• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamics and synchronization in a memristor-coupled discrete heterogeneous neuron network considering noise

    2024-02-29 09:19:52XunYan晏詢ZhijunLi李志軍andChunlaiLi李春來
    Chinese Physics B 2024年2期

    Xun Yan(晏詢), Zhijun Li(李志軍),?, and Chunlai Li(李春來)

    1School of Automation and Electronic Information,Xiangtan University,Xiangtan 411105,China

    2School of Computer Science&School of Cyberspace Science,Xiangtan University,Xiangtan 411105,China

    Keywords: heterogeneous neuron network,discrete memristor,coexisting attractors,synchronization,noise

    1.Introduction

    Studying neuromorphic behaviors of neurons is favorable to help us to understand more about the operating mechanism of the brain.Therefore, establishing appropriate neuron models to simulate the dynamic behavior of biological neurons has received widespread attention.[1–3]The Hodgkin–Huxley (HH) model was the first established neuron paradigm,[4]which demonstrates the connection between the membrane voltage of neurons and the membrane currents of squid giant axons.However, the HH model is formulated by seven coupled ordinary differential equations and includes four ionic channels,which lead to its complexity.Some simplified models, thus, have been proposed to simulate the neuromorphic behaviors of the biological neurons, such as FitzHugh–Nagumo(FHN)model,[5–8]Hindmarsh–Rose(HR)model,[9–13]Morris–Lecar(ML),[14–18]etc.These continuous neuron models have played an important role in understanding the generation and transmission of action potential.[19–23]

    Compared with continuous neuron models,discrete neuron models are more computationally efficient, especially in the modeling of large-scale neuron networks.The modeling of discrete neurons and the analysis of their firing patterns have become a hot topic in the field of neurodynamics in recent years.[24–27]Due to the non-volatile, nanoscale,memory properties of memristors,and the similarity between nano-scale moving particles in memristors and mobile neurotransmitters in biological synapses, memristors are often considered as ideal candidates for simulating synapses.[28–32]For example, Baoet al.[33]established a discrete neuron network containing two identical Rulkov neurons, and regarded the current flowing through the memristor as the electromagnetic induction current to analyze the effect of electromagnetic induction on the dynamic behavior of neuron network.Under the influence of the electromagnetic induction current,the model can achieve complete synchronization and lag synchronization.The synchronous firing and chimera state were observed in a ring neuron network constructed with memristorcoupled discrete Chialvo neurons.[34]Mahtab Mehrabbeiket al.[35]studied the memristive Rulkov neuron maps and analyzed the synchronous dynamics under electrical and chemical coupling.Their results shows that two m-Rulkov neurons can achieve synchronization only when electrically coupled,but not when chemically coupled.Liet al.[36]used discrete locally active memristor to construct a logarithmic map, and the coexisting attractors were observed.

    Among many neuron models, the Izhikevich model simplifies the HH model[37–40]with consideration of biological concepts, which is capable of simulating almost all spikes of cortical neurons.[41,42]Furthermore, the Izhikevich model outperforms other models in terms of computational efficiency.[43–46]The Chialvo model is one of the earliest discrete neuron models,[47,48]and it was attempted to study the synchronous rhythmic activity in some areas of mammals at that time,[48]including the cortical spindle rhythms, hyppocampal rhythms, and somatomotor cortices.The Chialvo model can demonstrate key patterns of neuronal activities,such as spiking,excitations,bursting,and so on.

    In fact, the brain is a very complex system, which can be divided into many brain regions,including the motor area,sensory area, visual area, auditory area and association area,just to name a few.[49]The neurons in different brain regions are independent but interact with each other, and jointly control neural activities of the human body.[50,51]Therefore,neuron networks composed of heterogeneous neurons is more in line with biological reality.However, to our knowledge, previous studies on discrete neuron networks mainly focus on homogeneous neurons,while neuron networks composed of heterogeneous neurons coupled by memristors are rarely studied.To further understand the operating mechanism of the brain,it is essential and meaningful to study the dynamic behavior of neuron networks constructed with heterogeneous neurons distributed in different brain regions.[52–54]In addition,in the biological nervous systems, a large number of neurons work together,which inevitably leads to changes in the surrounding physiological environment.Therefore, noise is ubiquitous in the biological nervous systems.[44]However,it is currently unclear how noise affects the information processing mechanism of neurons, so the impact of noise on the firing activities of neurons cannot be ignored.[55–57]

    In the present study,we propose a new discrete locally active memristor and use it to connect the discretized Izhikevich and Chialvo neurons.Thus, a heterogeneous discrete neuron network model coupled by the discrete locally active memristor is constructed.The dynamics of the neuron network are analyzed, and the synchronous behavior between two heterogeneous neurons are revealed.Finally,Gaussian noise is added to the model to analyze the impact of noise on firing activities of neuron network.

