• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of Vertical Surroundings on the Dynamic Response of Fixed Square Plate Subjected to Blast Loading

    2021-11-03 14:04:00SchoolofNavalArchitectureOceanandCivilEngineeringShanghaiJiaoTongUniversityShanghai200240China
    船舶力學(xué) 2021年10期

    ,(School of Naval Architecture,Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)

    Abstract:The dynamic response of fixed square plates with different heights of vertical surroundings subjected to blast loading was studied by using numerical simulation.The covering angle concept was proposed to express the change of the surroundings height.By using the control variable method,the dynamic response of 264 square plates with vertical surroundings was analyzed,and the influence of the covering angle,explosive mass,plate thickness as well as relative detonation distance on the explosion impulse and midpoint deflection of the square plates was investigated.The results show that the existence of vertical surroundings will increase the explosion impulse acting on the target plate.When the height of the surroundings reaches up to a critical value,the value of the explosion impulse will reach its maximum and keep a constant.An empirical formula was proposed to predict the dimensionless impulse Iˉ,which is only related to the covering angle and the relative detonation distance.Moreover,another empirical formula was proposed to predict the midpoint deflection-thickness ratio of the plate considering the influence of the vertical surroundings,and its applicability was discussed.

    Key words:vertical surroundings;covering angle;deflection-thickness ratio;dynamic response;blast loading

    0 Introduction

    A solid plate structure is a basic engineering component widely applied in aerospace engineering,marine and offshore infrastructures,which is likely to be subjected to air blast loading caused by missiles or dynamites during its service[1].Therefore,it is vital to gain an understanding on the nonlinear dynamic response of the plate under blast loading,which has been a research hotspot over the past years[2-3].

    The study on the dynamic response of the plate under blast loading mainly focuses on two general topics according to the difference of impact environment:free air blast and inner blast.For the free air blast,the shock wave only causes a one-time impact on the plate before it disperses and vanishes,which has a relatively simple loading process and the research results are relatively rich[4-8].In contrast,the inner blast occurs in a closed space.It means that the shock wave will be reflected by the boundaries several times.Therefore,the loading process of an inner blast should be much more complicated.In addition,during the inner blast,a high pressure,which is called quasistatic pressure,would be maintained over a relatively long time in the closed space.Consequently,the investigation of the dynamic response of structures under inner blast is a tough issue.Related researches mainly focus on the inner blast loading[9-10],deformation[11-13]and failure modes[9,14]of classical structures and the prediction of quasi-static pressure[15]by conducting numerical and experimental investigations.However,theoretical studies in these fields are relatively rare[16].

    In engineering practice,there exists a circumstance that the blast loading is generated in semiclosed field.For instance,the target plate or the detonation point is next to some barriers,as illustrated in Fig.1.A container is partially disclosed under the inner blast,as illustrated in Fig.2.A typical example found in engineering practice is shown in Fig.3,where the explosive is detonated at the vicinity of the stiffeners.The existence of the stiffeners impedes the dispersion of the shock wave,thereby increasing the impact load on the plate[17-18].According to the unified facilities criteria design manual(UFC-3-340-02)[19],this scenario is defined as a fully-vented blast.Similar to an inner blast,multiple reflection and interaction of the shock wave may occur due to the existence of obstacles or other boundaries.But the quasi-static pressure will be absent under the fully-vented blast as the space is not fully confined.The dynamic response of plate under fully-vented blast is worth studying due to its practical significance.However,few studies have been published in this field.Geretto[11]studied the influence of the degrees of confinement on the final deformation of square mild steel plates subjected to blast loading.Equations for predicting the final midpoint deflection of the plates in three degrees of confinement(namely free air,fully vented and fully confined)were presented.Curry[20]investigated the influence of charge backing on the impact loading and deformation of plates subjected to blast waves both numerically and experimentally.It was shown that the explosion impulse applied on the plate increased 5 times when the charge was metal-backed.But the increment of the plate deformation was much less than the one of impulse.

    Fig.1 Barriers near detonation point

    Fig.2 Structure with one or more sides open

    Considering the possible impact environment as shown in Figs.1-3,the present work aims to study the dynamic response of fixed square plates with rigid vertical surroundings subjected to fully-vented blast loading.The influence of the surroundings height,plate thickness,explosive mass and detonation distance on the explosion impulse and final plastic deformation of the plate is systematically analyzed.Empirical expressions for the explosion impulse and midpoint deflection are proposed based on the parametric study.

    1 Simulation

    1.1 Model

    1.1.1 Geometry

    Fig.4 shows the structure of an explosion model which consisted of a square plate with a thickness oftand a half-width ofL=100 mm as well as vertical surroundings with a height ofh.A spherical explosive was placed above the center point of the target plate with a vertical heightH.

    Fig.4 Explosion model

    For convenience,the following parameters were defined:

    Relative detonation distance

    Relative height of surroundings

    The covering angleθis the angle between the vertical direction and the line from the detonation point to the upper end of the vertical surroundings as shown in Fig.4.

