• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamics and synchronization in a memristor-coupled discrete heterogeneous neuron network considering noise

    2024-02-29 09:19:52XunYan晏詢ZhijunLi李志軍andChunlaiLi李春來
    Chinese Physics B 2024年2期

    Xun Yan(晏詢), Zhijun Li(李志軍),?, and Chunlai Li(李春來)

    1School of Automation and Electronic Information,Xiangtan University,Xiangtan 411105,China

    2School of Computer Science&School of Cyberspace Science,Xiangtan University,Xiangtan 411105,China

    Keywords: heterogeneous neuron network,discrete memristor,coexisting attractors,synchronization,noise

    1.Introduction

    Studying neuromorphic behaviors of neurons is favorable to help us to understand more about the operating mechanism of the brain.Therefore, establishing appropriate neuron models to simulate the dynamic behavior of biological neurons has received widespread attention.[1–3]The Hodgkin–Huxley (HH) model was the first established neuron paradigm,[4]which demonstrates the connection between the membrane voltage of neurons and the membrane currents of squid giant axons.However, the HH model is formulated by seven coupled ordinary differential equations and includes four ionic channels,which lead to its complexity.Some simplified models, thus, have been proposed to simulate the neuromorphic behaviors of the biological neurons, such as FitzHugh–Nagumo(FHN)model,[5–8]Hindmarsh–Rose(HR)model,[9–13]Morris–Lecar(ML),[14–18]etc.These continuous neuron models have played an important role in understanding the generation and transmission of action potential.[19–23]

    Compared with continuous neuron models,discrete neuron models are more computationally efficient, especially in the modeling of large-scale neuron networks.The modeling of discrete neurons and the analysis of their firing patterns have become a hot topic in the field of neurodynamics in recent years.[24–27]Due to the non-volatile, nanoscale,memory properties of memristors,and the similarity between nano-scale moving particles in memristors and mobile neurotransmitters in biological synapses, memristors are often considered as ideal candidates for simulating synapses.[28–32]For example, Baoet al.[33]established a discrete neuron network containing two identical Rulkov neurons, and regarded the current flowing through the memristor as the electromagnetic induction current to analyze the effect of electromagnetic induction on the dynamic behavior of neuron network.Under the influence of the electromagnetic induction current,the model can achieve complete synchronization and lag synchronization.The synchronous firing and chimera state were observed in a ring neuron network constructed with memristorcoupled discrete Chialvo neurons.[34]Mahtab Mehrabbeiket al.[35]studied the memristive Rulkov neuron maps and analyzed the synchronous dynamics under electrical and chemical coupling.Their results shows that two m-Rulkov neurons can achieve synchronization only when electrically coupled,but not when chemically coupled.Liet al.[36]used discrete locally active memristor to construct a logarithmic map, and the coexisting attractors were observed.

    Among many neuron models, the Izhikevich model simplifies the HH model[37–40]with consideration of biological concepts, which is capable of simulating almost all spikes of cortical neurons.[41,42]Furthermore, the Izhikevich model outperforms other models in terms of computational efficiency.[43–46]The Chialvo model is one of the earliest discrete neuron models,[47,48]and it was attempted to study the synchronous rhythmic activity in some areas of mammals at that time,[48]including the cortical spindle rhythms, hyppocampal rhythms, and somatomotor cortices.The Chialvo model can demonstrate key patterns of neuronal activities,such as spiking,excitations,bursting,and so on.

    In fact, the brain is a very complex system, which can be divided into many brain regions,including the motor area,sensory area, visual area, auditory area and association area,just to name a few.[49]The neurons in different brain regions are independent but interact with each other, and jointly control neural activities of the human body.[50,51]Therefore,neuron networks composed of heterogeneous neurons is more in line with biological reality.However, to our knowledge, previous studies on discrete neuron networks mainly focus on homogeneous neurons,while neuron networks composed of heterogeneous neurons coupled by memristors are rarely studied.To further understand the operating mechanism of the brain,it is essential and meaningful to study the dynamic behavior of neuron networks constructed with heterogeneous neurons distributed in different brain regions.[52–54]In addition,in the biological nervous systems, a large number of neurons work together,which inevitably leads to changes in the surrounding physiological environment.Therefore, noise is ubiquitous in the biological nervous systems.[44]However,it is currently unclear how noise affects the information processing mechanism of neurons, so the impact of noise on the firing activities of neurons cannot be ignored.[55–57]

    In the present study,we propose a new discrete locally active memristor and use it to connect the discretized Izhikevich and Chialvo neurons.Thus, a heterogeneous discrete neuron network model coupled by the discrete locally active memristor is constructed.The dynamics of the neuron network are analyzed, and the synchronous behavior between two heterogeneous neurons are revealed.Finally,Gaussian noise is added to the model to analyze the impact of noise on firing activities of neuron network.

    The rest of this paper is organized as follows.Section 2 proposes a new four-stable locally active discrete memristor and studies its properties in detail.In Section 3, a heterogeneous discrete neuron network model is developed by using the discrete memristor to bridge two heterogeneous neurons and the equilibrium points of the model and their corresponding stabilities are theoretically analyzed.The dynamic behavior and coexistence behavior of neuron networks are revealed in Section 4.Section 5 studies the effect of adding noise on the phase synchronization of neuron networks.Finally,the study is concluded in Section 6.

