• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Study of Pressure Fluctuation Induced by Propeller Cavitation with Pre-shrouded Vanes

    2021-11-03 13:57:08,,
    船舶力學 2021年10期

    ,,

    (1.China Ship Scientific Research Center,Wuxi 214082,China;2.Jiangsu Key Laboratory of Green Ship Technology,Wuxi 214082,China;3.CSIC Shanghai Marine Energy Saving Technology Development Co.,Ltd.,Shanghai 200011,China)

    Abstract:A numerical method to predict the propeller cavitation and hull pressure fluctuation in the ship stern is set up in this paper by using unsteady viscous RANS approach and Schnerr-Sauer cavitation model.The numerical error or uncertainty is estimated with verification and validation method before evaluation of the energy-saving performance at self-propulsion condition by using the revised ITTC’78 method.Then the hull pressure fluctuation induced by propeller cavitation is predicted without Pre-Shrouded Vanes(PSV,CMES-PSV).The numerical method is used to study the hull pressure fluctuation with PSV,which has five fins and a half duct.The cavity patterns and the amplitudes of the first and second blade frequencies(BF)of hull pressure fluctuation are compared.When PSV energysaving device is used,the 1BF and 2BF pressure fluctuations decrease about 33% and 20% respectively,and the cavitation shape areas also decrease.

    Key words:propeller cavitation;CFD;pressure fluctuation;energy-saving device

    0 Introduction

    In recent years,ship energy saving has become an important topic in shipbuilding and shipping industry all over the world.An energy-saving device between the ship stern and propeller is one of the effective measures to realize energy saving of a ship.We know that when cavitation occurs on a propeller,the pressure fluctuation will be drastically increased.In some serious conditions,the hull structure at stern could be destroyed by the pressure fluctuation,which will also reduce the comfort of crew accommodation.So,the cavitation performance when an energy saving device is installed at the ship stern should be investigated.

    With the development of the hardware technology,high performance computing could be used in computational fluid dynamics(CFD).The RANS approach,one of CFD methods,has been used to simulate the cavitation of a ship and propellers widely since 1980s[1-2].Watanabe et al[3]used RANS method to simulate the propeller cavitation in uniform and non-uniform flows.The pressure distribution on the propeller showed a good agreement with experiments and the steady cavity simulations were basically consistent with test results.Paik et al[4]simulated the unsteady cavitation induced pressure fluctuation as the blades passed through the high wake flow of ship stern.The results from spectrum analysis showed there were three high amplitudes with the frequency the same as the 1st,2nd and 3rd blade rotating frequency,and results showed good agreement with those of experiments.Li et al[5]predicted the E779A propeller cavitation in non-uniform wakes and verified the accuracy of its CFD method.Yang et al[6]used RANS method to simulate the cavitation on propeller and monitored the pressure fluctuation on a double-stern ship.Detailed analysis was presented for the distribution and amplitude of pressure fluctuations.Paik et al[7]compared the cavitation patterns on two propellers with slightly different geometries by the commercial software FLUENT.Some researchers tried to use an open source CFD code to simulate the propeller cavitation performance behind the ship hull,such as Asnaghi[8]and Zheng[9],and the simulations showed a good agreement with experiments.Bensow[10]simulated the hull-propeller interaction with a pre-swirlstator installation in model scale,and the hydrodynamic performance of cavitation flow of the propeller was shown.With more and more energy-saving devices installed in ship stern,the propeller cavitation and hull vibration risk increase.Therefore,the hull pressure fluctuation and cavitation performance should be evaluated when an energy-saving device is installed.

    This paper is dedicated to comparison of the unsteady cavitation generated on a propeller in the stern region with and without PSV,and analysis of the hull pressure fluctuations induced by the unsteady cavitation.

    1 Methods

    1.1 Governing equations

    The solution of the flow field is based on the continuity equation and momentum equations.Here the RANS equations were adopted,which has a lower computational effort and enough accuracy for ship engineering.

    whereUis the velocity,pis the mixture pressure,Fsis the body force,ρis the mixture density,μis the laminar viscosity,andμtis the turbulent viscosity.The SSTκ-ωturbulence model is used to simulate the turbulent viscosityμt,this model is widely studied in ship hydrodynamics.

    The interface of liquid and vapor is captured by VOF approach,the fluid is scaled by the liquid volume fractionγ,γ=1 means the physical properties of the pure water.

    The density and dynamic viscosity are shown below:

    where the subscripts v and l refer to the vapor and liquid components.