    The covering angle reflects the relationship amongh,HandL,which is more efficient than using the absolute heighthalone in the parametric study.The larger the value ofθis,the more the blast wave will act on the whole model.The covering angle without surroundings(h=0)was defined as the air blast covering angleθ0.

    1.1.2 Material

    A bilinear elasto-plastic model was employed to estimate the relationship between the true stress and the equivalent plastic strain of the material.The yielding stress is dependent on the dynamic strain rate following the Cower-Symonds model[21]:

    whereσdis the dynamic yield stress,σythe static yield stress,ε˙the equivalent plastic strain rate,and the materials constantsD=40/s andP=5.The strain hardening is taken into account as following[21]:

    whereσ0is the initial yield stress,Eis the elastic modulus,Ehis the hardening modulus andεpis the equivalent plastic strain.

    The modelling parameters consist of the densityρ=7.85×103kg/m3,the elastic modulusE=2.1×105MPa,the Poisson’s ratioμ=0.3,the static yield stressσy=235 MPa,the hardening modulusEh=250 MPa and the failure strainδ=0.28.

    The air condition is described by the ideal-gas equation,also known as the Gamma equation[21].

    wheree=2.1×105J/kg is the specific internal energy of air,ρ=1.25 kg/m3is the density of air,andγ=1.4 is the specific heat ratio.The explosive charge is simulated as high energy density air,with a density of 1 600 kg/m3and an energy density of 4.2×106J/kg.

    1.2 Validation of the nonlinear finite element results with experiments

    Geretto[11]presented the experimental results of square mild steel plates subjected to air blast loading.The target plates(200 mm×200 mm×3.1 mm)were clamped and bolted between two clamp frames which were then attached to a ballistic pendulum.The blast loads were generated by detonating different mass(30-70 g)of spherical plastic explosives at a constant distance of 100 mm from the target plate.

    Experiments in Ref.[11]were numerically simulated in order to determine a suitable finite element mesh size and validate the accuracy of the present numerical method.The finite element model of the square plate was established by using MSC.Patran.All the six degrees of freedom of four edges were restricted.The Eulerian element was used to simulate explosive charge and air,and the Lagrangian element was applied to simulate the plate.The duration of the simulation time was 0.003 s.The numerical calculations were conducted on MSC.Dytran.The coupling mode was formulated using General Coupling Algorithm,and the ROE solver was used for the solution due to its high calculation precision.It should be noted that the explosive was PE4 in Ref.[11],while the equivalent mass of TNT is used in present simulations.

    The sensitivity of the mesh size is firstly studied.Five different mesh sizes(10 mm×10 mm,8 mm×8 mm,5 mm×5 mm,4 mm×4 mm and 3 mm×3 mm)are considered here.The explosion impulse acting on the plate with five different mesh sizes are 33.35 N·s,35.16 N·s,37.98 N·s,38.95 N·s and 39.96 N·s respectively.The midpoint deflection values are 13.74 mm,13.68 mm,13.63 mm,13.60 mm and 13.58 mm respectively.In order to ensure the result accuracy while the calculation is not time-consuming,the model with the mesh size of 4 mm×4 mm is chosen.The geometry properties and coordinate system of the ship hull plate are shown in Fig.5.The longitudinal,transverse and vertical directions are denoted asx,yandz.

    Fig.5 FE model of the square plate

    The time histories of the explosion impulse and the midpoint deflection of the plate under each case are illustrated in Figs.6-7.The comparison of the numerical results and the experimental results is summarized in Tab.1 and Figs.8-9.It should be noted that the impulse in Tab.1 is the total impulse acting on the square plate when the midpoint deflection of the square plate reaches the maximum value,and the midpoint deflection in Tab.1 is the average value from 0.002 s to 0.003 s.

    Fig.6 Time history of the explosion impulse

    Fig.7 Time history of the midpoint deflection

    Fig.8 Impulse versus the mass of explosive

    Tab.1 Comparison of simulation and experiment results

    Fig.9 Midpoint deflection versus the mass of explosive

    As shown in Tab.1,the errors between the numerical and experimental results are about 2%,indicating that the present numerical method can be applied due to its high accuracy.Then,the verified numerical model was used to study the influence of vertical surroundings on the response of fixed square plate subjected to blast loading.

    1.3 Simulation case design

    Various combinations of relative surrounding height-h,explosive massm,plate thicknesstand relative detonation distance-Hwere considered.A total of 12 cases and 264 FE models were designed since each case had 22 FE models with different relative surroundings heights(-h=0,0.05,0.1,0.2,0.3,…,1.8,1.9,2.0).The simulation cases are detailed in Tab.2.