    2.Four-stable locally-active memristor model and characteristics

    2.1.Memristor model

    The discrete memristor proposed in this paper can be described as follows:

    wherev,i,andw(φ)are the input voltage,output current,and admittance function,respectively.F(φ,v)is the internal state equation of the memristor, which consists of a sign function related to the magnetic flux and voltage, andα,β,λare the three parameters of the memristor.In this paper,α= 0.1,β=0.001,andλ=9.

    2.2.Pinched hysteresis loops

    A periodic voltage signalv(n)=Asin(2πωT(n)) is applied to the memristor, and the initial value of the memristor is selected as 1.By varying the amplitudeAand frequencyω, the memristor shows pinched hysteresis loops on thev–iplane,as shown in Fig.1.

    It can be seen from Fig.1 that all the pinched hysteresis loops pass through the origin.When the frequencyω=0.0001 is fixed,the area of the pinched hysteresis loop lobe increases monotonously as the excitation amplitudeAincreases.Once the amplitudeA=20 is fixed,the pinched hysteresis loop lobe area decreases monotonously with the increase of excitation frequencyω.Thus,the proposed memristor satisfies the three characteristic fingerprints of a generalized memristor.[58]

    Fig.1.Pinched hysteresis loops of locally active discrete memristor.(a) Amplitude-dependent pinched hysteresis loops with A = 10, 15,and 20.(b)Frequency-dependent pinched hysteresis with ω =0.0001,0.0002,and 0.0005.

    2.3.Nonvolatility and local activity

    Non-volatility means that a memristor can maintain its latest memductance value when the power is off, which can be verified by the power off plot (POP).If there are multiple negative slope intersections between the POP and the zero horizontal axis,then the memristor is non-volatile.Letvn=0 in Eq.(1),the resulting POP is shown in Fig.2.

    From Fig.2, it is observed that there are seven intersection points where the POP intersects the?axis, namely,Q1(-1,0),Q2(0,0),Q3(1,0),Q4(2,0),Q5(3,0),Q6(4,0), andQ7(5,0), among which the intersections with a negative slope are the stable equilibrium points, and the other intersections are unstable points.Therefore, the proposed memristor has four stable equilibrium pointsQ1,Q3,Q5, andQ7.When the power is off, the state?will trend to one of the four stable equilibrium points,depending on the attractive domain in which the fnial state?(n) is located.Based on Eq.(1), four possible remembered memductances after power-off are obtained as

    implying that the memristor is non-volatile.

    Fig.2.Power-off plot(POP)of the memristor.

    In circuit theory, the DCV–Idiagram is a visual tool to help us analyze whether the memristor is locally active.The region with a negative slope in the DCV–Idiagram is called the locally active region of the memristor.Let?(n+1)-?(n)=0, we can get the following expressions of voltageVand currentI:

    Imposing a voltage in the range-2 V≤V ≤1 V on the memristor, the corresponding DCV–Icurve can be obtained according to Eq.(3),as shown in Fig.3(a).The negative slope regions can be observed in the DCV–Idiagram,which are locally active regions of the memristor.In addition,the pinched hysteresis loops of this local active memristor under different initial values are shown in Fig.3(b).

    Fig.3.(a)The DC V–I diagram of the four-stable locally active discrete memristor.(b)The coexisting hysteresis loops with different initial values.

    3.Discrete heterogeneous neuron network

    3.1.Memristor coupled discrete heterogeneous neuron network

    For the discretization of the original Izhikevich neuron,the improved discrete Izhikevich neuron model is written as

    wherevanduare the neuron membrane potential and membrane recovery variables respectively,Iis the external excited current and the parametersa,b,c,anddare all dimensionless parameters.This improved Izhikevich model is more computationally efficient, and thus iterative calculations can be performed at a very fast rate.

    The discrete Chialvo model is written as

    wherexis the membrane potential of the neuron,yis the recovery variable,Itsimulates the effect of the ionic current injected into the neuron, the parameterarepresents the recovery time(a<1), the activation dependence of the recovery process is defined byb(b<1),and the constantcrepresents the offset,which can balance the firing states of the model.

    Based on the discrete Izhikevich model and the discrete Chialvo model,a new neuron network model based on locally active discrete memristor is constructed as follows:

    wherekis the coupling strength,and the parameters areI=1,a1=0.02,b1=0.25,c1=-55,d1=2,a2=0.9,b2=0.18,c2=0.28,It=0.03,c3=0.1.For an intuitive understanding of the proposed discrete heterogeneous neuron network,its topology is shown in Fig.4.