    The mass transfer equation of the liquid volume fractionγis:

    We should model the mass transfer ratem˙.

    Combining the transport Eq.(1),Eq.(3)and Eq.(5),we can get

    1.2 Cavitation model

    When the local pressure becomes lower than the vapour pressure,a phenomenon of the transition of water into vapor will be generated because of the small gas nuclei in the water.This phase change processing could be solved by some cavitation mass transfer model,such as Schnerr-Sauer.This model is widely used to predict propeller cavitation.

    wheren0is the number density of micro bubbles per liquid volume,Ris the initial nuclei radius.Schnerr-Sauer’s cavity model could consider the motion of a single bubble of radiusR,which is based on bubble dynamics.

    1.3 Solution procedure

    We use the finite volume method to discretize the fluid governing equations,and the cell-center positions of computational grid are used to store the unsolved flow variables.The time items are in Euler format,and the momentum equation is in second order form.

    The commercial solver Fluent used in this study is a multiphase flow solver,taking two fluids into account using the VOF method.

    We use quasi-stable MRF method to simulate the rotation of a propeller for quasi-steady flow as an initial input,a sliding mesh method as well as interface between ship static region and propeller moving region is then applied to simulate the unsteady flow field.The SIMPLE algorithm is used for solving the velocity and the pressure fields.This simulation processing could reduce the computational time.

    1.4 Boundary conditions and mesh generation

    The investigated model in this paper is a tanker.A four-bladed fixed pitch propeller is installed at the stern of this ship.The main parameters of the model propeller are shown in Tab.1,and the hull and propeller geometry are shown in Fig.1.

    Fig.1 Tanker hull and propeller geometry

    Tab.1 Main parameters of ship model

    The simulation region consists of inlet,pressure outlet and no-slip boundaries.At the inlet boundary,a fixed value of velocity is given,and the pressure value calculated by cavitation numberσnis constant at the pressure outlet boundary.The hull,propeller,PSV,rudder and hub boundary are no-slip wall conditions respectively.

    The commercial software HEXPRESS is used to generate the mesh.The computational domain is divided into two parts.One part named ship region contains the flow region that includes the inlet,outlet,ship,PSV and rudder,and the other part named propeller region contains propeller rotational cylinder.The unstructured hexahedral cell is used to generate the whole region grid.On the wall boundary such as ship wall,5 boundary layer cells with 1.3 stretching factor are inserted,which could meet the requirements of wall function condition.The overview of the surface mesh is shown in Fig.2.

    Fig.2 Surface mesh of the stern region

    2 Results

    2.1 Simulation uncertainty assessment

    The grid and iterative convergence are studied by the reference of ITTC revised procedure[11]and CFD uncertainty analysis method suggested by Xing and Stern[12].The simulation uncertainty of the ship model resistance is evaluated by verification and validation method.

    A cut-cell unstructured grid type is used to generate the cell around the complex surface of this ship.The surface grid size increases bywith a constant ratio of growth which insures the similarity of these three grid systems(GS1,GS2,GS3).GS1,GS2 and GS3 are the fine,medium and coarse grid systems respectively,as shown in Tab.2.They+is the first cell dimension measured normal to the wall.

    Tab.2 Grid systems

    The error and the uncertainties of the viscous resistance coefficientCVMare shown in Tab.3.The subscript M refers to the model,V refers to viscous.The grid uncertainty(UG,the subscript G refers to grid)is about 1.72%ofSC(SCis the numerical reference value,the subscript C refers to correction),and decreases to 0.29% with correction.In Tab.3,RGis the convergence ratio,pGis the order of accuracy,CGis the correction factor,δ*Gis the numerical error,andUGCis the correction ofUG.

    Tab.3 Verification of CVM

    The validation process ofCVMis utilizing benchmark model test value to estimate the uncertainty of the numerical model.The comparison error(E),validation uncertainty(UV)and numerical uncertainty(USN,the subscript S refers to simulation,N refers to numerical)are defined as following:

    where the other numerical parameter uncertainty(UP,the subscript P refers to numerical parameter)due to time step is zero in the present problem.Tab.4 shows the validation ofCVM.It is assumed that the test uncertainty(Uexp)is 2.0%.||E<UVmeans the validation of numerical simulation is achieved.