    Tab.2 Simulation cases

    2 Results and discussion

    2.1 Impulse analysis

    Fig.10 shows the variation of the explosion impulseIwith the covering angleθwhencan be observed that the influence of the covering angleθon the explosion impulse with different explosive masses is similar.The results show that the value ofIincreases with the increase ofθwhenθ<2.2 rad and then approaches a constant value whenθ>2.2 rad.In other words,the explosion impulse increases with the height of surroundings.When the height of surroundings reaches up to a critical value,the value of the explosion impulse reaches the maximum and keeps a constant.This is because the blast wave will interact with the vertical surroundings,causing the wave to reflect and converge to the target square plate,which increases the impulse of the plate.With higher surroundings,there is more reflected and converged shock wave,thereby leading to a greater impulse.However,when the height of the surroundings is larger than the charge height,the reflected shock wave no longer propagates to the target plate,and the converging effect reduces gradually.As the height of the surroundings reaches up to a critical value(θ=2.2 rad),the amount of the reflected and converged shock wave acting on the target plate will not further increase,and the value of the explosion impulse of the target plate will eventually be constant.Fig.10 also reveals that the explosion impulse is dependent on the explosive mass but independent of the plate thickness.

    Fig.10 Impulse versus covering angle under different masses of explosive(

    In order to investigate the influence of surroundings height on the explosion impulse,a dimensionless impulse as following is defined:

    whereI0is the explosion impulse without surroundings(air blasth=0),Iθis the explosion impulse with covering angleθ.Therefore,the dimensionless impulserepresents the enhancement effect of the vertical surroundings on the explosion impulse.

    The variation of the dimensionless impulsewithθwhenis shown in Fig.11.It is seen that all the values of the curves in Fig.11 are almost the same at the sameθafter non-dimensional-ization,which means the dimensionless impulseis independent of explosive mass.This is because the explosive mass affects the absolute value ofIθandI0,but the dimensionless impulseepresents the enhancement ofIθcompared withI0,which is equivalent to an amplification coefficient.Therefore,the enhancement effect of the vertical surroundings on the explosion impulse with different explosive mass is the same once the covering angleθis fixed.

    Results of the dimensionless impulseversus the covering angleθwitht=3 mm andm=60 g for different relative detonation distanceare presented in Fig.12.It is seen that the value ofincreases with the increase ofwhenθis fixed.But the trend of the dimensionless impulsewith the covering angleθf(wàn)or differentis similar to that shown in Fig.11.This indicates thatcan be expressed as a function ofθand

    Fig.11 Dimensionless impulse versus covering angle with different mass of explosive

    Fig.12 Dimensionless impulse versus covering angle with t=3 mm and m=60 g for different

    The expression for the dimensionless impulsecan be derived based on Fig.12.Whenθ<2.2 rad,is a power function ofθ;whenθ≥2.2 rad,is a constant.

    This gives the following expression:

    whereAare coefficients related to the relative detonation distance

    The coefficients for differentcan be obtained by using data-fitting method based on data points in Fig.12,and the corresponding equations and fitting curves are shown in Fig.13.

    Fig.13 Fitting curves and corresponding equations for different(t=3 mm,m=60 g)

    According to data-fitting results,the coefficients in Eq.(9)can be expressed as:

    The final form of the dimensionless impulse is obtained by substituting Eq.(10)into Eq.(9).

    The obtained empirical formula Eq.(11)was used to predict the dimensionless impulse of the fixed square plate when1.6 with differentThe dimensionless impulseobtained from simulation and empirical formula results are compared in Tab.3.It can be found that the error of the results obtained from the two methods is relatively large whenis equal to 0.05(about 9%)and 0.1(about 10%),but is less than 6%in other data points.This indicates that Eq.(11)can meet the accuracy requirements of engineering application.Therefore,the proposed empirical formula can be used to predict the explosion impulse of the square plate with vertical surroundings subjected to blast loading.Once the explosion impulseI0under air blast(without surroundings)is estimated by simulation,experiment or theoretical method,the proposed empirical formula which is only related to explosion impulseI0can be used to predict the explosion impulse.

    Tab.3 Comparison ofbetween the empirical formula predictions and the simulation results with=1.6

    Tab.3 Comparison ofbetween the empirical formula predictions and the simulation results with=1.6

    ?

    Tab.3(Continued)

    2.2 Midpoint deflection

    Based on experimental results,Nurick and Martin[2-3]proposed a dimensionless damage numberφqto characterize the explosion impulse received by a rectangular plate under air blast.

    whereIis the explosion impulse of the plate,tis the plate thickness,LandBare the plate length and plate width respectively,ρis the density andσyis the static yield stress of the material.The relation between midpoint deflection-thickness ratio(δ/t)and the dimensionless damage numberφqis as follow:

    The midpoint deflection-thickness ratio is linearly proportional toφq,so a more general form is

    Therefore,the coefficientsKcan be expressed as

    Eq.(15)was used to predict the value ofK.The variation of the coefficientKwith the covering angleθf(wàn)or different relative detonation distanceis shown in Fig.14.It can be seen that the value ofKdecreases with the increase ofθandWhenKis independent of the explosive mass,but is just a function ofθ.This indicates thatKcan be expressed as a function ofθand

    According to Fig.14,the coefficientKcan be expressed as

    Eventually,substituting Eq.(17)into Eq.(14),the final form of the empirical formula for midpoint deflection-thickness ratio is as follow:

    sults agreed well with the simulation results,as shown in Fig.15 and Tab.4.It can be seen from Tab.4 that the maximum error ofδ/tby using the empirical formula and simulation is about 7%,implying a satisfactory prediction accuracy can be obtained by use of proposed empirical formula for computing the midpoint deflection of a plate subjected to fully-vented air blast.