    Fig.4.The topology of the new discrete heterogeneous neuron network.

    and the relationship betweenvandxsatisfies the following expression:

    Therefore, two equations containing onlyxand?can be obtained.Note that the signum function is approximated by a hyperbolic tangent function with a large slope, namely,tan(1010?)is used instead of sign(?).The Jacobian matrix at each equilibrium pointE(v,0.25v,x,-1.8x+2.8,?) is given below:

    where

    3.2.Stability analysis of equilibrium points

    Stability analysis plays an important role in studying the firing behavior of neurons.From Eq.(6),the equilibrium point setEis described as

    Fig.5.Two function curves and their intersection points.

    Table 1.The eigenvalues and stability with k=0.001.

    Takingk=0.001, figure 5 shows the curves of Eq.(8)in the interval[-2,2].In order to examine whether the equilibrium pointsE1,E2,E3,E4,E5,E6,E7, andE8are stable,the eigenvalues corresponding to these equilibrium points are obtained as shown in Table 1.Based on the stability theory of discrete systems, a equilibrium point is stable when its all eigenvalues are located inside the unit circle, while it is unstable when one of the eigenvalues is located outside the unit circle.It can be seen from Table 1 that the equilibrium pointsE2, andE8are stable, while the other equilibrium points are unstable.

    4.Dynamics of heterogeneous discrete neuron networks

    In this section, we will study the dynamic behavior of the coupled neuron network under different initial values of the memristor and the coupling strengthk.The other parameters are determined asI=1,a1=0.02,b1=0.25,c1=-55,d1=2,a2=0.9,b2=0.18,c2=0.28,It=0.03,andc3=0.1.The MATLAB iterative algorithm is used in the following calculation.

    4.1.Coupling strength dependent dynamics

    Bifurcation diagram and Lyapunov exponents are common methods for analyzing system dynamics.In this study,we use the quadrature rectangle (QR) decomposition method to calculate the Lyapunov exponents.Consideringkas the bifurcation parameter with the step size 0.001 and selecting the initial value of the network (-6,-1, 1, 1, 1) as an example, the bifurcation diagram and Lyapunov exponents are shown in Figs.6(a)and 6(b),respectively.It can be seen from Fig.6(a)that the system initially exhibits chaotic firing whenkis located at the interval[-0.54,-0.453], where the corresponding maximum Lyapunov exponentLE1is greater than zero,as observed in Fig.6(b).Then,a reverse period-doubling bifurcation route occurs fork ∈[-0.452,0.0018],resulting in the appearance of periodic spiking.As illustrated in Fig.6(b),all Lyapunov exponents are less than zero in this parameter interval,verifying that the neuron network is in a periodic state.Whenkincreases to the critical valuek=0.0018, a tangent bifurcation occurs,resulting in the occurrence of hyperchaotic firing, which can be validated from the superimposed local magnification plot in Fig.6(b),where the Lyapunov exponentsLE1andLE2are both greater than zero.The sampled phase diagrams and the corresponding time series withk=-0.46,k=-0.4,andk=0.065 are shown in Fig.7,which effectively validate the three parameter regions of chaotic, periodic, and hyperchaotic firing in Fig.6.

    Fig.6.The dynamics of the network(6)with respect to the control parameter k with the initial parameters(-6,-1,1,1,1).(a)Bifurcation diagram.(b)Lyapunov exponents.

    Fig.7.Phase diagrams on the v–u plane and time series of the variable v with different parameters k: (a) and (b) k=-0.46; (c) and (d)k=-0.4;(e)and(f)k=0.065.

    4.2.Coexisting firing patterns

    Two different coupling strengthsk=0.011, and-0.002 are selected as examples to demonstrate the coexisting firing patterns of the neuron network related to the initial value of the memristor.

    Fork=0.011,figure 8(a)illustrates the Lyapunov exponents with respect to the initial value of the memristor.When?<0, all Lyapunov exponents are less than zero, meaning the neuron network is in a resting state.With the increase of?, the Lyapunov exponentsLE1andLE2suddenly jump to positive values when?exceeds the critical value?=0,resulting in the network transitioning from a resting state to a hyperchaotic firing pattern.When?increases to?= 2,the Lyapunov exponentLE1still remains positive value,whileLE2suddenly jump to negative values, resulting in the existence of one positive Lyapunov exponent,which indicates that the network transitions from hyperchaotic firing to chaotic firing.Figure 8(b) shows the phase diagram of the coexistence of resting state,hyperchaotic firing,and two different chaotic firing patterns.Note that in Fig.8(b), the red trajectory originates from the initial value?=5, the blue from?=3, the green from?=1, and the cyan from?=-1.The corresponding time series ofx(n) are illustrated in Fig.8(c).It is worth noting that although the all Lyapunov exponents remain unchanged when?=5 and?=3, the network exhibit two heterogeneous chaotic firing patterns, which can be validated by the red and the blue phase diagrams in Fig.8(b) and the time series diagrams colored with the same colors in Fig.8(c).Similarly,whenk=-0.002,the network can exhibit the coexisting hyperchaotic firing,chaotic firing,and two resting states under different initial values,as depicted in Figs.8(d)–8(f).