    Tab.4 Validation of CVM

    2.2 Evaluation of energy saving

    The model simulations to estimate the self-propulsion performance with and without PSV were carried out.Fig.3 presents the results of experiments and simulations of thrust coefficient(KT),torque coefficient(KQ)and open water efficiency coefficient(η0).At the advance ratioJ=0.6,the errors ofKT,KQandη0are about 2.07%,5.71%,and-3.04%,respectively.Tab.5 presents the results of simulations of the self-propulsion.For the three given model speeds(VM),the propeller torque(QM)decreases when the energy-saving device is installed.The delivered powers(PDM)with PSV reduce by 4.1%,3.3%and 4.2%at three different model speeds,respectively.

    Fig.3 Comparison of propeller open water performances

    Tab.5 Simulation data of self-propulsion

    The self-propulsion performance is calculated using the revised ITTC’78 method[13-14].Tab.6 shows the self-propulsion factors and delivered power reduction for PSV.The PSV significantly improves the wake fraction(wS,the subscript denotes the full scale ship)and little changes in thrust reduction(tS),so the hull efficiency(ηHS)increases.The rotative efficiency(ηRS)increases a little and the propeller open water efficiency(η0S)decreases.Due to these the propulsive efficiency(ηDS)increases with PSV.Accordingly,the PSV reduces the delivered power by 2.2%,1.7% and 2.2% at the ship speeds of 13 kn,14 kn and 15 kn respectively.

    Tab.6 Results of self-propulsion analysis with and without PSV of full scale ship

    2.3 Flow field comparison

    The cavitation simulation input parameters in this study are listed in Tab.7.Wherenis the propeller rotational speed,σn0.8Ris cavity number at 0.8Rof propeller,andKTis the thrust coefficient of the propeller after the ship hull from self-propulsion prediction.

    Tab.7 Test conditions(Ballast draft)

    In model test,the pressure is adjusted in the large cavitation channel to meet the cavitation number throughKT-identity method,which ensures that the model propeller loads are equal to full scale.In cavity simulation process,the steady flow field simulated by MRF method is used as an initial input to calculate the unsteady flow with sliding mesh method to simulate the rotation of the propeller,and then the propeller cavitation performance is predicted by activating the cavitation model.The number and density coefficient of nuclei chosen in Schnerr-Sauer cavitation model aren0=2×108anddNuc=1×10-4respectively.

    The main PSV’s energy saving mechanism is to reduce the loss of swirl energy in ship wake generated by a propeller.Fig.4 shows the definition of the circumferential angle distribution.Figs.5-7 are the tangential velocity(Ut,the subscript t refers to tangential)distributions in front of the propeller.TheUinletis the reference velocity,which is used by inlet velocity.As shown in figures,when PSV is fixed,the tangential velocity distributions in front of the propeller change little.Figs.8-10 show the flowfield behind the propeller.The tangential velocity lines with PSV move down from 0.7Rto 0.9R,and the velocity peaks also decrease.The PSV induces an opposite rotational flow,which could reduce the loss of rotational energy of the propeller.

    Fig.4 Sketch of circumferential position definition

    Fig.5 Tangential velocity in front of propeller at 0.5R

    Fig.6 Tangential velocity in front of propeller at 0.7R

    Fig.7 Tangential velocity in front of propeller at 0.9R

    Fig.8 Tangential velocity behind propeller at 0.5R

    Fig.9 Tangential velocity behind propeller at 0.7R

    Fig.10 Tangential velocity behind propellerat 0.9R

    2.4 Propeller cavitation performance and induced hull pressure fluctuation

    The predicted cavitation patterns on the propeller blades with and without PSV are compared in Fig.11 and Fig.12,respectively.

    Fig.11 Simulation sketches at ballast draft condition without PSV(model scale)

    Fig.12 Simulation sketches at ballast draft condition with PSV(model scale)

    The cavity shape is identified by vapor iso-surface of 0.1.The change process of cavitation is basically the same whether with or without PSV.The main feature,the variation of the attached cavity with the rotational angels of propeller and the cavity collapse at the tail of the main cavity shows almost the same.The cavity first appeared at almost the same location atφ=-20° and grows up with blade rotating,then achieves the maximum area at aboutφ=20°.At each position,the area of cavity without PSV is a little larger than that with PSV.

    By arranging the monitoring points on the stern surface of the ship,the hull pressure fluctuation induced by propeller cavity is investigated.The monitor positions are shown in Fig.13.

    Fig.13 Arrangement of monitor points

    The FFT signal processing program is used to calculate the pressure fluctuation spectrum,and the pressure fluctuation at full scale is predicted based on model value.The first blade frequency(1BF)amplitudes and the second blade frequency(2BF)amplitudes of the hull pressure fluctuation with and without PSV are shown in Fig.14 and Fig.15,respectively.When the PSV energy-saving device is installed,the 1BF and 2BF pressure fluctuation decreases about 33%and 20%respectively.In most situations,the cavitation patterns and the hull pressure fluctuations should be checked when using PSV to make sure there is no cavitation erosion and vibration risk.In this case,the pressure fluctuation and cavitation shape have been improved with the PSV installed.