    The rest of this paper is organized as follows.Section 2 proposes a new four-stable locally active discrete memristor and studies its properties in detail.In Section 3, a heterogeneous discrete neuron network model is developed by using the discrete memristor to bridge two heterogeneous neurons and the equilibrium points of the model and their corresponding stabilities are theoretically analyzed.The dynamic behavior and coexistence behavior of neuron networks are revealed in Section 4.Section 5 studies the effect of adding noise on the phase synchronization of neuron networks.Finally,the study is concluded in Section 6.

    2.Four-stable locally-active memristor model and characteristics

    2.1.Memristor model

    The discrete memristor proposed in this paper can be described as follows:

    wherev,i,andw(φ)are the input voltage,output current,and admittance function,respectively.F(φ,v)is the internal state equation of the memristor, which consists of a sign function related to the magnetic flux and voltage, andα,β,λare the three parameters of the memristor.In this paper,α= 0.1,β=0.001,andλ=9.

    2.2.Pinched hysteresis loops

    A periodic voltage signalv(n)=Asin(2πωT(n)) is applied to the memristor, and the initial value of the memristor is selected as 1.By varying the amplitudeAand frequencyω, the memristor shows pinched hysteresis loops on thev–iplane,as shown in Fig.1.

    It can be seen from Fig.1 that all the pinched hysteresis loops pass through the origin.When the frequencyω=0.0001 is fixed,the area of the pinched hysteresis loop lobe increases monotonously as the excitation amplitudeAincreases.Once the amplitudeA=20 is fixed,the pinched hysteresis loop lobe area decreases monotonously with the increase of excitation frequencyω.Thus,the proposed memristor satisfies the three characteristic fingerprints of a generalized memristor.[58]

    Fig.1.Pinched hysteresis loops of locally active discrete memristor.(a) Amplitude-dependent pinched hysteresis loops with A = 10, 15,and 20.(b)Frequency-dependent pinched hysteresis with ω =0.0001,0.0002,and 0.0005.

    2.3.Nonvolatility and local activity

    Non-volatility means that a memristor can maintain its latest memductance value when the power is off, which can be verified by the power off plot (POP).If there are multiple negative slope intersections between the POP and the zero horizontal axis,then the memristor is non-volatile.Letvn=0 in Eq.(1),the resulting POP is shown in Fig.2.

    From Fig.2, it is observed that there are seven intersection points where the POP intersects the?axis, namely,Q1(-1,0),Q2(0,0),Q3(1,0),Q4(2,0),Q5(3,0),Q6(4,0), andQ7(5,0), among which the intersections with a negative slope are the stable equilibrium points, and the other intersections are unstable points.Therefore, the proposed memristor has four stable equilibrium pointsQ1,Q3,Q5, andQ7.When the power is off, the state?will trend to one of the four stable equilibrium points,depending on the attractive domain in which the fnial state?(n) is located.Based on Eq.(1), four possible remembered memductances after power-off are obtained as

    implying that the memristor is non-volatile.

    Fig.2.Power-off plot(POP)of the memristor.

    In circuit theory, the DCV–Idiagram is a visual tool to help us analyze whether the memristor is locally active.The region with a negative slope in the DCV–Idiagram is called the locally active region of the memristor.Let?(n+1)-?(n)=0, we can get the following expressions of voltageVand currentI:

    Imposing a voltage in the range-2 V≤V ≤1 V on the memristor, the corresponding DCV–Icurve can be obtained according to Eq.(3),as shown in Fig.3(a).The negative slope regions can be observed in the DCV–Idiagram,which are locally active regions of the memristor.In addition,the pinched hysteresis loops of this local active memristor under different initial values are shown in Fig.3(b).

    Fig.3.(a)The DC V–I diagram of the four-stable locally active discrete memristor.(b)The coexisting hysteresis loops with different initial values.

    3.Discrete heterogeneous neuron network

    3.1.Memristor coupled discrete heterogeneous neuron network

    For the discretization of the original Izhikevich neuron,the improved discrete Izhikevich neuron model is written as

    wherevanduare the neuron membrane potential and membrane recovery variables respectively,Iis the external excited current and the parametersa,b,c,anddare all dimensionless parameters.This improved Izhikevich model is more computationally efficient, and thus iterative calculations can be performed at a very fast rate.

    The discrete Chialvo model is written as

    wherexis the membrane potential of the neuron,yis the recovery variable,Itsimulates the effect of the ionic current injected into the neuron, the parameterarepresents the recovery time(a<1), the activation dependence of the recovery process is defined byb(b<1),and the constantcrepresents the offset,which can balance the firing states of the model.