    Fig.8.The Lyapunov exponents,phase diagrams,and time series of coexisting attractors under two groups of different k values.(a)Lyapunov exponents for the initial value of the memristor at k=0.011.(b)The phase diagram of coexistence of chaotic attractors and resting state when k=0.011.(c) Time series diagram when k=0.011.(d) Lyapunov exponents for k=-0.002.(e) Phase diagram of coexistence of chaotic attractors and resting states at k=-0.002.(f)Time series diagram when k=-0.002.

    4.3.Effects of noise on the network

    We add the following noiseεξnto the internal state equation of the memristor in the neuron network.With the coupling and iteration of the discrete neuron network,the noise will act on the entire system.

    Fig.9.Time series diagram of membrane potential of Izhikevich neurons at k=0.1.(a)Periodic state in the absence of noise.(b)Chaotic state in the presence of noise.

    5.Synchronization transition of heterogeneous neural networks considering noise

    In order to study phase synchronization and synchronization transition of two different neurons coupled by the locally active discrete memristor,the definition of a phase is given as

    When the absolute value of the phase difference between two neurons is bounded by the value 2π, phase synchronization can be detected.We choose three differentkvalues to indicate synchronous transition behavior of the network.Whenk=0, the two neurons are uncoupled.In this case, the neuron Izhikevich exhibits a spiking firing pattern,while the Chialvo neuron exhibits a periodic firing pattern,as shown in Fig.10(a).It is observed that the firing patterns of the two neurons are obviously different.As depicted in Fig.10(b), the phase difference between the two neurons increases monotonously, validating that the two neurons are desynchronized.Whenk=0.44, the two neurons exhibit a quasi-synchronous burst firing pattern,as shown in Fig.10(c).In this case, the phase difference between two neurons is bounded by 2π.Whenkincreases tok=0.73 or more,the synchronous periodic spiking firing pattern emerges.Figure 10(e)shows the onsets of the action potential of the two neurons are consistent and figure 10(f) illustrates the phase difference is always 0.Thus, we can infer that the two neurons are completely phase synchronized.In addition,we found that appropriate noise can enable the network to achieve synchronization at a lower coupling strength.This has practical significance,because the large coupling strength does not conform to the biological reality.Whenk=0.4,figure 11 shows the time series and phase difference of two neurons.The red and blue trajectories in the figure represent the Izhikevich neuron, and the Chialvo neuron, respectively.When no noise is considered in the neuron network,The two neurons present an irregular chaotic firing pattern, as shown in Fig.11(a).The two neurons are desynchronized, which can be verified from the monotonously increasing phase difference of the two neurons in Fig.11(b).Then,the noise is added to the neuron network,it can be seen from Figs.11(c)and 11(d)that the two neurons are completely phase synchronized and the phase difference is always 0, which proves that the noise enables the neuron network achieve synchronization at a lower coupling strength.Note that when the noise intensity added to the neuron network is too large, the two neurons will return to the resting state.

    Fig.10.Synchronization transition of heterogeneous neuron networks.(a)The time series of k=0.(b)Phase difference of two neurons when k=0.(c)The time series of k=0.44.(d)Phase difference of two neurons when k=0.44.(e)The time series of k=0.73.(f)Phase difference of two neurons when k=0.73.

    Fig.11.The time series of neuron membrane voltage and the phase difference between two neurons when the system is at k=0.4.(a) Time series in the absence of noise.(b)Phase difference in the absence of noise.(c)Time series in the presence of noise.(d)Phase difference in the presence of noise.

    6.Conclusions

    In this study,a discrete four-stable memristor is proposed and its locally activity and non-volatility are studied in detail.Then, the discrete Izhikevich neuron and Chialvo neuron is coupled by the memristor, a discrete heterogeneous neuron network model, thus, is established.The equilibrium points along with their stabilities are systematically analyzed.The coupling strength dependent dynamics are analyzed and it is found that the network can exhibit resting state,periodic firing,chaotic firing and hyperchaotic firing under different coupling strengths.The coexisting firing patterns, including the coexistence of resting state,two different chaotic firing and hyperchaotic firing, the coexistence of hyperchaotic firing, chaotic firing and two resting states are revealed.Furthermore,phase synchronization between two heterogeneous neurons are explored by varying the coupling strength and our results shows that the two heterogeneous neurons can achieve perfect phase synchronization at large coupled strength.What is more, the effects of noise on the network are also considered.We find that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons at a low coupling strength.

    Acknowledgement

    Project supported by the National Natural Science Foundations of China(Grant Nos.62171401 and 62071411).