    She lives in a castle which lies east of the sun and west of the moon, and there too is a princess with a nose which is three ells long, and she now is the one whom I must marry

    Fig.14 The 1BF amplitude of hull pressure fluctuation predicted with and without PSV

    Fig.15 The 2BF amplitude of hull pressure fluctuation predicted with and without PSV

    3 Conclusions

    In this paper,the propeller cavitation patterns and the amplitudes of the first blade frequency(1BF)and the second blade frequency(2BF)with and without PSV are simulated,respectively.Some conclusions are reached as following:

    (1)The uncertainty evaluation of the simulation method is carried out.The verification and validation of numerical simulation are achieved.The simulation uncertainty is about 1.72%.

    (2)The self-propulsion performance of this single screw ship with or without PSV is calculated by using 1978 ITTC performance prediction method.The maximum energy-saving effect of the full scale ship is about 2.2%.

    (3)The cavitation character of the target propeller with ship model is simulated.The hull pressure fluctuation decreases when the PSV is installed,and the cavitation extent with PSV is also a little smaller than that without PSV at each circumferential position.

    Therefore,the simulation method in this paper has a good prediction accuracy to predict the ship self-propulsion performance.After the installation of this designed PSV,not only the energysaving effect can be obtained,but also the risk of cavitation erosion and vibration can be reduced.