    Tab.4 Comparison of δ/t between the empirical formula predictions andthe simulation results with=1.6

    Tab.4 Comparison of δ/t between the empirical formula predictions andthe simulation results with=1.6

    -h 0 δ/t Error/%1.195-2.602-7.177-4.598 1.560 5.210 6.024 5.190 3.293 1.179-0.770-2.247-2.885-2.530-1.353-0.010 0.480 0.215-0.023-0.215-0.377-0.532 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 θ/rad 0.559 0.582 0.607 0.663 0.729 0.806 0.896 1.002 1.123 1.261 1.412 1.571 1.730 1.881 2.018 2.140 2.246 2.336 2.413 2.478 2.535 2.583 FE method 2.635 3.032 3.410 4.089 4.794 5.597 6.551 7.618 8.765 9.904 10.955 11.838 12.477 12.844 12.982 13.009 13.011 13.010 13.010 13.009 13.008 13.009 Empirical formula 2.666 2.953 3.165 3.901 4.868 5.888 6.946 8.013 9.053 10.021 10.871 11.572 12.117 12.519 12.806 13.007 13.073 13.038 13.007 12.981 12.959 12.940

    Fig.15 Comparison of K between the empirical formula predictions and the simulation results with

    2.3 Scope of applicability

    The coefficientKobtained from simulation results and that from Eq.(17)with different explosive masses whenare compared in Fig.16.It is shown that Eq.(17)predicts the coefficientK

    Fig.16 Comparison of K between the empirical formula and the simulation results for different explosive masses

    with a good accuracy over a certain range of explosive mass,e.g.m=50 g,60 g,and 70 g.When the mass of explosive is small,the error becomes significant.For instance,the relative large error can be seen at a low covering angle(θ<0.9 rad)whenm=40 g.Whenm=30 g,the prediction result is significantly unreliable withθ<1 rad,but is accurate when the covering angleθis larger than 1 rad.

    Fig.17 shows the relationship between the midpoint deflection-thickness ratio and the dimen-sionless damage number of the fixed square plate without surroundings under air blast withIt can be found that the deformation of the square plate can be divided into two stages with the increase of impact load:bending deformation and tensile deformation.An exponential relationship between bending deformation and dimensionless damage number can be drawn,while the relationship between the tensile deformation and dimensionless damage number is linear as shown in Eq.(14).This explains why the empirical formula underestimates the value of the coefficientKwhen the explosive mass is small.This is because the plate deformation is in the bending deformation state when the impact load is small.The linear relationship in Eq.(14)can not predict the exponential relationship accurately.Therefore,the proposed formula Eq.(18),which is based on Eq.(14),is only suitable for the tensile deformation stage when the impact load is relatively large.For the bending deformation stage,the problem needs to be treated separately and another formula should be derived.

    Fig.17 Ratio of deflectionand thicknessversus dimensionlessdamage number(1.0,h=0)

    3 Conclusions

    A series of simulations were carried out to investigate the effect of vertical surroundings on the dynamic response of a fixed square plate subjected to fully-vented blast.The influence of the parameters including covering angleθ,explosive massm,plate thicknesstand relative detonation distanceon the explosion impulse and midpoint deflection were evaluated.Based on the investigations,the following conclusions are drawn:

    (1)The existence of vertical surroundings leads to an increase of the explosion impulse acting on the target plate.The explosion impulseIincreases with the height of the surroundings.Once the height reaches up to a critical value(θ=2.2 rad),the value ofIreaches its maximum value and keeps a constant.It should be noted that the effect of plate thickness on the impulseIcan be ignored.

    (2)The dimensionless explosion impulseis a function of the covering angleθand the relative detonation distancebut is independent of the explosive mass and plate thickness.An empirical formula was proposed to predict dimensionless explosion impulse.

    (3)An improved empirical formula considering the influence of covering angleθand the relative detonation distanceis proposed to predict the midpoint deflection-thickness ratio of the fixed square plate with vertical surroundings under fully-vented blast load.

    (4)The applicability of the proposed deflection-thickness ratio empirical formula is discussed.The deformation of the plate can be divided into two stages with the increase of impact load:bending deformation and tensile deformation.The present empirical formula is only applicable in the tensile deformation stage.

