,which was in good consistency with that of potentiodynamic polarization analysis.

    The electrical equivalent circuit(EEC)models,demonstrated in figure 8,were fitted using Z SimpWin software.The fitting evaluation was depended on the standard deviations(χ2),which ought to be smaller than 10-3[19].Rsrepresented the solution resistance,W indicated the diffusion process due to the corrosive reactants or corrosion products diffusing to the bulk solution.The two main parameters in such time constant were the resistance and the constant phase element(CPE)of the inhibitor protection layer,which were due to Rfand Q,respectively.Time constant included two parts,Rct(charge transfer resistance)and capacitance of the double-charge layer(Cdl)which related with the charge-transfer at the copper/corrosive media interface.And Q1,Q2correspond to two time constants,respectively in figure 8(c).The time constant(Q)involved either the Rf(film resistance).The mathematic description of CPE was[20]:

    where Y0was the magnitude of CPE;j was the imaginary number;ωwas the angular frequency;n was the CPE exponent,depending on the unevenness of the surface.The higher n value indicated the smoother metal surface and less corrosion occurrence[21].Generally,the n valued from 0 to 1,and for some special cases,i.e.,the n value was-1,0,and 1,n was an inductance,a resistance and a capacitance,respectively.The fitted results of electrochemical parameters were summarized in table 2.The Rctcould be estimated from the diameter of a semicircle at high frequencies,and the higher Rctvalue,the higher corrosion protection ability[22].The Rctof PDA@FMWCNT@Cu rapidly increased up to 1521Ω·cm2,indicating the improvement of inhibition.Besides,the following equation could be used to calculate the inhibition efficiency(IE):

    where R0pand Rp,the resistance of the bare copper and total resistance,respectively.Therefore,the R0pis the sum of Rctand Rfafter neglecting the solution resistance(since it was relatively small)[23].A high IE of 98.8%could be achieved for PDA@FMWCNT@Cu as expected.

    Table 2 Electrochemical parameters calculated from EIS measurements for different samples in 3.5%(mass fraction)NaCl aqueous solutions

    3.6 SEM observation

    After the Cu species were immersed in 3.5%(mass fraction)NaCl solution for 7 d,their morphologies were investigated by SEM.With PDA modification(as comparison of figures 9(a)and 9(b)),the Cu surface became rougher along with the polished traces.Obviously,the serious corrosion occurred on the bare Cu after salty immersion for 7 d.With the modification with only PDA and PDA@MWCNT,the degree of Cu corrosion decreased,but the pitting corrosion still occurred in severe corrosive media.Clearly,for PDA@FMWCNT coating,no remarkable change appeared on the surface and even no pitting corrosion was found,which agreed with the above results.

    4 Conclusions

    PDA@FMWCNT nanocomposites(an optimal protection film for Cu from corrosion)through oxidation polymerization and functionalization methods were characterized via TEM,SEM,F(xiàn)T-IR,XPS,and XRD.Potentiodynamic polarization and EIS studies revealed that PDA@FMWCNT-based composites coating could efficiently protect Cu against NaCl corrosion with a high inhibition efficiency of 98.8%.The great protection ability of the PDA@FMWCNT coating was probably due to strong hydrogen bond interaction between PDA and FMWCNT to enforce passive coating with uniform and dense structure.