    亚洲精品自拍成人| 日韩av在线免费看完整版不卡| 在线天堂中文资源库| 亚洲欧美色中文字幕在线| tube8黄色片| 内地一区二区视频在线| a级毛色黄片| 久久久久精品性色| www日本在线高清视频| 一区二区三区乱码不卡18| 免费观看性生交大片5| 国产成人a∨麻豆精品| 国产熟女午夜一区二区三区| 国产免费一区二区三区四区乱码| 久久久久人妻精品一区果冻| 国产精品秋霞免费鲁丝片| 国产亚洲欧美精品永久| 亚洲欧美成人综合另类久久久| 国产精品一国产av| 国产成人精品久久久久久| 成年美女黄网站色视频大全免费| videosex国产| 大陆偷拍与自拍| 黄色配什么色好看| 性高湖久久久久久久久免费观看| 日日啪夜夜爽| 亚洲精品国产av成人精品| 卡戴珊不雅视频在线播放| 在线观看免费高清a一片| av国产久精品久网站免费入址| 日韩免费高清中文字幕av| 亚洲综合精品二区| 街头女战士在线观看网站| 国产一级毛片在线| 侵犯人妻中文字幕一二三四区| 丝袜美足系列| 久久精品国产综合久久久 | 久久人妻熟女aⅴ| 亚洲丝袜综合中文字幕| 丝袜喷水一区| 亚洲图色成人| 激情视频va一区二区三区| 日本欧美国产在线视频| av又黄又爽大尺度在线免费看| 免费少妇av软件| 亚洲美女搞黄在线观看| 性色av一级| 久热久热在线精品观看| 中国国产av一级| 男人添女人高潮全过程视频| 国产日韩欧美视频二区| 久久青草综合色| 大片电影免费在线观看免费| 成人手机av| 人妻 亚洲 视频| 一区二区三区精品91| 亚洲综合色网址| av网站免费在线观看视频| 99国产精品免费福利视频| 国产乱人偷精品视频| 男人爽女人下面视频在线观看| 亚洲欧洲精品一区二区精品久久久 | 欧美日韩一区二区视频在线观看视频在线| 最近中文字幕2019免费版| 熟女电影av网| 亚洲第一区二区三区不卡| 一级毛片黄色毛片免费观看视频| 大话2 男鬼变身卡| 成人毛片a级毛片在线播放| 亚洲av欧美aⅴ国产| 亚洲熟女精品中文字幕| 亚洲国产av影院在线观看| 各种免费的搞黄视频| 国产一区亚洲一区在线观看| 日本猛色少妇xxxxx猛交久久| 黑人猛操日本美女一级片| 日韩制服骚丝袜av| 中文精品一卡2卡3卡4更新| 一本—道久久a久久精品蜜桃钙片| 我的女老师完整版在线观看| 久久人妻熟女aⅴ| 久久久久精品性色| 色婷婷久久久亚洲欧美| 欧美精品av麻豆av| 午夜久久久在线观看| 一区二区av电影网| 最黄视频免费看| 你懂的网址亚洲精品在线观看| 五月开心婷婷网| 高清毛片免费看| 人妻少妇偷人精品九色| 在线亚洲精品国产二区图片欧美| 啦啦啦啦在线视频资源| 熟女人妻精品中文字幕| 九草在线视频观看| 久久精品国产亚洲av涩爱| 国产精品.久久久| 免费大片黄手机在线观看| 国产av一区二区精品久久| 欧美97在线视频| 三上悠亚av全集在线观看| 蜜桃国产av成人99| 伊人久久国产一区二区| 国产精品久久久av美女十八| 国产xxxxx性猛交| 国产 精品1| 国产精品一国产av| 少妇被粗大猛烈的视频| 2018国产大陆天天弄谢| 国产高清国产精品国产三级| 精品国产国语对白av| 亚洲国产最新在线播放| av女优亚洲男人天堂| 天堂俺去俺来也www色官网| 亚洲美女搞黄在线观看| 国产精品国产av在线观看| 精品一区二区三卡| 国产精品女同一区二区软件| 国产视频首页在线观看| 毛片一级片免费看久久久久| 国产亚洲欧美精品永久| 亚洲av福利一区| 一级毛片 在线播放| 女人精品久久久久毛片| 七月丁香在线播放| 午夜激情久久久久久久| 精品国产一区二区久久| 欧美最新免费一区二区三区| 亚洲欧美一区二区三区黑人 | 一个人免费看片子| 久久精品aⅴ一区二区三区四区 | 久久精品国产亚洲av天美| 亚洲人与动物交配视频| 日韩 亚洲 欧美在线| 麻豆精品久久久久久蜜桃| 国产精品99久久99久久久不卡 | 欧美 日韩 精品 国产| 黄片无遮挡物在线观看| 欧美人与性动交α欧美精品济南到 | 岛国毛片在线播放| 精品视频人人做人人爽| 一个人免费看片子| 精品一区二区三卡| 不卡视频在线观看欧美| 亚洲第一区二区三区不卡| 国产有黄有色有爽视频| 欧美97在线视频| av卡一久久| 日韩不卡一区二区三区视频在线| 黄片无遮挡物在线观看| 99视频精品全部免费 在线| 国产免费福利视频在线观看| freevideosex欧美| 亚洲国产精品专区欧美| 