    欧美成人免费av一区二区三区| 欧美日本视频| 久久久国产成人免费| 麻豆国产av国片精品| 三级毛片av免费| 亚洲欧美中文字幕日韩二区| 99久久精品国产国产毛片| 卡戴珊不雅视频在线播放| 男人和女人高潮做爰伦理| 亚洲国产色片| 免费看av在线观看网站| 亚洲欧美精品综合久久99| 国产av一区在线观看免费| av在线老鸭窝| 精品久久久久久久人妻蜜臀av| 精品少妇黑人巨大在线播放 | 亚洲四区av| 国产亚洲精品久久久com| 日本爱情动作片www.在线观看 | 国产 一区 欧美 日韩| 日本黄色视频三级网站网址| 国产精品久久久久久久久免| 国产黄色视频一区二区在线观看 | 国产精品99久久久久久久久| 久久久久国产网址| 日本成人三级电影网站| 五月伊人婷婷丁香| 国产精品免费一区二区三区在线| 国产一区二区三区在线臀色熟女| 日韩av在线大香蕉| 国产视频内射| 亚洲欧美精品综合久久99| 又爽又黄a免费视频| 99久久精品一区二区三区| 中文字幕免费在线视频6| 蜜桃亚洲精品一区二区三区| 国产 一区 欧美 日韩| 在线播放无遮挡| 三级男女做爰猛烈吃奶摸视频| 国产爱豆传媒在线观看| 精品久久久久久久久亚洲| 女生性感内裤真人,穿戴方法视频| 亚洲七黄色美女视频| 午夜福利视频1000在线观看| 能在线免费观看的黄片| 久99久视频精品免费| 少妇人妻精品综合一区二区 | 91在线精品国自产拍蜜月| 午夜a级毛片| 亚洲最大成人av| 男插女下体视频免费在线播放| 可以在线观看的亚洲视频| 欧美另类亚洲清纯唯美| 国产激情偷乱视频一区二区| 欧美日韩综合久久久久久| 99国产极品粉嫩在线观看| 久久这里只有精品中国| 成人漫画全彩无遮挡| 美女cb高潮喷水在线观看| 桃色一区二区三区在线观看| 亚洲av不卡在线观看| 青春草视频在线免费观看| 黄色配什么色好看| 变态另类成人亚洲欧美熟女| 此物有八面人人有两片| 免费av毛片视频| 俄罗斯特黄特色一大片| 午夜亚洲福利在线播放| 欧美成人一区二区免费高清观看| 午夜免费激情av| 午夜福利视频1000在线观看| 老司机影院成人| 欧美xxxx性猛交bbbb| 国产成人影院久久av| 美女 人体艺术 gogo| 三级毛片av免费| av黄色大香蕉| 小蜜桃在线观看免费完整版高清| h日本视频在线播放| 国产 一区 欧美 日韩| 日本一本二区三区精品| 国产欧美日韩精品一区二区| 国产精品99久久久久久久久| 国产成人精品久久久久久| 国产不卡一卡二| 欧美一区二区国产精品久久精品| 99热只有精品国产| 91在线精品国自产拍蜜月| 国产精品久久视频播放| 亚洲四区av| 九九爱精品视频在线观看| 人人妻人人看人人澡| 小说图片视频综合网站| 国产一区二区三区av在线 | av福利片在线观看| 一个人看视频在线观看www免费| 国产成人精品久久久久久| 黄片wwwwww| 少妇的逼好多水| 久久韩国三级中文字幕| 熟女人妻精品中文字幕| 久久久久久久久久成人| 国产伦精品一区二区三区视频9| videossex国产| 国产又黄又爽又无遮挡在线| 欧美+亚洲+日韩+国产| av在线天堂中文字幕| a级毛色黄片| 国产精品亚洲美女久久久| 搡老岳熟女国产| 免费人成视频x8x8入口观看| 黄色欧美视频在线观看| 无遮挡黄片免费观看| 两个人视频免费观看高清| 亚洲人成网站在线播| 精品不卡国产一区二区三区| 久久久久久国产a免费观看| 在线看三级毛片| 欧美绝顶高潮抽搐喷水| 香蕉av资源在线| 99久国产av精品国产电影| 成人综合一区亚洲| 人人妻人人澡欧美一区二区| 一边摸一边抽搐一进一小说| 看片在线看免费视频| 国产男靠女视频免费网站| 免费观看人在逋| 国产91av在线免费观看| 12—13女人毛片做爰片一| 久久人人爽人人爽人人片va| 成人鲁丝片一二三区免费| 国产伦在线观看视频一区| 欧美日本视频| 少妇的逼好多水| 免费看美女性在线毛片视频| 久久综合国产亚洲精品| 毛片女人毛片| 国产精品一区www在线观看| 国产淫片久久久久久久久| 高清毛片免费观看视频网站| 亚洲av一区综合| 国产亚洲av嫩草精品影院| 99久国产av精品| 成人精品一区二区免费| 精品熟女少妇av免费看| 亚洲欧美成人综合另类久久久 | 亚洲精品国产成人久久av| 久久精品国产亚洲网站| av天堂中文字幕网| 激情 狠狠 欧美| 免费看日本二区| h日本视频在线播放| 国产不卡一卡二| 成人特级av手机在线观看| 