    av免费在线看不卡| 看免费成人av毛片| 亚洲美女搞黄在线观看 | 少妇熟女欧美另类| 国产成人a∨麻豆精品| 国产精品三级大全| 国产蜜桃级精品一区二区三区| 麻豆久久精品国产亚洲av| 国产精品野战在线观看| av女优亚洲男人天堂| 亚洲av一区综合| 波多野结衣高清无吗| 波多野结衣巨乳人妻| 国产精品久久电影中文字幕| 精品人妻熟女av久视频| 欧美zozozo另类| 国产精品三级大全| 成人三级黄色视频| 看免费成人av毛片| 亚洲天堂国产精品一区在线| 国产精华一区二区三区| 国产黄色小视频在线观看| 国产精品国产三级国产av玫瑰| 男人舔奶头视频| 亚洲人成网站在线播放欧美日韩| 免费一级毛片在线播放高清视频| 少妇熟女欧美另类| 18禁裸乳无遮挡免费网站照片| 中文字幕熟女人妻在线| 深夜精品福利| 五月伊人婷婷丁香| 大型黄色视频在线免费观看| 波野结衣二区三区在线| 欧美高清成人免费视频www| 国产大屁股一区二区在线视频| 少妇熟女欧美另类| 久久九九热精品免费| 亚洲av一区综合| 精品久久国产蜜桃| 日本 av在线| 婷婷精品国产亚洲av在线| 久久久久久久久久成人| 亚洲在线观看片| 国产精品一二三区在线看| 亚洲欧美日韩高清专用| 亚洲aⅴ乱码一区二区在线播放| 变态另类丝袜制服| 精品一区二区免费观看| 又粗又爽又猛毛片免费看| 你懂的网址亚洲精品在线观看 | 国产av不卡久久| 精华霜和精华液先用哪个| 两个人的视频大全免费| av天堂中文字幕网| 伊人久久精品亚洲午夜| 国产探花在线观看一区二区| 久久久久久久久久久丰满| 在线看三级毛片| 日本欧美国产在线视频| 天天躁日日操中文字幕| 久久久精品欧美日韩精品| 日本精品一区二区三区蜜桃| 一a级毛片在线观看| 97碰自拍视频| 国产视频一区二区在线看| 人妻制服诱惑在线中文字幕| 少妇的逼水好多| 亚洲图色成人| 99热6这里只有精品| 久久人人爽人人片av| 亚洲七黄色美女视频| av国产免费在线观看| 午夜福利在线观看免费完整高清在 | 亚洲国产精品合色在线| 国产又黄又爽又无遮挡在线| 麻豆成人午夜福利视频| 欧美日韩乱码在线| 国产精品国产三级国产av玫瑰| 日韩一本色道免费dvd| 黄色配什么色好看| 国产在线精品亚洲第一网站| 美女 人体艺术 gogo| 夜夜爽天天搞| 久久久久久久午夜电影| 听说在线观看完整版免费高清| 欧美性猛交╳xxx乱大交人| 村上凉子中文字幕在线| 69av精品久久久久久| 男人舔奶头视频| 亚洲精品成人久久久久久| 成人av一区二区三区在线看| 国产一区二区在线观看日韩| 12—13女人毛片做爰片一| 欧美最新免费一区二区三区| 国产伦精品一区二区三区四那| 亚洲欧美日韩高清在线视频| 69人妻影院| 黄片wwwwww| 欧美又色又爽又黄视频| 精品人妻偷拍中文字幕| 不卡一级毛片| 免费看光身美女| 国产探花在线观看一区二区| 久久精品国产鲁丝片午夜精品| 校园春色视频在线观看| 国产精品伦人一区二区| 国产日本99.免费观看| 久久精品夜色国产| 国模一区二区三区四区视频| 色播亚洲综合网| 免费观看人在逋| 久久久久久久午夜电影| 亚洲熟妇中文字幕五十中出| 在线免费观看的www视频| 在线观看一区二区三区| 精品人妻偷拍中文字幕| 精品熟女少妇av免费看| 一个人看的www免费观看视频| 久久精品国产亚洲av涩爱 | 能在线免费观看的黄片| 97热精品久久久久久| 18禁在线无遮挡免费观看视频 | 国产午夜精品论理片| 日韩一区二区视频免费看| 