国产精品三级大全| 久久人人爽人人爽人人片va| 校园人妻丝袜中文字幕| 欧美日韩视频高清一区二区三区二| 天堂中文最新版在线下载| 2022亚洲国产成人精品| 色婷婷av一区二区三区视频| 97在线视频观看| 国产1区2区3区精品| a级毛片黄视频| 青春草国产在线视频| 精品99又大又爽又粗少妇毛片| 免费看不卡的av| 老司机影院毛片| 只有这里有精品99| 18在线观看网站| 在线观看免费视频网站a站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产在线免费精品| 18+在线观看网站| 国产成人精品福利久久| 全区人妻精品视频| 国产黄频视频在线观看| 日本av免费视频播放| 日韩欧美一区视频在线观看| 亚洲性久久影院| h视频一区二区三区| 中文字幕精品免费在线观看视频 | 乱人伦中国视频| 久久精品国产鲁丝片午夜精品| av视频免费观看在线观看| 久久精品人人爽人人爽视色| 亚洲av中文av极速乱| 成人国产麻豆网| www.色视频.com| 2018国产大陆天天弄谢| 国产免费视频播放在线视频| 婷婷色综合www| 美女国产高潮福利片在线看| 另类精品久久| 亚洲精品一区蜜桃| 欧美 亚洲 国产 日韩一| 侵犯人妻中文字幕一二三四区| 国产精品蜜桃在线观看| 国产精品一区二区在线不卡| 亚洲一级一片aⅴ在线观看| 精品久久国产蜜桃| 国产视频首页在线观看| 久久国产亚洲av麻豆专区| 国语对白做爰xxxⅹ性视频网站| 国产 精品1| 亚洲国产精品国产精品| 黄色一级大片看看| 久久久久久久久久久久大奶| 亚洲精品视频女| 在线观看免费日韩欧美大片| 亚洲精华国产精华液的使用体验| 国产一区二区激情短视频 | 日韩精品有码人妻一区| kizo精华| 欧美日本中文国产一区发布| 最近最新中文字幕大全免费视频 | 老司机亚洲免费影院| 亚洲国产精品成人久久小说| 黄网站色视频无遮挡免费观看| 男女午夜视频在线观看 | 国产日韩欧美亚洲二区| 热re99久久精品国产66热6| 免费av中文字幕在线| 久久ye,这里只有精品| 亚洲 欧美一区二区三区| 亚洲精品国产av成人精品| 麻豆乱淫一区二区| 高清在线视频一区二区三区| 亚洲,欧美精品.| 欧美xxⅹ黑人| 2022亚洲国产成人精品| 日韩av免费高清视频| 日韩av不卡免费在线播放| 午夜免费鲁丝| 久久97久久精品| 少妇人妻精品综合一区二区| 女人被躁到高潮嗷嗷叫费观| 国产乱人偷精品视频| 久久av网站| 纵有疾风起免费观看全集完整版| 国产黄频视频在线观看| 在线观看三级黄色| 久久国产亚洲av麻豆专区| 国产精品欧美亚洲77777| 中文精品一卡2卡3卡4更新| 欧美bdsm另类| 熟女电影av网| 成人毛片60女人毛片免费| 制服丝袜香蕉在线| 亚洲色图 男人天堂 中文字幕 | 欧美bdsm另类| 亚洲精品国产色婷婷电影| 美国免费a级毛片| 纯流量卡能插随身wifi吗| 又黄又爽又刺激的免费视频.| 99国产精品免费福利视频| 国产精品久久久久久久电影| 亚洲久久久国产精品| 免费女性裸体啪啪无遮挡网站| 亚洲天堂av无毛| 一级毛片电影观看| 亚洲精品日本国产第一区| 女人被躁到高潮嗷嗷叫费观| 国产成人av激情在线播放| 婷婷色综合www| 成年av动漫网址| 国产成人一区二区在线| 国产永久视频网站| 国产成人精品婷婷| 大片免费播放器 马上看| 国产69精品久久久久777片| 日韩精品免费视频一区二区三区 | 午夜视频国产福利| 久久国产精品大桥未久av| 欧美人与性动交α欧美精品济南到 | 欧美老熟妇乱子伦牲交| 男人舔女人的私密视频| 午夜免费男女啪啪视频观看| 国产福利在线免费观看视频| 日日撸夜夜添| 丝袜美足系列| 亚洲国产欧美日韩在线播放| 亚洲,欧美精品.