    国产一级毛片在线| 嘟嘟电影网在线观看| 午夜福利成人在线免费观看| 国产欧美日韩精品一区二区| 永久网站在线| 日韩精品有码人妻一区| 免费大片18禁| 国产麻豆成人av免费视频| 精品久久久久久久久久久久久| 人人妻人人看人人澡| 日本黄色视频三级网站网址| 搡女人真爽免费视频火全软件| 亚洲欧洲国产日韩| 高清午夜精品一区二区三区 | 成人高潮视频无遮挡免费网站| 久久久国产成人精品二区| 亚洲国产欧美在线一区| av福利片在线观看| 可以在线观看毛片的网站| 久久精品久久久久久久性| 国产精品女同一区二区软件| 丰满的人妻完整版| 国产精品无大码| 身体一侧抽搐| 亚洲经典国产精华液单| 欧美激情国产日韩精品一区| 欧美高清成人免费视频www| 久久鲁丝午夜福利片| 91午夜精品亚洲一区二区三区| 国产高清视频在线观看网站| 麻豆成人午夜福利视频| 久久久欧美国产精品| 一区二区三区高清视频在线| АⅤ资源中文在线天堂| 国产黄色视频一区二区在线观看 | 夫妻性生交免费视频一级片| 日日撸夜夜添| 久久久国产成人免费| 国产色爽女视频免费观看| 变态另类成人亚洲欧美熟女| 亚洲自偷自拍三级| 能在线免费观看的黄片| 亚洲成av人片在线播放无| 大型黄色视频在线免费观看| 黄色视频,在线免费观看| 久久久国产成人免费| 日韩三级伦理在线观看| 少妇的逼好多水| 亚洲成人中文字幕在线播放| 国产亚洲5aaaaa淫片| 日日啪夜夜撸| 黄片无遮挡物在线观看| 成人国产麻豆网| 国产精品免费一区二区三区在线| 变态另类丝袜制服| 久久综合国产亚洲精品| 亚洲五月天丁香| 一边摸一边抽搐一进一小说| 精品欧美国产一区二区三| 日韩一区二区三区影片| 99久久人妻综合| 联通29元200g的流量卡| 色5月婷婷丁香| 12—13女人毛片做爰片一| 我的女老师完整版在线观看| 简卡轻食公司| 国产伦在线观看视频一区| 国产亚洲5aaaaa淫片| 成人漫画全彩无遮挡| 99热这里只有是精品在线观看| 久久久欧美国产精品| 99国产极品粉嫩在线观看| 日韩强制内射视频| 夜夜夜夜夜久久久久| 国产精品99久久久久久久久| 午夜a级毛片| 99国产精品一区二区蜜桃av| 午夜久久久久精精品| 精品不卡国产一区二区三区| 精品午夜福利在线看| 禁无遮挡网站| 国产成人a区在线观看| 三级男女做爰猛烈吃奶摸视频| 99久久精品热视频| 亚洲最大成人手机在线| 少妇的逼水好多| 国产亚洲5aaaaa淫片| 综合色丁香网| 中文在线观看免费www的网站| 人体艺术视频欧美日本| 国产一区二区在线av高清观看| 成人av在线播放网站| 男人的好看免费观看在线视频| 麻豆精品久久久久久蜜桃| 麻豆成人av视频| 国产 一区精品| 久久6这里有精品| 色尼玛亚洲综合影院| 在线观看免费视频日本深夜| 国产黄a三级三级三级人| 1024手机看黄色片| 国产av麻豆久久久久久久| 久久欧美精品欧美久久欧美| 免费大片18禁| 天堂影院成人在线观看| 日本免费一区二区三区高清不卡| or卡值多少钱| 极品教师在线视频| 看十八女毛片水多多多| 亚洲18禁久久av| 国产精品美女特级片免费视频播放器| 亚洲最大成人中文| 日韩制服骚丝袜av| 国产真实乱freesex| 看黄色毛片网站| 亚洲国产精品sss在线观看| 一个人观看的视频www高清免费观看| 亚洲图色成人| 在线观看免费视频日本深夜| 淫秽高清视频在线观看| 亚洲av不卡在线观看| 黄色一级大片看看| 精品一区二区三区人妻视频| 欧美不卡视频在线免费观看| 国产免费一级a男人的天堂| 此物有八面人人有两片| 最好的美女福利视频网| 日韩欧美一区二区三区在线观看| 亚洲18禁久久av| 丰满乱子伦码专区| 国产成人a∨麻豆精品| 成人性生交大片免费视频hd| 欧美成人免费av一区二区三区| 国内精品久久久久精免费| 亚洲人成网站在线观看播放| 女同久久另类99精品国产91| 日本五十路高清| 日日撸夜夜添| 日本免费a在线| 国产片特级美女逼逼视频| 国产精品永久免费网站| 久久这里有精品视频免费| 在线观看66精品国产| av天堂中文字幕网| 91久久精品国产一区二区三区| 国产成人福利小说| 国产高清有码在线观看视频| 男人和女人高潮做爰伦理| 中出人妻视频一区二区| 亚洲丝袜综合中文字幕| av.