麻豆一二三区av精品| a级一级毛片免费在线观看| 中文字幕久久专区| av在线老鸭窝| 国产 一区 欧美 日韩| 亚洲人成网站高清观看| 精品久久久噜噜| 99精品在免费线老司机午夜| 大又大粗又爽又黄少妇毛片口| 天堂网av新在线| 色av中文字幕| 成年免费大片在线观看| 免费在线观看成人毛片| 在线看三级毛片| 久久久国产成人精品二区| 美女高潮的动态| 成人二区视频| 成熟少妇高潮喷水视频| 国产91av在线免费观看| 成年av动漫网址| 在线播放国产精品三级| 国产aⅴ精品一区二区三区波| 国产大屁股一区二区在线视频| 十八禁国产超污无遮挡网站| 国产精品一区二区免费欧美| 中文字幕久久专区| 国产在线男女| 国产激情偷乱视频一区二区| 亚洲人成网站在线观看播放| 亚洲无线观看免费| 久久久久国产网址| 婷婷亚洲欧美| 欧美区成人在线视频| 不卡一级毛片| 此物有八面人人有两片| 亚洲真实伦在线观看| avwww免费| avwww免费| 久久精品国产亚洲av香蕉五月| 美女黄网站色视频| 国产一区二区激情短视频| 麻豆国产97在线/欧美| 嫩草影院精品99| 一区二区三区四区激情视频 | 69人妻影院| 一边摸一边抽搐一进一小说| 男人和女人高潮做爰伦理| 在线免费十八禁| 久久久久性生活片| 欧美中文日本在线观看视频| 精品99又大又爽又粗少妇毛片| 尤物成人国产欧美一区二区三区| 国内精品久久久久精免费| 18+在线观看网站| 两性午夜刺激爽爽歪歪视频在线观看| 日韩精品青青久久久久久| 我的老师免费观看完整版| 亚洲人成网站在线播放欧美日韩| 国产免费一级a男人的天堂| 久久久午夜欧美精品| 自拍偷自拍亚洲精品老妇| 91av网一区二区| 日韩欧美一区二区三区在线观看| 国产欧美日韩精品亚洲av| 亚洲无线在线观看| 校园人妻丝袜中文字幕| 色播亚洲综合网| 久久九九热精品免费| 免费在线观看成人毛片| 午夜福利成人在线免费观看| 国产aⅴ精品一区二区三区波| 精品一区二区三区视频在线观看免费| 大香蕉久久网| 免费无遮挡裸体视频| 亚洲经典国产精华液单| av天堂中文字幕网| 在线a可以看的网站| 欧美区成人在线视频| 亚洲中文字幕日韩| 永久网站在线| 全区人妻精品视频| 身体一侧抽搐| 在线观看av片永久免费下载| 老熟妇仑乱视频hdxx| 日韩av不卡免费在线播放| 一进一出抽搐gif免费好疼| 22中文网久久字幕| 国产精品久久久久久亚洲av鲁大| 在线观看av片永久免费下载| 亚洲精品亚洲一区二区| 久久精品人妻少妇| 99国产极品粉嫩在线观看| 国产精品福利在线免费观看| 成人三级黄色视频| 色噜噜av男人的天堂激情| 精品久久久久久久久亚洲| АⅤ资源中文在线天堂| 嫩草影院新地址| 国产日本99.免费观看| 亚洲欧美精品综合久久99| 国产 一区 欧美 日韩| 赤兔流量卡办理| 黄色一级大片看看| 成人av一区二区三区在线看| 国产午夜精品久久久久久一区二区三区 | 成年版毛片免费区| 男女啪啪激烈高潮av片| 精品国产三级普通话版| 久久久久久大精品| 国产成人影院久久av| 日本黄色片子视频| 国产成人a区在线观看| 欧美日本视频| 三级经典国产精品| 亚洲精品日韩在线中文字幕 | 国产一区二区三区av在线 | 一区福利在线观看| 精品久久国产蜜桃| 嫩草影院入口| 麻豆精品久久久久久蜜桃| 直男gayav资源| 在线播放无遮挡| 国产高清不卡午夜福利| 日本与韩国留学比较| 亚洲精品色激情综合| av在线播放精品| 国产精品一区www在线观看| 亚洲第一电影网av| 国产午夜精品论理片| 