黄色配什么色好看| 精品一区二区三区人妻视频| 欧美人与善性xxx| 日韩人妻高清精品专区| 少妇丰满av| 亚洲av第一区精品v没综合| 精品人妻熟女av久视频| 天堂网av新在线| 国产综合懂色| 国产激情偷乱视频一区二区| 网址你懂的国产日韩在线| 国产不卡一卡二| 69av精品久久久久久| 一级av片app| 亚洲色图av天堂| av在线蜜桃| 搡老岳熟女国产| 美女内射精品一级片tv| 国产美女午夜福利| 成人精品一区二区免费| 国产爱豆传媒在线观看| 久久久久久国产a免费观看| 国产亚洲精品久久久com| 国产成人a区在线观看| 1000部很黄的大片| 九九热线精品视视频播放| 91在线精品国自产拍蜜月| 麻豆成人午夜福利视频| 国产大屁股一区二区在线视频| 亚洲av二区三区四区| 久久婷婷人人爽人人干人人爱| 免费人成视频x8x8入口观看| 欧美成人免费av一区二区三区| 91狼人影院| 国产男靠女视频免费网站| 一夜夜www| 中出人妻视频一区二区| 国产精品不卡视频一区二区| 日本黄色视频三级网站网址| 免费av毛片视频| 给我免费播放毛片高清在线观看| aaaaa片日本免费| 青春草视频在线免费观看| 在线a可以看的网站| 国产精品av视频在线免费观看| 亚洲国产精品成人综合色| 晚上一个人看的免费电影| 熟妇人妻久久中文字幕3abv| 亚洲国产精品sss在线观看| 91久久精品国产一区二区成人| 毛片一级片免费看久久久久| 午夜免费男女啪啪视频观看 | 女人被狂操c到高潮| 国产亚洲精品久久久久久毛片| 97在线视频观看| 特大巨黑吊av在线直播| 国内少妇人妻偷人精品xxx网站| 69av精品久久久久久| 国产av麻豆久久久久久久| 亚洲精品成人久久久久久| 久久午夜亚洲精品久久| 婷婷精品国产亚洲av| 日韩强制内射视频| 精品一区二区三区av网在线观看| 亚洲美女视频黄频| 成年女人毛片免费观看观看9| 国产成人精品久久久久久| 一夜夜www| 国产精品电影一区二区三区| 免费av毛片视频| 国产精品美女特级片免费视频播放器| av天堂中文字幕网| 深爱激情五月婷婷| 成人欧美大片| 丰满人妻一区二区三区视频av| 可以在线观看的亚洲视频| 在线国产一区二区在线| 99久久中文字幕三级久久日本| 国产69精品久久久久777片| 亚洲第一区二区三区不卡| 亚洲av第一区精品v没综合| 青春草视频在线免费观看| 最新中文字幕久久久久| a级毛色黄片| 亚洲中文字幕一区二区三区有码在线看| 亚洲av一区综合| 中文字幕久久专区| 久久久久久伊人网av| 最新在线观看一区二区三区| 免费在线观看影片大全网站| 99国产精品一区二区蜜桃av| 欧美人与善性xxx| 五月伊人婷婷丁香| 久久久国产成人免费| 国产伦一二天堂av在线观看| 久久久成人免费电影| 午夜爱爱视频在线播放| 人人妻人人看人人澡| 日产精品乱码卡一卡2卡三| 亚洲性夜色夜夜综合| 国产一区二区三区在线臀色熟女| 啦啦啦韩国在线观看视频| 午夜免费男女啪啪视频观看 | 2021天堂中文幕一二区在线观| 少妇裸体淫交视频免费看高清| 欧美丝袜亚洲另类| 免费看av在线观看网站| 亚洲成av人片在线播放无| ponron亚洲| 丰满人妻一区二区三区视频av| 国内揄拍国产精品人妻在线| 婷婷亚洲欧美| 日韩欧美国产在线观看| 人妻制服诱惑在线中文字幕| 成人av一区二区三区在线看| 色综合站精品国产| 最近手机中文字幕大全| 成人漫画全彩无遮挡| 搞女人的毛片| 色综合亚洲欧美另类图片| 国产亚洲av嫩草精品影院| 色视频www国产| 亚洲,欧美,日韩| 亚洲一区二区三区色噜噜| 99久久中文字幕三级久久日本| av在线播放精品| 亚洲av免费高清在线观看| 亚洲一区高清亚洲精品| 黄色一级大片看看| 在线免费观看的www视频| 午夜爱爱视频在线播放| 国产伦一二天堂av在线观看| 一区福利在线观看| 99久久精品国产国产毛片| av专区在线播放| 2021天堂中文幕一二区在线观| 日韩精品有码人妻一区| 欧美成人一区二区免费高清观看| 久久人妻av系列| 成年女人看的毛片在线观看| a级毛片免费高清观看在线播放| 成年免费大片在线观看| 波野结衣二区三区在线| 亚洲国产欧洲综合997久久,| 精品午夜福利视频在线观看一区| 国产 一区精品| 三级毛片av免费| 国产精品一区二区性色av| 亚洲精品影视一区二区三区av| 亚洲无线观看免费| 久久久精品欧美日韩精品| 黄色欧美视频在线观看| 