在线天堂| 九九久久精品国产亚洲av麻豆| 国产黄色小视频在线观看| 人妻系列 视频| 少妇的逼水好多| 一进一出抽搐gif免费好疼| 免费不卡的大黄色大毛片视频在线观看 | 国产真实伦视频高清在线观看| 免费av毛片视频| 久久精品综合一区二区三区| 一级毛片我不卡| 免费看av在线观看网站| 自拍偷自拍亚洲精品老妇| 亚洲精品日韩av片在线观看| 成年女人永久免费观看视频| 亚洲欧美清纯卡通| 国产精品蜜桃在线观看 | 久久欧美精品欧美久久欧美| 亚洲自偷自拍三级| 午夜福利在线观看吧| 国产精品伦人一区二区| 老女人水多毛片| 久久鲁丝午夜福利片| 丰满人妻一区二区三区视频av| 可以在线观看的亚洲视频| 亚洲性久久影院| 日本色播在线视频| 亚洲国产精品成人久久小说 | 日韩高清综合在线| 国产午夜精品论理片| 搡女人真爽免费视频火全软件| 亚洲欧美日韩高清专用| 成人高潮视频无遮挡免费网站| 久久久久久久久久黄片| 青春草国产在线视频 | 欧美性感艳星| 99热这里只有是精品50| 久久99蜜桃精品久久| 亚洲婷婷狠狠爱综合网| 日韩成人伦理影院| 国产精品一区二区三区四区久久| 老司机福利观看| 亚洲中文字幕一区二区三区有码在线看| 淫秽高清视频在线观看| 国产高清三级在线| 最新中文字幕久久久久| 秋霞在线观看毛片| 国产成人精品久久久久久| 黄色视频,在线免费观看| 在线播放国产精品三级| 亚洲欧美精品专区久久| 国产人妻一区二区三区在| 伊人久久精品亚洲午夜| 色综合站精品国产| 99热这里只有精品一区| 悠悠久久av| 一区二区三区四区激情视频 | 噜噜噜噜噜久久久久久91| 色尼玛亚洲综合影院| 又粗又爽又猛毛片免费看| 国产精品久久久久久av不卡| 91精品一卡2卡3卡4卡| 国产成人91sexporn| 欧美xxxx性猛交bbbb| 婷婷亚洲欧美| 18禁在线播放成人免费| 一本精品99久久精品77| 男人舔女人下体高潮全视频| 99热这里只有是精品在线观看| 九九在线视频观看精品| 最近中文字幕高清免费大全6| 啦啦啦观看免费观看视频高清| av免费观看日本| 亚洲av免费高清在线观看| 亚洲,欧美,日韩| 波多野结衣高清作品| 91精品国产九色| 99久久久亚洲精品蜜臀av| 狠狠狠狠99中文字幕| 午夜精品一区二区三区免费看| 国产一区二区三区av在线 | 欧美又色又爽又黄视频| 在现免费观看毛片| av福利片在线观看| 一级毛片久久久久久久久女| 国产在线男女| 亚州av有码| 中出人妻视频一区二区| 久久久午夜欧美精品| 中国美女看黄片| 日韩在线高清观看一区二区三区| 国产av不卡久久| 一级av片app| 国产高潮美女av| 夜夜爽天天搞| 欧美激情国产日韩精品一区| 日韩强制内射视频| 可以在线观看毛片的网站| 亚洲美女视频黄频| 免费看日本二区| 国产爱豆传媒在线观看| 亚洲欧美清纯卡通| 成年版毛片免费区| 69人妻影院| 亚洲丝袜综合中文字幕| 国产成年人精品一区二区| 嘟嘟电影网在线观看| 成人毛片a级毛片在线播放| 免费搜索国产男女视频| 国产免费男女视频| 亚洲国产欧美人成| 亚洲天堂国产精品一区在线| 免费观看a级毛片全部| 欧美色视频一区免费| 99久久九九国产精品国产免费| 国产视频首页在线观看| 成人美女网站在线观看视频| 色吧在线观看| 精品人妻一区二区三区麻豆| 国产不卡一卡二| 欧美xxxx性猛交bbbb| 夜夜看夜夜爽夜夜摸| 日本免费a在线| 国产激情偷乱视频一区二区| 波多野结衣高清作品| 欧美另类亚洲清纯唯美| 少妇人妻一区二区三区视频| 夜夜夜夜夜久久久久| 12—13女人毛片做爰片一| 国模一区二区三区四区视频| 人人妻人人澡人人爽人人夜夜 | 久久久久久九九精品二区国产| 女人十人毛片免费观看3o分钟| 蜜桃久久精品国产亚洲av| 欧美一区二区国产精品久久精品| 久久久久久大精品| 男人和女人高潮做爰伦理| 亚洲第一电影网av| 你懂的网址亚洲精品在线观看 | 麻豆成人av视频| 男人舔奶头视频| 国国产精品蜜臀av免费| 久久人人爽人人片av| 人人妻人人看人人澡| 亚洲欧美精品专区久久| 两个人视频免费观看高清| 国产精品久久电影中文字幕| 久久久久久久久久久免费av| 久久久久久久久大av| 最近手机中文字幕大全| 国产探花在线观看一区二区| 亚洲一区二区三区色噜噜| 国产一区二区三区在线臀色熟女| 青青草视频在线视频观看| 成人二区视频| 日本黄色视频三级网站网址| 久久久久久久午夜电影| 