国产高清视频在线播放一区| 亚洲av美国av| 禁无遮挡网站| 亚洲天堂国产精品一区在线| 国产精品亚洲一级av第二区| 久久人人精品亚洲av| 色综合站精品国产| 国产美女午夜福利| 联通29元200g的流量卡| 日本-黄色视频高清免费观看| 久久久成人免费电影| 美女内射精品一级片tv| 免费黄网站久久成人精品| 国产高清三级在线| 少妇熟女aⅴ在线视频| 国内少妇人妻偷人精品xxx网站| 最新中文字幕久久久久| 国产一区二区亚洲精品在线观看| 18禁在线无遮挡免费观看视频 | 全区人妻精品视频| 国产一区二区三区av在线 | 日韩欧美一区二区三区在线观看| a级毛片a级免费在线| 最近手机中文字幕大全| 国产91av在线免费观看| 国产亚洲精品av在线| 国产极品精品免费视频能看的| 久久精品国产自在天天线| 中文字幕熟女人妻在线| 国产精品嫩草影院av在线观看| 九九爱精品视频在线观看| 尾随美女入室| 国产高潮美女av| 国产精品一区二区三区四区久久| 99久久精品国产国产毛片| 天堂影院成人在线观看| 一级毛片aaaaaa免费看小| 在线a可以看的网站| 亚洲精品成人久久久久久| 国产精品爽爽va在线观看网站| 日本一二三区视频观看| 精品久久久久久成人av| 国产午夜精品论理片| 国产乱人视频| 十八禁网站免费在线| 18禁裸乳无遮挡免费网站照片| 中出人妻视频一区二区| 人人妻人人看人人澡| av在线蜜桃| 精品乱码久久久久久99久播| 男女视频在线观看网站免费| 国产单亲对白刺激| 久久久久久大精品| videossex国产| 精品久久久久久成人av| 国产伦一二天堂av在线观看| 日韩人妻高清精品专区| 久久人人爽人人爽人人片va| 亚洲精品国产av成人精品 | 欧美日本亚洲视频在线播放| 亚洲精品粉嫩美女一区| 亚洲av免费高清在线观看| 国产在视频线在精品| 一个人看的www免费观看视频| 五月伊人婷婷丁香| 我要搜黄色片| 国产视频内射| 欧美高清成人免费视频www| ponron亚洲| 久久精品影院6| 1024手机看黄色片| 精品一区二区三区av网在线观看| 小说图片视频综合网站| 国产不卡一卡二| 岛国在线免费视频观看| 亚洲精品456在线播放app| 伦精品一区二区三区| 国产精品久久久久久亚洲av鲁大| 搡老妇女老女人老熟妇| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利在线观看免费完整高清在 | 日日摸夜夜添夜夜添小说| 久久久久国产网址| 欧美日本亚洲视频在线播放| 舔av片在线| 少妇熟女欧美另类| 国产在线男女| 国内少妇人妻偷人精品xxx网站| 五月玫瑰六月丁香| 最近在线观看免费完整版| 国产精品永久免费网站| 亚洲av二区三区四区| 日本 av在线| 亚洲五月天丁香| 久久精品国产鲁丝片午夜精品| 国产黄片美女视频| 热99在线观看视频| 丝袜美腿在线中文| 日本三级黄在线观看| 在线天堂最新版资源| 在线免费观看的www视频| 国产精品嫩草影院av在线观看| 成人精品一区二区免费| 午夜福利高清视频| 久久久精品94久久精品| 非洲黑人性xxxx精品又粗又长| 午夜日韩欧美国产| 亚洲精品一区av在线观看| 偷拍熟女少妇极品色| 免费看av在线观看网站| 国产毛片a区久久久久| 成人国产麻豆网| videossex国产| 国产色婷婷99| 亚洲成人久久性| 欧美性猛交黑人性爽| 亚洲成a人片在线一区二区| 91狼人影院| 五月伊人婷婷丁香| 毛片一级片免费看久久久久| 精品久久久久久久久久久久久| 