    Based on the discrete Izhikevich model and the discrete Chialvo model,a new neuron network model based on locally active discrete memristor is constructed as follows:

    wherekis the coupling strength,and the parameters areI=1,a1=0.02,b1=0.25,c1=-55,d1=2,a2=0.9,b2=0.18,c2=0.28,It=0.03,c3=0.1.For an intuitive understanding of the proposed discrete heterogeneous neuron network,its topology is shown in Fig.4.

    Fig.4.The topology of the new discrete heterogeneous neuron network.

    and the relationship betweenvandxsatisfies the following expression:

    Therefore, two equations containing onlyxand?can be obtained.Note that the signum function is approximated by a hyperbolic tangent function with a large slope, namely,tan(1010?)is used instead of sign(?).The Jacobian matrix at each equilibrium pointE(v,0.25v,x,-1.8x+2.8,?) is given below:

    where

    3.2.Stability analysis of equilibrium points

    Stability analysis plays an important role in studying the firing behavior of neurons.From Eq.(6),the equilibrium point setEis described as

    Fig.5.Two function curves and their intersection points.

    Table 1.The eigenvalues and stability with k=0.001.

    Takingk=0.001, figure 5 shows the curves of Eq.(8)in the interval[-2,2].In order to examine whether the equilibrium pointsE1,E2,E3,E4,E5,E6,E7, andE8are stable,the eigenvalues corresponding to these equilibrium points are obtained as shown in Table 1.Based on the stability theory of discrete systems, a equilibrium point is stable when its all eigenvalues are located inside the unit circle, while it is unstable when one of the eigenvalues is located outside the unit circle.It can be seen from Table 1 that the equilibrium pointsE2, andE8are stable, while the other equilibrium points are unstable.

    4.Dynamics of heterogeneous discrete neuron networks

    In this section, we will study the dynamic behavior of the coupled neuron network under different initial values of the memristor and the coupling strengthk.The other parameters are determined asI=1,a1=0.02,b1=0.25,c1=-55,d1=2,a2=0.9,b2=0.18,c2=0.28,It=0.03,andc3=0.1.The MATLAB iterative algorithm is used in the following calculation.

    4.1.Coupling strength dependent dynamics

    Bifurcation diagram and Lyapunov exponents are common methods for analyzing system dynamics.In this study,we use the quadrature rectangle (QR) decomposition method to calculate the Lyapunov exponents.Consideringkas the bifurcation parameter with the step size 0.001 and selecting the initial value of the network (-6,-1, 1, 1, 1) as an example, the bifurcation diagram and Lyapunov exponents are shown in Figs.6(a)and 6(b),respectively.It can be seen from Fig.6(a)that the system initially exhibits chaotic firing whenkis located at the interval[-0.54,-0.453], where the corresponding maximum Lyapunov exponentLE1is greater than zero,as observed in Fig.6(b).Then,a reverse period-doubling bifurcation route occurs fork ∈[-0.452,0.0018],resulting in the appearance of periodic spiking.As illustrated in Fig.6(b),all Lyapunov exponents are less than zero in this parameter interval,verifying that the neuron network is in a periodic state.Whenkincreases to the critical valuek=0.0018, a tangent bifurcation occurs,resulting in the occurrence of hyperchaotic firing, which can be validated from the superimposed local magnification plot in Fig.6(b),where the Lyapunov exponentsLE1andLE2are both greater than zero.The sampled phase diagrams and the corresponding time series withk=-0.46,k=-0.4,andk=0.065 are shown in Fig.7,which effectively validate the three parameter regions of chaotic, periodic, and hyperchaotic firing in Fig.6.

    Fig.6.The dynamics of the network(6)with respect to the control parameter k with the initial parameters(-6,-1,1,1,1).(a)Bifurcation diagram.(b)Lyapunov exponents.

    Fig.7.Phase diagrams on the v–u plane and time series of the variable v with different parameters k: (a) and (b) k=-0.46; (c) and (d)k=-0.4;(e)and(f)k=0.065.

    4.2.Coexisting firing patterns

    Two different coupling strengthsk=0.011, and-0.002 are selected as examples to demonstrate the coexisting firing patterns of the neuron network related to the initial value of the memristor.