国产男人的电影天堂91| 日韩大尺度精品在线看网址| 免费电影在线观看免费观看| 蜜桃久久精品国产亚洲av| 成人三级黄色视频| 日本黄色片子视频| 久久欧美精品欧美久久欧美| 国产麻豆成人av免费视频| 亚洲电影在线观看av| 国模一区二区三区四区视频| 波野结衣二区三区在线| 欧美xxxx黑人xx丫x性爽| 久久鲁丝午夜福利片| a级毛片免费高清观看在线播放| 中文字幕久久专区| 国产黄a三级三级三级人| 国产综合懂色| 日韩三级伦理在线观看| 精品久久久噜噜| 免费电影在线观看免费观看| 国产色爽女视频免费观看| 免费av毛片视频| 男人狂女人下面高潮的视频| 亚洲乱码一区二区免费版| 一级黄片播放器| 日韩av不卡免费在线播放| 在现免费观看毛片| 午夜福利在线观看免费完整高清在 | 啦啦啦观看免费观看视频高清| 色吧在线观看| 淫妇啪啪啪对白视频| 国产私拍福利视频在线观看| 别揉我奶头 嗯啊视频| 久久精品久久久久久噜噜老黄 | 国产美女午夜福利| 此物有八面人人有两片| 国产视频内射| 久久国产乱子免费精品| 亚洲精品456在线播放app| 午夜福利在线在线| 热99re8久久精品国产| 成人亚洲欧美一区二区av| 一区二区三区免费毛片| 国产视频一区二区在线看| 91久久精品国产一区二区成人| 少妇熟女aⅴ在线视频| 丰满乱子伦码专区| 中文字幕av在线有码专区| 女生性感内裤真人,穿戴方法视频| 免费观看精品视频网站| 国产男人的电影天堂91| 日日摸夜夜添夜夜添小说| 免费高清视频大片| 国产伦精品一区二区三区四那| 免费高清视频大片| 国产在线男女| a级毛片免费高清观看在线播放| 天堂av国产一区二区熟女人妻| 国产女主播在线喷水免费视频网站 | 1000部很黄的大片| 久久综合国产亚洲精品| 极品教师在线视频| 午夜福利在线观看免费完整高清在 | 国产精品一区二区性色av| 久久6这里有精品| 真人做人爱边吃奶动态| www日本黄色视频网| 久久人人爽人人片av| 91午夜精品亚洲一区二区三区| 可以在线观看的亚洲视频| 男女啪啪激烈高潮av片| 在线免费观看不下载黄p国产| 波多野结衣高清无吗| 麻豆乱淫一区二区| 色在线成人网| 午夜福利成人在线免费观看| 九九久久精品国产亚洲av麻豆| 蜜桃久久精品国产亚洲av| 日韩制服骚丝袜av| 欧美国产日韩亚洲一区| 日韩欧美一区二区三区在线观看| 老女人水多毛片| 国产一区亚洲一区在线观看| 欧美最黄视频在线播放免费| 麻豆国产97在线/欧美| 国产高清三级在线| 国产成人福利小说| 午夜日韩欧美国产| 偷拍熟女少妇极品色| 欧美+日韩+精品| 欧美日韩乱码在线| 国产精品乱码一区二三区的特点| 搡老妇女老女人老熟妇| 色综合色国产| 国产精品久久久久久av不卡| 黄色配什么色好看| 高清毛片免费观看视频网站| 91久久精品电影网| 午夜激情欧美在线| 亚洲精品一区av在线观看| 啦啦啦啦在线视频资源| 18禁黄网站禁片免费观看直播| 亚洲av不卡在线观看| avwww免费| 中文字幕人妻熟人妻熟丝袜美| 我的女老师完整版在线观看| 久久久久精品国产欧美久久久| 久久久久久久久大av| 最近最新中文字幕大全电影3| 国产精品人妻久久久影院| 亚洲18禁久久av| 在线免费十八禁| 伦精品一区二区三区| 成人高潮视频无遮挡免费网站| 亚洲精品一区av在线观看| 最近手机中文字幕大全| 亚洲最大成人中文| 色综合站精品国产| 日韩大尺度精品在线看网址| 亚洲av免费在线观看| 尤物成人国产欧美一区二区三区| 日韩中字成人| 久久99热6这里只有精品| 国产精品福利在线免费观看| 免费av毛片视频| 久久人人爽人人片av| 人人妻人人澡人人爽人人夜夜 | 午夜福利在线观看免费完整高清在 | 一a级毛片在线观看| 国产精品一区二区三区四区久久| 99久久无色码亚洲精品果冻| 久久久久国产网址| 黄片wwwwww| 久久99热6这里只有精品| 欧美高清性xxxxhd video| 国产精品久久电影中文字幕| 不卡视频在线观看欧美| 久久精品影院6| 国产成人a区在线观看| 18禁黄网站禁片免费观看直播| 最近2019中文字幕mv第一页| 欧美日韩一区二区视频在线观看视频在线 | 一区福利在线观看| 99久国产av精品国产电影| 国产精品人妻久久久久久| 日本爱情动作片www.在线观看 | 精品一区二区三区视频在线| 欧美日本亚洲视频在线播放| 色尼玛亚洲综合影院| 91麻豆精品激情在线观看国产| 午夜精品一区二区三区免费看| 久久久久久国产a免费观看| 国产日本99.