日本黄色视频三级网站网址| 国产男人的电影天堂91| 日韩 亚洲 欧美在线| 日韩成人伦理影院| 美女大奶头视频| 美女内射精品一级片tv| 99热这里只有是精品50| 欧美一区二区精品小视频在线| 日韩强制内射视频| 亚洲精品456在线播放app| 成年版毛片免费区| 高清日韩中文字幕在线| 国产欧美日韩一区二区精品| 中文字幕av在线有码专区| 最好的美女福利视频网| 国产高清有码在线观看视频| 别揉我奶头 嗯啊视频| 国产极品精品免费视频能看的| 国产一区二区激情短视频| 桃色一区二区三区在线观看| 不卡视频在线观看欧美| 99热网站在线观看| 亚洲国产色片| 91狼人影院| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美清纯卡通| 日日摸夜夜添夜夜添小说| 最好的美女福利视频网| 亚洲aⅴ乱码一区二区在线播放| 久久久久精品国产欧美久久久| 国产高潮美女av| 欧美性感艳星| 日本三级黄在线观看| 亚洲中文字幕一区二区三区有码在线看| АⅤ资源中文在线天堂| a级毛色黄片| 网址你懂的国产日韩在线| 日韩欧美三级三区| 欧美xxxx性猛交bbbb| 不卡视频在线观看欧美| 国产精品久久久久久精品电影| 国产欧美日韩一区二区精品| 尾随美女入室| 日韩制服骚丝袜av| 亚洲欧美中文字幕日韩二区| 大香蕉久久网| a级毛片a级免费在线| 久久精品国产亚洲av天美| 欧美激情国产日韩精品一区| 免费av毛片视频| av女优亚洲男人天堂| 欧美人与善性xxx| 国产精品av视频在线免费观看| 久99久视频精品免费| 久久鲁丝午夜福利片| 久久久久久久久久黄片| 非洲黑人性xxxx精品又粗又长| 伊人久久精品亚洲午夜| 国产精品免费一区二区三区在线| 亚洲成人久久爱视频| 看免费成人av毛片| 国产成年人精品一区二区| 国产视频内射| 在线a可以看的网站| 久久久精品欧美日韩精品| 国产乱人偷精品视频| 99国产极品粉嫩在线观看| 中国美女看黄片| 国产av不卡久久| 最新在线观看一区二区三区| 成人亚洲欧美一区二区av| 久久久久久大精品| 精品久久久久久久久久久久久| 国产乱人视频| 卡戴珊不雅视频在线播放| 日韩一区二区视频免费看| 黄片wwwwww| 麻豆国产av国片精品| 人妻制服诱惑在线中文字幕| 欧美精品国产亚洲| 国产精品伦人一区二区| 永久网站在线| 日日干狠狠操夜夜爽| 国产av麻豆久久久久久久| 搡老岳熟女国产| 精品欧美国产一区二区三| 在线观看66精品国产| a级毛片a级免费在线| 校园春色视频在线观看| 国产视频一区二区在线看| 久久久久久久午夜电影| 国产精品久久久久久久久免| 精品不卡国产一区二区三区| 床上黄色一级片| 老司机午夜福利在线观看视频| 精品国产三级普通话版| 国国产精品蜜臀av免费| 秋霞在线观看毛片| 色5月婷婷丁香| 99热网站在线观看| 狂野欧美白嫩少妇大欣赏| 久久久久国产精品人妻aⅴ院| 久久久久久伊人网av| 一级黄片播放器| 日韩精品中文字幕看吧| 久久精品国产亚洲av香蕉五月| 51国产日韩欧美| 两性午夜刺激爽爽歪歪视频在线观看| 香蕉av资源在线| 久久精品国产亚洲网站| 国产精品一区二区三区四区免费观看 | 国产精品三级大全| 亚洲av不卡在线观看| 成年女人看的毛片在线观看| 俄罗斯特黄特色一大片| 国产aⅴ精品一区二区三区波| 欧美又色又爽又黄视频| 美女内射精品一级片tv| 午夜视频国产福利| 亚洲美女视频黄频| 午夜激情欧美在线| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产欧美人成| 