    Fork=0.011,figure 8(a)illustrates the Lyapunov exponents with respect to the initial value of the memristor.When?<0, all Lyapunov exponents are less than zero, meaning the neuron network is in a resting state.With the increase of?, the Lyapunov exponentsLE1andLE2suddenly jump to positive values when?exceeds the critical value?=0,resulting in the network transitioning from a resting state to a hyperchaotic firing pattern.When?increases to?= 2,the Lyapunov exponentLE1still remains positive value,whileLE2suddenly jump to negative values, resulting in the existence of one positive Lyapunov exponent,which indicates that the network transitions from hyperchaotic firing to chaotic firing.Figure 8(b) shows the phase diagram of the coexistence of resting state,hyperchaotic firing,and two different chaotic firing patterns.Note that in Fig.8(b), the red trajectory originates from the initial value?=5, the blue from?=3, the green from?=1, and the cyan from?=-1.The corresponding time series ofx(n) are illustrated in Fig.8(c).It is worth noting that although the all Lyapunov exponents remain unchanged when?=5 and?=3, the network exhibit two heterogeneous chaotic firing patterns, which can be validated by the red and the blue phase diagrams in Fig.8(b) and the time series diagrams colored with the same colors in Fig.8(c).Similarly,whenk=-0.002,the network can exhibit the coexisting hyperchaotic firing,chaotic firing,and two resting states under different initial values,as depicted in Figs.8(d)–8(f).

    Fig.8.The Lyapunov exponents,phase diagrams,and time series of coexisting attractors under two groups of different k values.(a)Lyapunov exponents for the initial value of the memristor at k=0.011.(b)The phase diagram of coexistence of chaotic attractors and resting state when k=0.011.(c) Time series diagram when k=0.011.(d) Lyapunov exponents for k=-0.002.(e) Phase diagram of coexistence of chaotic attractors and resting states at k=-0.002.(f)Time series diagram when k=-0.002.

    4.3.Effects of noise on the network

    We add the following noiseεξnto the internal state equation of the memristor in the neuron network.With the coupling and iteration of the discrete neuron network,the noise will act on the entire system.

    Fig.9.Time series diagram of membrane potential of Izhikevich neurons at k=0.1.(a)Periodic state in the absence of noise.(b)Chaotic state in the presence of noise.

    5.Synchronization transition of heterogeneous neural networks considering noise

    In order to study phase synchronization and synchronization transition of two different neurons coupled by the locally active discrete memristor,the definition of a phase is given as

    When the absolute value of the phase difference between two neurons is bounded by the value 2π, phase synchronization can be detected.We choose three differentkvalues to indicate synchronous transition behavior of the network.Whenk=0, the two neurons are uncoupled.In this case, the neuron Izhikevich exhibits a spiking firing pattern,while the Chialvo neuron exhibits a periodic firing pattern,as shown in Fig.10(a).It is observed that the firing patterns of the two neurons are obviously different.As depicted in Fig.10(b), the phase difference between the two neurons increases monotonously, validating that the two neurons are desynchronized.Whenk=0.44, the two neurons exhibit a quasi-synchronous burst firing pattern,as shown in Fig.10(c).In this case, the phase difference between two neurons is bounded by 2π.Whenkincreases tok=0.73 or more,the synchronous periodic spiking firing pattern emerges.Figure 10(e)shows the onsets of the action potential of the two neurons are consistent and figure 10(f) illustrates the phase difference is always 0.Thus, we can infer that the two neurons are completely phase synchronized.In addition,we found that appropriate noise can enable the network to achieve synchronization at a lower coupling strength.This has practical significance,because the large coupling strength does not conform to the biological reality.Whenk=0.4,figure 11 shows the time series and phase difference of two neurons.The red and blue trajectories in the figure represent the Izhikevich neuron, and the Chialvo neuron, respectively.When no noise is considered in the neuron network,The two neurons present an irregular chaotic firing pattern, as shown in Fig.11(a).The two neurons are desynchronized, which can be verified from the monotonously increasing phase difference of the two neurons in Fig.11(b).Then,the noise is added to the neuron network,it can be seen from Figs.11(c)and 11(d)that the two neurons are completely phase synchronized and the phase difference is always 0, which proves that the noise enables the neuron network achieve synchronization at a lower coupling strength.Note that when the noise intensity added to the neuron network is too large, the two neurons will return to the resting state.

    Fig.10.Synchronization transition of heterogeneous neuron networks.(a)The time series of k=0.(b)Phase difference of two neurons when k=0.(c)The time series of k=0.44.(d)Phase difference of two neurons when k=0.44.(e)The time series of k=0.73.(f)Phase difference of two neurons when k=0.73.

    Fig.11.The time series of neuron membrane voltage and the phase difference between two neurons when the system is at k=0.4.(a) Time series in the absence of noise.(b)Phase difference in the absence of noise.(c)Time series in the presence of noise.(d)Phase difference in the presence of noise.