| 1024视频免费在线观看| 精品久久蜜臀av无| 性色avwww在线观看| 我要看黄色一级片免费的| 精品一区在线观看国产| 久久国内精品自在自线图片| 97在线人人人人妻| 十八禁网站网址无遮挡| 蜜臀久久99精品久久宅男| 色哟哟·www| 亚洲人与动物交配视频| 精品一区二区三卡| 国产精品 国内视频| 99久久中文字幕三级久久日本| 国产成人精品福利久久| 汤姆久久久久久久影院中文字幕| 国产高清国产精品国产三级| 女性被躁到高潮视频| videos熟女内射| 国产一区二区三区综合在线观看 | 又粗又硬又长又爽又黄的视频| 久久韩国三级中文字幕| 亚洲精品456在线播放app| 久久毛片免费看一区二区三区| 久久久久久久久久人人人人人人| 大香蕉久久成人网| 有码 亚洲区| 中文字幕人妻熟女乱码| 欧美另类一区| 五月天丁香电影| 老女人水多毛片| 最近最新中文字幕大全免费视频 | 欧美日韩视频高清一区二区三区二| 2021少妇久久久久久久久久久| 黑人高潮一二区| 久久精品久久精品一区二区三区| 日韩 亚洲 欧美在线| 久久狼人影院| 寂寞人妻少妇视频99o| av又黄又爽大尺度在线免费看| 一区二区三区乱码不卡18| 国产亚洲av片在线观看秒播厂| 99国产综合亚洲精品| 国产亚洲欧美精品永久| 亚洲成人一二三区av| 亚洲经典国产精华液单| 18禁裸乳无遮挡动漫免费视频| 一级黄片播放器| 国产精品一区二区在线观看99| 大码成人一级视频| av电影中文网址| 亚洲美女搞黄在线观看| 国产白丝娇喘喷水9色精品| 欧美激情国产日韩精品一区| 亚洲,欧美精品.| 汤姆久久久久久久影院中文字幕| 日韩不卡一区二区三区视频在线| 国产免费一级a男人的天堂| 欧美日韩精品成人综合77777| 在线观看国产h片| 9191精品国产免费久久| 亚洲少妇的诱惑av| 午夜福利在线观看免费完整高清在| 中文字幕人妻熟女乱码| 亚洲国产精品一区三区| 热re99久久精品国产66热6| 日韩成人伦理影院| 亚洲精品日韩在线中文字幕| 多毛熟女@视频| 午夜日本视频在线| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久久久av不卡| 久久久久久人妻| 久久人妻熟女aⅴ| av天堂久久9| 国产成人a∨麻豆精品| 欧美国产精品一级二级三级| 国产精品久久久久久精品电影小说| 亚洲丝袜综合中文字幕| 亚洲欧美精品自产自拍| 日韩不卡一区二区三区视频在线| 丰满少妇做爰视频| 日韩电影二区| 超色免费av| 啦啦啦中文免费视频观看日本| 18禁观看日本| 波野结衣二区三区在线| 成人国产av品久久久| www日本在线高清视频| 最近的中文字幕免费完整| 十八禁网站网址无遮挡| 精品国产乱码久久久久久小说| 亚洲婷婷狠狠爱综合网| 日韩视频在线欧美| 国产精品偷伦视频观看了| av国产精品久久久久影院| 天天躁夜夜躁狠狠躁躁| 人妻一区二区av| 日本午夜av视频| 在线观看免费高清a一片| 自线自在国产av| 寂寞人妻少妇视频99o| 97在线视频观看| 欧美成人午夜精品| 亚洲,欧美精品.| 久久免费观看电影| 狠狠婷婷综合久久久久久88av| 一级毛片 在线播放| 亚洲av电影在线观看一区二区三区| 亚洲欧洲日产国产| 国产精品一区www在线观看| 18+在线观看网站| 久久99蜜桃精品久久| 欧美性感艳星| 曰老女人黄片| 男人添女人高潮全过程视频| 色网站视频免费| 精品久久蜜臀av无| 男人爽女人下面视频在线观看| 午夜免费观看性视频| 99香蕉大伊视频| 美女内射精品一级片tv| 少妇的逼好多水| 夫妻午夜视频| 女的被弄到高潮叫床怎么办| 熟女电影av网| av一本久久久久| 亚洲精品国产av蜜桃| 国产精品一区二区在线观看99| 国产一区二区在线观看av| 热99国产精品久久久久久7| 国产伦理片在线播放av一区| 五月伊人婷婷丁香| 一区二区三区四区激情视频| 秋霞伦理黄片| 亚洲伊人久久精品综合| 香蕉国产在线看| 亚洲av中文av极速乱| 美女福利国产在线| 新久久久久国产一级毛片| 久久久久久久久久久久大奶| 久久青草综合色| 美女中出高潮动态图| av在线观看视频网站免费| 亚洲欧美日韩卡通动漫| 男女无遮挡免费网站观看| 美女主播在线视频| 最近手机中文字幕大全| 成人综合一区亚洲| 99热国产这里只有精品6| 午夜久久久在线观看| 一二三四中文在线观看免费高清| 亚洲丝袜综合中文字幕| 精品视频人人做人人爽| 成人毛片a级毛片在线播放| 激情五月婷婷亚洲| 边亲边吃奶的免费视频| 青春草亚洲视频在线观看| 亚洲伊人色综图| 视频在线观看一区二区三区| 卡戴珊不雅视频在线播放| 国产亚洲av片在线观看秒播厂| 国产精品无大码| 日韩欧美精品免费久久| 另类亚洲欧美激情| 精品久久久久久电影网| 曰老女人黄片| av不卡在线播放| 亚洲国产精品999| 一区二区三区精品91| 18在线观看网站| 久久午夜福利片| 久久久欧美国产精品| 日本黄大片高清| 亚洲综合色惰| av国产久精品久网站免费入址| 亚洲国产欧美日韩在线播放| 