亚洲久久久久久中文字幕| 老熟妇仑乱视频hdxx| 丝袜美腿在线中文| 成人永久免费在线观看视频| 久久久久久久午夜电影| 欧洲精品卡2卡3卡4卡5卡区| 人人妻,人人澡人人爽秒播| 成人性生交大片免费视频hd| 不卡一级毛片| 亚洲最大成人手机在线| 精品不卡国产一区二区三区| 69人妻影院| 人人妻人人看人人澡| 国产一区亚洲一区在线观看| 99热这里只有精品一区| 亚洲精品一区av在线观看| 毛片女人毛片| 国产精品1区2区在线观看.| 综合色丁香网| 啦啦啦观看免费观看视频高清| 久久精品国产亚洲av香蕉五月| 欧美丝袜亚洲另类| 在线天堂最新版资源| 69av精品久久久久久| 日韩成人伦理影院| 国产成人福利小说| 日本一本二区三区精品| 热99在线观看视频| 男人狂女人下面高潮的视频| 成人毛片a级毛片在线播放| 99久久无色码亚洲精品果冻| 国产成人一区二区在线| 久久久久久久午夜电影| 成人美女网站在线观看视频| 日韩制服骚丝袜av| 色av中文字幕| 亚洲成人精品中文字幕电影| 中文字幕精品亚洲无线码一区| 身体一侧抽搐| 插阴视频在线观看视频| 大香蕉久久网| 一夜夜www| 国产精品不卡视频一区二区| 国产成人福利小说| av在线老鸭窝| 日韩欧美一区二区三区在线观看| 中出人妻视频一区二区| av在线观看视频网站免费| 国产成人aa在线观看| 麻豆久久精品国产亚洲av| 亚洲欧美清纯卡通| h日本视频在线播放| 日本a在线网址| 欧美+日韩+精品| 国产精品爽爽va在线观看网站| 成人精品一区二区免费| 最近视频中文字幕2019在线8| 久久精品国产亚洲av涩爱 | 久久精品国产亚洲av香蕉五月| 校园春色视频在线观看| 成人三级黄色视频| 99热6这里只有精品| 22中文网久久字幕| 欧美xxxx性猛交bbbb| 国产精品久久久久久亚洲av鲁大| 99热这里只有是精品在线观看| 人人妻人人澡欧美一区二区| 成年女人毛片免费观看观看9| 亚洲精品日韩av片在线观看| 麻豆精品久久久久久蜜桃| 国产午夜精品久久久久久一区二区三区 | 中国美女看黄片| 欧美日韩一区二区视频在线观看视频在线 | 一区二区三区四区激情视频 | 99热6这里只有精品| 日韩欧美 国产精品| 午夜爱爱视频在线播放| 免费在线观看影片大全网站| 国产精品嫩草影院av在线观看| 亚洲中文字幕一区二区三区有码在线看| 一级毛片我不卡| 成人亚洲欧美一区二区av| 成人无遮挡网站| 日本成人三级电影网站| 午夜老司机福利剧场| 国产亚洲精品久久久久久毛片| 性色avwww在线观看| 日本黄色视频三级网站网址| 午夜福利视频1000在线观看| 你懂的网址亚洲精品在线观看 | 欧美区成人在线视频| 插阴视频在线观看视频| 国产精品久久久久久久电影| 久久国内精品自在自线图片| 国产成人精品久久久久久| 精品欧美国产一区二区三| 我的老师免费观看完整版| 久99久视频精品免费| 又粗又爽又猛毛片免费看| 精品无人区乱码1区二区| 亚洲真实伦在线观看| 久久久国产成人精品二区| 91av网一区二区| 一卡2卡三卡四卡精品乱码亚洲| 一区福利在线观看| 亚洲第一电影网av| 亚洲一级一片aⅴ在线观看| 久久久久久久亚洲中文字幕| 国产欧美日韩精品亚洲av| 天堂av国产一区二区熟女人妻| 噜噜噜噜噜久久久久久91| 欧美日韩国产亚洲二区| 69人妻影院| av福利片在线观看| 国产亚洲av嫩草精品影院| 12—13女人毛片做爰片一| 桃色一区二区三区在线观看| 国产高清激情床上av|