    6.Conclusions

    In this study,a discrete four-stable memristor is proposed and its locally activity and non-volatility are studied in detail.Then, the discrete Izhikevich neuron and Chialvo neuron is coupled by the memristor, a discrete heterogeneous neuron network model, thus, is established.The equilibrium points along with their stabilities are systematically analyzed.The coupling strength dependent dynamics are analyzed and it is found that the network can exhibit resting state,periodic firing,chaotic firing and hyperchaotic firing under different coupling strengths.The coexisting firing patterns, including the coexistence of resting state,two different chaotic firing and hyperchaotic firing, the coexistence of hyperchaotic firing, chaotic firing and two resting states are revealed.Furthermore,phase synchronization between two heterogeneous neurons are explored by varying the coupling strength and our results shows that the two heterogeneous neurons can achieve perfect phase synchronization at large coupled strength.What is more, the effects of noise on the network are also considered.We find that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons at a low coupling strength.

    Acknowledgement

    Project supported by the National Natural Science Foundations of China(Grant Nos.62171401 and 62071411).

    久久国产精品男人的天堂亚洲| 最近中文字幕高清免费大全6| 免费女性裸体啪啪无遮挡网站| 免费少妇av软件| 在线免费观看不下载黄p国产| 色播在线永久视频| 伦理电影免费视频| 亚洲精品aⅴ在线观看| 国产又色又爽无遮挡免| 国产一级毛片在线| 精品一区二区三区四区五区乱码 | 免费看不卡的av| 国产在视频线精品| 国产一区亚洲一区在线观看| 伊人久久大香线蕉亚洲五| 日韩欧美精品免费久久| 久久久久视频综合| 免费播放大片免费观看视频在线观看| 国产色婷婷99| 免费观看性生交大片5| 免费av中文字幕在线| 18在线观看网站| 捣出白浆h1v1| kizo精华| 久久精品aⅴ一区二区三区四区 | 日韩一本色道免费dvd| 中文字幕另类日韩欧美亚洲嫩草| 少妇精品久久久久久久| 18禁观看日本| 国产在线一区二区三区精| av视频免费观看在线观看| 宅男免费午夜| 亚洲久久久国产精品| 欧美av亚洲av综合av国产av | 国产精品亚洲av一区麻豆 | 一级爰片在线观看| 美女视频免费永久观看网站| 国产成人午夜福利电影在线观看| 纵有疾风起免费观看全集完整版| 一本—道久久a久久精品蜜桃钙片| 国产高清国产精品国产三级| 精品一区二区三区四区五区乱码 | 国产一区二区三区综合在线观看| 久久精品aⅴ一区二区三区四区 | 女人高潮潮喷娇喘18禁视频| 妹子高潮喷水视频| 麻豆乱淫一区二区| 国产精品免费视频内射| 