成人综合一区亚洲| 全区人妻精品视频| 国产一区二区三区av在线| 成人漫画全彩无遮挡| 久久久久国产精品人妻一区二区| 少妇精品久久久久久久| 大陆偷拍与自拍| 视频中文字幕在线观看| 少妇熟女欧美另类| 久久久久久久国产电影| 亚洲av国产av综合av卡| 春色校园在线视频观看| 精品酒店卫生间| 色网站视频免费| 成人国语在线视频| 亚洲精品456在线播放app| 国产永久视频网站| 精品卡一卡二卡四卡免费| 人妻 亚洲 视频| av免费在线看不卡| 丝袜在线中文字幕| 高清黄色对白视频在线免费看| 日韩成人av中文字幕在线观看| 国产日韩欧美亚洲二区| 免费女性裸体啪啪无遮挡网站| 黄色怎么调成土黄色| 亚洲精品久久成人aⅴ小说| 日韩不卡一区二区三区视频在线| 亚洲精品成人av观看孕妇| 男女免费视频国产| 18禁在线无遮挡免费观看视频| 久久毛片免费看一区二区三区| 成人国语在线视频| 亚洲av在线观看美女高潮| 黄色配什么色好看| 伊人久久国产一区二区| 久久这里只有精品19| videos熟女内射| 菩萨蛮人人尽说江南好唐韦庄| 国产欧美日韩一区二区三区在线| 一级,二级,三级黄色视频| 精品卡一卡二卡四卡免费| 亚洲经典国产精华液单| av国产久精品久网站免费入址| 熟女人妻精品中文字幕| 成年女人在线观看亚洲视频| 欧美人与善性xxx| av一本久久久久| 人妻 亚洲 视频| 大片电影免费在线观看免费| 久久国产精品男人的天堂亚洲 | 精品卡一卡二卡四卡免费| 日日啪夜夜爽| 五月开心婷婷网| 天堂8中文在线网| 青春草视频在线免费观看| 国产男人的电影天堂91| 国产亚洲精品第一综合不卡 | 男女边摸边吃奶| 各种免费的搞黄视频| 免费看av在线观看网站| 成人毛片a级毛片在线播放| 一本久久精品| 黄色配什么色好看| 欧美日韩视频高清一区二区三区二| 在线观看免费视频网站a站| 中国三级夫妇交换| 国产精品嫩草影院av在线观看| 欧美最新免费一区二区三区| 黄片播放在线免费| 国产午夜精品一二区理论片| 亚洲一级一片aⅴ在线观看| 中文字幕亚洲精品专区| 国产精品无大码| 97精品久久久久久久久久精品| 亚洲成人av在线免费| 综合色丁香网| 成人午夜精彩视频在线观看| 日本午夜av视频| 免费黄色在线免费观看| 大话2 男鬼变身卡| 亚洲国产最新在线播放| 亚洲国产精品999| 日本与韩国留学比较| 午夜激情av网站| 免费观看在线日韩| 美女福利国产在线| 免费在线观看完整版高清| 国产激情久久老熟女| 中文字幕制服av| 欧美亚洲 丝袜 人妻 在线| 美女内射精品一级片tv| 国产欧美亚洲国产| 男女高潮啪啪啪动态图| 国产精品久久久av美女十八| 亚洲国产av影院在线观看| 三上悠亚av全集在线观看| 男人操女人黄网站| 日韩一区二区三区影片| 久久99一区二区三区| 久久国内精品自在自线图片| 国产一区二区激情短视频 | 久久久久久人妻| 伊人亚洲综合成人网| 男人爽女人下面视频在线观看| 熟女电影av网| 国产精品久久久久久av不卡| 国产一区二区三区综合在线观看 | 久久久久久久亚洲中文字幕| 亚洲伊人久久精品综合| 亚洲国产欧美日韩在线播放| 欧美日韩视频精品一区| 日韩一区二区三区影片| 国产精品 国内视频| 久久久久精品性色| 成人毛片60女人毛片免费| 一本大道久久a久久精品| 黑丝袜美女国产一区| 精品久久久精品久久久| 欧美日韩综合久久久久久| 国产成人免费无遮挡视频| 免费看光身美女| 黄色怎么调成土黄色| 深夜精品福利| 国产精品女同一区二区软件| 日韩在线高清观看一区二区三区| 免费av中文字幕在线| 亚洲精品久久成人aⅴ小说| 在线观看三级黄色| 久久国产精品男人的天堂亚洲 | 亚洲精品456在线播放app| 午夜av观看不卡| 建设人人有责人人尽责人人享有的| 国产有黄有色有爽视频| 午夜老司机福利剧场| 国产高清不卡午夜福利| 大片免费播放器 马上看| 看十八女毛片水多多多| 美女福利国产在线| 亚洲av电影在线进入| 亚洲成人手机| 精品国产露脸久久av麻豆| 高清欧美精品videossex| 国产成人精品久久久久久| 欧美 亚洲 国产 日韩一| 香蕉丝袜av| 亚洲欧美清纯卡通| 亚洲第一区二区三区不卡| 国产精品熟女久久久久浪| 午夜福利在线观看免费完整高清在| 国内精品宾馆在线| 国产精品久久久久久久电影| 99久国产av精品国产电影| 人成视频在线观看免费观看| 国产成人a∨麻豆精品|