久久精品国产99精品国产亚洲性色| 久久久久久九九精品二区国产| 18禁在线无遮挡免费观看视频| 看片在线看免费视频| 97超视频在线观看视频| 日韩欧美国产在线观看| 久久精品国产清高在天天线| 午夜激情欧美在线| 欧美日韩国产亚洲二区| 热99re8久久精品国产| 亚洲图色成人| 亚洲在久久综合| 菩萨蛮人人尽说江南好唐韦庄 | 一边亲一边摸免费视频| 欧美xxxx性猛交bbbb| 久久久久久久久久成人| 99久久中文字幕三级久久日本| 久久久久性生活片| 夫妻性生交免费视频一级片| 久久久久久国产a免费观看| 中文字幕免费在线视频6| 欧美三级亚洲精品| 亚洲18禁久久av| 桃色一区二区三区在线观看| 日本熟妇午夜| 五月伊人婷婷丁香| 嫩草影院新地址| 最近最新中文字幕大全电影3| 国产精品久久久久久亚洲av鲁大| 亚洲五月天丁香| 国产欧美日韩精品一区二区| 哪个播放器可以免费观看大片| 嫩草影院精品99| 99热全是精品| 成人高潮视频无遮挡免费网站| 高清日韩中文字幕在线| 国产真实乱freesex| 伊人久久精品亚洲午夜| 日本-黄色视频高清免费观看| 哪个播放器可以免费观看大片| 最后的刺客免费高清国语| 国产亚洲av片在线观看秒播厂 | 日日摸夜夜添夜夜爱| 国产精品麻豆人妻色哟哟久久 | 观看免费一级毛片| 久久欧美精品欧美久久欧美| 一个人观看的视频www高清免费观看| 亚洲在线观看片| 日韩av不卡免费在线播放| 在线免费十八禁| 我的老师免费观看完整版| 男插女下体视频免费在线播放| 国产老妇女一区| 性插视频无遮挡在线免费观看| 婷婷亚洲欧美| 亚洲五月天丁香| 婷婷精品国产亚洲av| 国产成人a∨麻豆精品| 色综合色国产| 好男人视频免费观看在线| 成年版毛片免费区| 成人无遮挡网站| av天堂中文字幕网| 禁无遮挡网站| 国产高潮美女av| 成人av在线播放网站| 91久久精品电影网| 热99re8久久精品国产| 亚洲激情五月婷婷啪啪| 久久99热6这里只有精品| 亚洲精品日韩在线中文字幕 | 18禁黄网站禁片免费观看直播| 久久精品夜色国产| 国产精品1区2区在线观看.| 91麻豆精品激情在线观看国产| av视频在线观看入口| 又爽又黄a免费视频| 村上凉子中文字幕在线| 欧美zozozo另类| 午夜免费男女啪啪视频观看| 99热网站在线观看| 麻豆av噜噜一区二区三区| 两个人的视频大全免费| 男女视频在线观看网站免费| 国产成人午夜福利电影在线观看| 97超视频在线观看视频| 欧美另类亚洲清纯唯美| 国产亚洲5aaaaa淫片| 好男人在线观看高清免费视频| 国内精品一区二区在线观看| 日韩欧美三级三区| 国产精品一二三区在线看| 日本-黄色视频高清免费观看| 男女边吃奶边做爰视频| 啦啦啦啦在线视频资源| 亚洲在久久综合| 2022亚洲国产成人精品| 综合色丁香网| 免费观看精品视频网站| 深夜a级毛片| 在现免费观看毛片| 日本熟妇午夜| 亚洲最大成人av| 久久人妻av系列| 91av网一区二区| 午夜爱爱视频在线播放| 少妇熟女aⅴ在线视频| 变态另类丝袜制服| 如何舔出高潮| 悠悠久久av| 狠狠狠狠99中文字幕| 在线国产一区二区在线| 黄片wwwwww| 美女 人体艺术 gogo| 高清午夜精品一区二区三区 | 91精品一卡2卡3卡4卡| 国产精品一及| 亚洲av电影不卡..在线观看| 热99在线观看视频| 国产成人a区在线观看| 少妇的逼好多水| 18+在线观看网站| 欧美日韩乱码在线| av福利片在线观看| 一本久久精品| 日本免费一区二区三区高清不卡| 久久人人爽人人片av| 91aial.com中文字幕在线观看| 国产一级毛片在线| 亚洲av男天堂| 美女被艹到高潮喷水动态| 久久久精品欧美日韩精品| 国产探花极品一区二区| 午夜福利在线观看吧| 国产极品精品免费视频能看的| 亚洲成人久久爱视频| 亚洲激情五月婷婷啪啪| 国产人妻一区二区三区在| 一级毛片aaaaaa免费看小| 午夜精品国产一区二区电影 | 欧美色视频一区免费| 国产成人freesex在线| 国产黄a三级三级三级人| 99久久成人亚洲精品观看| 日本与韩国留学比较| 亚洲国产色片| 变态另类成人亚洲欧美熟女| 天美传媒精品一区二区| 波多野结衣巨乳人妻| 亚洲精品色激情综合| 九九爱精品视频在线观看| 久久99蜜桃精品久久| 久久久色成人| 日本成人三级电影网站| 亚洲七黄色美女视频| 亚洲无线观看免费| 