欧美精品亚洲一区二区| 下体分泌物呈黄色| 久久久久精品性色| 好男人视频免费观看在线| 一区二区三区四区激情视频| 丝袜美足系列| 一级毛片我不卡| 欧美日韩av久久| 免费在线观看视频国产中文字幕亚洲 | 国精品久久久久久国模美| 成人18禁高潮啪啪吃奶动态图| 久久久久人妻精品一区果冻| 欧美精品国产亚洲| 国产一区亚洲一区在线观看| 亚洲国产欧美在线一区| 一级片'在线观看视频| 欧美精品国产亚洲| 日韩av免费高清视频| 国产男女内射视频| 免费不卡的大黄色大毛片视频在线观看| 最新的欧美精品一区二区| 久久国产精品大桥未久av| 国产黄频视频在线观看| 夫妻午夜视频| 国产精品嫩草影院av在线观看| 亚洲精品国产av蜜桃| 亚洲精品一二三| 狠狠婷婷综合久久久久久88av| 日本免费在线观看一区| www.av在线官网国产| 精品一品国产午夜福利视频| 免费黄网站久久成人精品| 日日啪夜夜爽| 天堂俺去俺来也www色官网| 在线观看www视频免费| videossex国产| 欧美人与性动交α欧美软件| 中文字幕精品免费在线观看视频| 丝袜脚勾引网站| 国产精品国产三级国产专区5o| 777久久人妻少妇嫩草av网站| av电影中文网址| 中文精品一卡2卡3卡4更新| 亚洲人成电影观看| 麻豆av在线久日| 大片电影免费在线观看免费| 欧美 亚洲 国产 日韩一| 亚洲国产成人一精品久久久| 国产在线免费精品| 哪个播放器可以免费观看大片| 丰满迷人的少妇在线观看| a级毛片黄视频| 波多野结衣av一区二区av| 国产白丝娇喘喷水9色精品| 大香蕉久久成人网| 亚洲欧洲精品一区二区精品久久久 | 免费少妇av软件| 大陆偷拍与自拍| 99热国产这里只有精品6| 9色porny在线观看| 三级国产精品片| 老女人水多毛片| 精品人妻熟女毛片av久久网站| 交换朋友夫妻互换小说| 99久久中文字幕三级久久日本| 卡戴珊不雅视频在线播放| 亚洲五月色婷婷综合| 日韩电影二区| 久久精品国产亚洲av高清一级| 日日撸夜夜添| 亚洲婷婷狠狠爱综合网| 国产欧美日韩一区二区三区在线| 看十八女毛片水多多多| 日韩精品有码人妻一区| 卡戴珊不雅视频在线播放| 国产精品久久久久久精品古装| 国产成人午夜福利电影在线观看| 91午夜精品亚洲一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 久热久热在线精品观看| 女的被弄到高潮叫床怎么办| 国产av一区二区精品久久| 深夜精品福利| 黄色视频在线播放观看不卡| 亚洲国产最新在线播放| av国产精品久久久久影院| 精品第一国产精品| 日本午夜av视频| 国产一区二区在线观看av| 久久久久视频综合| 久久综合国产亚洲精品| 高清不卡的av网站| av电影中文网址| 9191精品国产免费久久| 五月天丁香电影| 麻豆精品久久久久久蜜桃| 老汉色∧v一级毛片| 九九爱精品视频在线观看| 欧美精品高潮呻吟av久久| 熟女av电影| 天天躁夜夜躁狠狠久久av| 日韩av免费高清视频| 777久久人妻少妇嫩草av网站| 国产色婷婷99| 日韩一本色道免费dvd| 97在线视频观看| 久久久久精品性色| 午夜影院在线不卡| 久久久久久久久久久久大奶| √禁漫天堂资源中文www| 国产片特级美女逼逼视频| 久久狼人影院| 成年美女黄网站色视频大全免费| av免费在线看不卡| 美女国产高潮福利片在线看| 成人午夜精彩视频在线观看| 久久99精品国语久久久| 啦啦啦中文免费视频观看日本| 欧美亚洲日本最大视频资源| 午夜福利在线免费观看网站| 色吧在线观看| 2021少妇久久久久久久久久久| 18禁动态无遮挡网站| 免费在线观看完整版高清| 国产精品偷伦视频观看了| 黄片播放在线免费| 性色av一级| 欧美激情 高清一区二区三区| av在线观看视频网站免费| 精品一区在线观看国产| 日韩一区二区三区影片| a级片在线免费高清观看视频| 国产极品天堂在线| 精品第一国产精品| 亚洲精品国产av蜜桃| 色94色欧美一区二区| 少妇人妻久久综合中文| a级毛片黄视频| 一区二区日韩欧美中文字幕| 一级片免费观看大全| 伦理电影免费视频| 热re99久久精品国产66热6| 中文字幕人妻丝袜一区二区 | 宅男免费午夜| 搡女人真爽免费视频火全软件| 青春草亚洲视频在线观看| h视频一区二区三区| 视频在线观看一区二区三区| 丰满迷人的少妇在线观看| 老汉色∧v一级毛片| 国产一区二区激情短视频 | 咕卡用的链子| 午夜福利乱码中文字幕| 亚洲美女黄色视频免费看| 精品少妇久久久久久888优播| 