免费观看| 亚洲av五月六月丁香网| 日韩亚洲欧美综合| 村上凉子中文字幕在线| 国产久久久一区二区三区| 久久久久久久久大av| 亚洲丝袜综合中文字幕| 我要搜黄色片| 九九在线视频观看精品| 久久精品夜色国产| 一区福利在线观看| 啦啦啦韩国在线观看视频| 中国国产av一级| 精品福利观看| 国产精品嫩草影院av在线观看| 亚洲精品亚洲一区二区| 校园春色视频在线观看| 亚洲av免费在线观看| 国产亚洲精品综合一区在线观看| 欧美日韩乱码在线| 夜夜看夜夜爽夜夜摸| 三级毛片av免费| 看非洲黑人一级黄片| 在线播放国产精品三级| 精品久久久久久久久av| 人妻制服诱惑在线中文字幕| 午夜精品在线福利| 国产精品无大码| 中文字幕人妻熟人妻熟丝袜美| 国产精品日韩av在线免费观看| 成人永久免费在线观看视频| 中国美女看黄片| 国内少妇人妻偷人精品xxx网站| 久久草成人影院| 丰满的人妻完整版| 成人欧美大片| 日韩av在线大香蕉| ponron亚洲| 亚洲av不卡在线观看| 国产高清视频在线观看网站| 熟妇人妻久久中文字幕3abv| 国产亚洲av嫩草精品影院| 亚洲真实伦在线观看| 蜜桃久久精品国产亚洲av| 国产国拍精品亚洲av在线观看| 国产成人一区二区在线| 日本一二三区视频观看| 午夜福利18| 国产 一区 欧美 日韩| 我要看日韩黄色一级片| 国产精品亚洲一级av第二区| 国产精品嫩草影院av在线观看| 亚洲自拍偷在线| 丝袜喷水一区| 欧美日韩乱码在线| 不卡一级毛片| 又爽又黄无遮挡网站| 日韩欧美三级三区| 欧美高清成人免费视频www| av卡一久久| ponron亚洲| 午夜精品国产一区二区电影 | 搡老妇女老女人老熟妇| 日本黄大片高清| 91精品国产九色| 午夜a级毛片| 大又大粗又爽又黄少妇毛片口| 久久综合国产亚洲精品| 精品一区二区三区视频在线观看免费| 女人被狂操c到高潮| 黑人高潮一二区| 搞女人的毛片| 国产欧美日韩一区二区精品| 婷婷色综合大香蕉| 99热精品在线国产| 亚洲国产精品成人综合色| 欧美一区二区精品小视频在线| 欧美另类亚洲清纯唯美| 长腿黑丝高跟| 老熟妇乱子伦视频在线观看| 狂野欧美白嫩少妇大欣赏| 草草在线视频免费看| 午夜免费男女啪啪视频观看 | 国产高清视频在线播放一区| 三级毛片av免费| 少妇人妻一区二区三区视频| 国产精品久久电影中文字幕| 黄色日韩在线| 日韩欧美三级三区| 国产探花在线观看一区二区| 成人漫画全彩无遮挡| 又黄又爽又免费观看的视频| 亚洲五月天丁香| 国语自产精品视频在线第100页| 欧美xxxx黑人xx丫x性爽| 人妻夜夜爽99麻豆av| 秋霞在线观看毛片| 精品久久久久久久久亚洲| 亚洲第一电影网av| 亚洲av.av天堂| 亚洲在线观看片| 91久久精品国产一区二区三区| 欧美+日韩+精品| 免费搜索国产男女视频| h日本视频在线播放| 久久午夜福利片| h日本视频在线播放| 精品欧美国产一区二区三| 蜜臀久久99精品久久宅男| 色视频www国产| 日韩中字成人| 国产大屁股一区二区在线视频| av免费在线看不卡| 国产成人a区在线观看| 色综合站精品国产| 国产成人一区二区在线| 一夜夜www| 又黄又爽又免费观看的视频| 久久天躁狠狠躁夜夜2o2o| 国产视频一区二区在线看| 国产三级中文精品| 桃色一区二区三区在线观看| 欧美日韩精品成人综合77777| 久久精品国产亚洲av天美| 色综合站精品国产| 高清午夜精品一区二区三区 | 99热这里只有是精品在线观看| 国产精品免费一区二区三区在线| 欧美+日韩+精品| 亚洲欧美中文字幕日韩二区| 精品一区二区免费观看| 久久久久久久久久成人| 国产真实乱freesex| 久久99热这里只有精品18| 久久久久免费精品人妻一区二区| 国产亚洲av嫩草精品影院| 少妇丰满av| 国产亚洲精品av在线| 亚洲欧美日韩高清专用| 国产精品av视频在线免费观看| 日日摸夜夜添夜夜添av毛片| 91久久精品国产一区二区成人| 精品熟女少妇av免费看| 国产中年淑女户外野战色| 人妻夜夜爽99麻豆av| 少妇丰满av| 成年av动漫网址| 亚洲av.av天堂| 中文在线观看免费www的网站| 亚州av有码| 看黄色毛片网站| 亚洲av第一区精品v没综合| 国产视频一区二区在线看| 熟女人妻精品中文字幕| 五月伊人婷婷丁香| 中文字幕人妻熟人妻熟丝袜美| 久久久精品94久久精品|