亚洲av成人av| 国产91av在线免费观看| 波多野结衣高清无吗| 日本撒尿小便嘘嘘汇集6| 日日啪夜夜撸| 国产美女午夜福利| 国产成人精品久久久久久| 亚洲国产精品成人久久小说 | 在线播放国产精品三级| АⅤ资源中文在线天堂| 亚洲在久久综合| 欧美成人一区二区免费高清观看| 日本免费一区二区三区高清不卡| 人妻少妇偷人精品九色| 三级经典国产精品| 久久午夜亚洲精品久久| 久久99精品国语久久久| 国产精品永久免费网站| 精品久久国产蜜桃| 久久久久国产网址| 一本久久精品| 99国产极品粉嫩在线观看| 欧美另类亚洲清纯唯美| 长腿黑丝高跟| 精品少妇黑人巨大在线播放 | 国产大屁股一区二区在线视频| 一边亲一边摸免费视频| 免费看光身美女| 欧美成人一区二区免费高清观看| 大型黄色视频在线免费观看| 中文字幕免费在线视频6| 国产精品一区二区三区四区久久| av在线亚洲专区| 国产成人a∨麻豆精品| 国产免费一级a男人的天堂| 美女高潮的动态| 美女国产视频在线观看| 免费一级毛片在线播放高清视频| 精品免费久久久久久久清纯| 日本-黄色视频高清免费观看| 国产日本99.免费观看| 亚洲美女视频黄频| 看片在线看免费视频| 成人午夜高清在线视频| 人妻夜夜爽99麻豆av| 国产单亲对白刺激| 亚洲精品色激情综合| 中文资源天堂在线| 18禁在线无遮挡免费观看视频| 欧美一区二区精品小视频在线| 久久久国产成人精品二区| 99久久中文字幕三级久久日本| 人人妻人人看人人澡| 毛片一级片免费看久久久久| 精品人妻偷拍中文字幕| 亚洲久久久久久中文字幕| 国产精品一区二区三区四区久久| 内射极品少妇av片p| 禁无遮挡网站| 国产真实伦视频高清在线观看| 久久人妻av系列| 18禁在线播放成人免费| 你懂的网址亚洲精品在线观看 | 少妇的逼水好多| 成人午夜高清在线视频| 日韩欧美 国产精品| 中文字幕制服av| 国产精品人妻久久久影院| 欧美人与善性xxx| 99久久精品国产国产毛片| 久久99蜜桃精品久久| 一本精品99久久精品77| 国产精品女同一区二区软件| 久久精品91蜜桃| 国产精品一二三区在线看| 我的女老师完整版在线观看| av在线亚洲专区| 午夜福利视频1000在线观看| 欧美日韩在线观看h| 十八禁国产超污无遮挡网站| 青青草视频在线视频观看| 亚洲人成网站在线播放欧美日韩| 男人和女人高潮做爰伦理| ponron亚洲| 99热全是精品| 在线观看一区二区三区| 久久人妻av系列| 成年女人永久免费观看视频| 国产精品不卡视频一区二区| 午夜亚洲福利在线播放| 少妇高潮的动态图| 美女内射精品一级片tv| 夜夜看夜夜爽夜夜摸| 狂野欧美白嫩少妇大欣赏| 欧美日本亚洲视频在线播放| 欧美成人免费av一区二区三区| 亚洲综合色惰| 啦啦啦韩国在线观看视频| 美女xxoo啪啪120秒动态图| 婷婷亚洲欧美| 国产成人影院久久av| 成人毛片a级毛片在线播放| 中文字幕精品亚洲无线码一区| 日本五十路高清| 中出人妻视频一区二区| 久久婷婷人人爽人人干人人爱| 高清在线视频一区二区三区 | 少妇高潮的动态图| 欧美成人a在线观看| 女同久久另类99精品国产91| 高清毛片免费观看视频网站| 亚洲第一区二区三区不卡| 亚洲四区av| 精品一区二区三区人妻视频| 成人性生交大片免费视频hd| 永久网站在线| 在线免费十八禁| 又粗又爽又猛毛片免费看| 男人和女人高潮做爰伦理| 两个人的视频大全免费| 好男人在线观看高清免费视频| 寂寞人妻少妇视频99o| 成人av在线播放网站| 日韩精品青青久久久久久| 免费在线观看成人毛片| 欧美日本亚洲视频在线播放| 久久久国产成人精品二区| 美女大奶头视频| 国产精品久久久久久久久免| 亚洲美女视频黄频| 国产亚洲av片在线观看秒播厂 | 国产激情偷乱视频一区二区| 国模一区二区三区四区视频| 亚洲成人精品中文字幕电影| 联通29元200g的流量卡| 成人午夜高清在线视频| 波多野结衣高清无吗| 国产精品永久免费网站| 久久久精品欧美日韩精品| 国产极品精品免费视频能看的| 精品99又大又爽又粗少妇毛片| 色综合站精品国产| 成人特级黄色片久久久久久久| 久久草成人影院| 成人特级av手机在线观看| 久久精品91蜜桃| 亚洲久久久久久中文字幕| 成人漫画全彩无遮挡| 悠悠久久av| 又爽又黄a免费视频| 亚洲av第一区精品v没综合| 欧美一区二区精品小视频在线|