亚洲图色成人| 一级毛片黄色毛片免费观看视频| 搡老乐熟女国产| 亚洲成人一二三区av| av有码第一页| 色婷婷av一区二区三区视频| 亚洲精品日本国产第一区| av视频免费观看在线观看| 大香蕉久久成人网| 免费观看无遮挡的男女| 高清在线视频一区二区三区| 久久免费观看电影| 两个人看的免费小视频| 国产爽快片一区二区三区| 成人亚洲欧美一区二区av| 大码成人一级视频| 九色亚洲精品在线播放| 久久av网站| 婷婷色综合大香蕉| 亚洲四区av| 久热这里只有精品99| 亚洲精品日韩在线中文字幕| 黄色怎么调成土黄色| 狠狠精品人妻久久久久久综合| 久久久国产精品麻豆| 国产97色在线日韩免费| 久久人人爽人人片av| 久久精品国产亚洲av涩爱| 亚洲国产av新网站| 亚洲精品日本国产第一区| 成人午夜精彩视频在线观看| 亚洲精品久久久久久婷婷小说| 亚洲国产精品一区三区| 妹子高潮喷水视频| 亚洲精品美女久久av网站| 久久青草综合色| 亚洲欧美一区二区三区国产| 日韩欧美一区视频在线观看| av网站免费在线观看视频| 欧美少妇被猛烈插入视频| 久久久久久人人人人人| 欧美激情高清一区二区三区 | 我要看黄色一级片免费的| 一级毛片我不卡| 久久人人97超碰香蕉20202| 亚洲少妇的诱惑av| 久久精品aⅴ一区二区三区四区 | 国产一区二区三区综合在线观看| 亚洲经典国产精华液单| 国产一区二区三区av在线| 国产男女内射视频| 午夜日韩欧美国产| 国产乱来视频区| 国产一区有黄有色的免费视频| 大香蕉久久网| 国产黄频视频在线观看| 老熟女久久久| 9热在线视频观看99| 久久久久久免费高清国产稀缺| 狠狠精品人妻久久久久久综合| 不卡视频在线观看欧美| 欧美xxⅹ黑人| 免费女性裸体啪啪无遮挡网站| 欧美日韩视频精品一区| 国产成人免费无遮挡视频| 中文字幕亚洲精品专区| 中文字幕亚洲精品专区| 欧美成人午夜精品| 三上悠亚av全集在线观看| 精品亚洲成国产av| 国产成人午夜福利电影在线观看| 亚洲欧美精品自产自拍| 精品国产乱码久久久久久小说| 亚洲精品国产色婷婷电影| a级毛片黄视频| 亚洲第一av免费看| a级片在线免费高清观看视频| 国产精品久久久av美女十八| 99国产综合亚洲精品| 汤姆久久久久久久影院中文字幕| 在线观看三级黄色| 中文字幕最新亚洲高清| 亚洲婷婷狠狠爱综合网| 亚洲三区欧美一区| 午夜福利乱码中文字幕| 亚洲精品美女久久av网站| 亚洲人成电影观看| 亚洲,一卡二卡三卡| 午夜福利视频在线观看免费| 亚洲精品aⅴ在线观看| 丰满迷人的少妇在线观看| 三上悠亚av全集在线观看| 人体艺术视频欧美日本| 久久久国产一区二区| 国产精品久久久久久精品古装| 国产男女超爽视频在线观看| 午夜激情久久久久久久| 日韩中文字幕欧美一区二区 | 十分钟在线观看高清视频www| 亚洲精品在线美女| 欧美亚洲 丝袜 人妻 在线| 老司机影院成人| 久久久久久久久久人人人人人人| 国产免费视频播放在线视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 老汉色∧v一级毛片| 亚洲av中文av极速乱| 一本色道久久久久久精品综合| 久久久久久久国产电影| 美女主播在线视频| 纯流量卡能插随身wifi吗| 大香蕉久久成人网| 在线观看www视频免费| 男女边摸边吃奶| 亚洲一区中文字幕在线| 纵有疾风起免费观看全集完整版| 美女国产高潮福利片在线看| 纵有疾风起免费观看全集完整版| 亚洲国产精品成人久久小说| 边亲边吃奶的免费视频| 欧美日韩精品网址| 日韩av不卡免费在线播放| 国产老妇伦熟女老妇高清| 香蕉丝袜av| 久久精品国产综合久久久| 久久久久久久久久久免费av| 91精品伊人久久大香线蕉| 不卡视频在线观看欧美| 成年女人毛片免费观看观看9 | 亚洲中文av在线| 亚洲欧美成人综合另类久久久| 国产精品一二三区在线看| 成人免费观看视频高清| 男人操女人黄网站| 曰老女人黄片| 色94色欧美一区二区| 国产男人的电影天堂91| 午夜激情av网站| 秋霞伦理黄片| 欧美日韩视频精品一区| 最近手机中文字幕大全| 久久亚洲国产成人精品v| 菩萨蛮人人尽说江南好唐韦庄| 水蜜桃什么品种好| 伦理电影大哥的女人| 高清av免费在线| 久久久久久久大尺度免费视频| 精品国产乱码久久久久久男人| 久久午夜综合久久蜜桃| 伊人久久国产一区二区| 男的添女的下面高潮视频| 啦啦啦中文免费视频观看日本| 国产精品香港三级国产av潘金莲 | 波多野结衣av一区二区av| 最新中文字幕久久久久| 久久精品国产亚洲av天美| 亚洲av成人精品一二三区| 三上悠亚av全集在线观看| 日韩中字成人| 男人舔女人的私密视频| 国产成人91sexporn| 久久精品国产鲁丝片午夜精品| 菩萨蛮人人尽说江南好唐韦庄| 老熟女久久久| 免费不卡的大黄色大毛片视频在线观看| 男女午夜视频在线观看| 久久久久视频综合| 一区福利在线观看| 国产高清国产精品国产三级| 亚洲,欧美,日韩| 9色porny在线观看| 在线天堂中文资源库| 亚洲精品av麻豆狂野| 国产一区二区激情短视频 | 永久免费av网站大全| 老司机亚洲免费影院| 亚洲欧美一区二区三区黑人 | 欧美精品一区二区免费开放| 女的被弄到高潮叫床怎么办| 国产麻豆69| 黑人巨大精品欧美一区二区蜜桃| 99久久中文字幕三级久久日本| av在线老鸭窝| 色哟哟·www| 国产午夜精品一二区理论片| 久久人人爽av亚洲精品天堂| 美女高潮到喷水免费观看| 毛片一级片免费看久久久久| 老司机影院毛片| 久久精品国产综合久久久| 美女脱内裤让男人舔精品视频| 毛片一级片免费看久久久久| 欧美老熟妇乱子伦牲交| 久久精品国产a三级三级三级| 中文字幕人妻丝袜一区二区 | 亚洲av中文av极速乱| 人人澡人人妻人| 久久久久久久亚洲中文字幕| 色哟哟·www| 久久久欧美国产精品| 久久久久人妻精品一区果冻| 亚洲精品美女久久av网站| 少妇猛男粗大的猛烈进出视频| 久久女婷五月综合色啪小说| 热99国产精品久久久久久7| 最近最新中文字幕大全免费视频 | 夜夜骑夜夜射夜夜干| 99国产精品免费福利视频| 十分钟在线观看高清视频www| 国产精品蜜桃在线观看| 午夜av观看不卡| 亚洲精品国产av蜜桃| 精品一区二区免费观看| 亚洲欧美色中文字幕在线| 在线观看三级黄色| www.自偷自拍.com| 国产成人精品无人区| 一级片'在线观看视频| 日韩中文字幕欧美一区二区 | 夜夜骑夜夜射夜夜干| 精品酒店卫生间| 一边亲一边摸免费视频| 日韩一区二区三区影片| 一级毛片黄色毛片免费观看视频| 搡老乐熟女国产| 精品视频人人做人人爽| 日韩一卡2卡3卡4卡2021年| 在线观看www视频免费| 亚洲精华国产精华液的使用体验| 久久这里只有精品19| 国产精品久久久久久久久免| 国产黄色免费在线视频| 超碰成人久久| 成人毛片60女人毛片免费| 黄色视频在线播放观看不卡| 国产极品天堂在线| 香蕉精品网在线| 日韩av在线免费看完整版不卡| 日本欧美国产在线视频| av有码第一页| 男女国产视频网站| 熟妇人妻不卡中文字幕| 亚洲人成电影观看| av女优亚洲男人天堂| 色94色欧美一区二区| 久久久久久久精品精品| 波野结衣二区三区在线| 色婷婷久久久亚洲欧美| 久久精品亚洲av国产电影网| 久久精品国产a三级三级三级| 可以免费在线观看a视频的电影网站 | 国产精品麻豆人妻色哟哟久久| 国产激情久久老熟女| 亚洲第一青青草原| 久久韩国三级中文字幕| 国产成人精品无人区| 国产精品国产三级国产专区5o| 欧美日韩一级在线毛片| 午夜影院在线不卡| 久久热在线av| 久久久久久久久久人人人人人人| 丝袜美足系列| 国产在线免费精品| 亚洲国产av新网站| 在线观看www视频免费| 高清黄色对白视频在线免费看| 好男人视频免费观看在线| 国产一区二区激情短视频 | 国产一区有黄有色的免费视频| www.熟女人妻精品国产| 五月开心婷婷网| 欧美人与性动交α欧美软件| 亚洲人成电影观看| 久久精品国产a三级三级三级| 欧美精品国产亚洲| 99国产精品免费福利视频| 久久精品国产综合久久久| 成人毛片a级毛片在线播放| 亚洲精品在线美女| 十分钟在线观看高清视频www| 国产av一区二区精品久久| av在线播放精品| 国产有黄有色有爽视频| 一边摸一边做爽爽视频免费| 又大又黄又爽视频免费| 久久精品熟女亚洲av麻豆精品| 美女xxoo啪啪120秒动态图| 大香蕉久久网| a级毛片黄视频| 日本av免费视频播放| 精品亚洲成a人片在线观看| 欧美另类一区| 国产免费现黄频在线看| 97人妻天天添夜夜摸| 国产精品一国产av| 国产野战对白在线观看| 中国国产av一级| 夫妻性生交免费视频一级片| 亚洲欧美精品综合一区二区三区 | 丰满饥渴人妻一区二区三| 亚洲国产av新网站| av视频免费观看在线观看| 国产成人免费无遮挡视频| 亚洲国产精品一区二区三区在线| 婷婷色av中文字幕| 国产精品亚洲av一区麻豆 | 如日韩欧美国产精品一区二区三区| 女人高潮潮喷娇喘18禁视频| 中文字幕最新亚洲高清| 成人亚洲欧美一区二区av| 最近的中文字幕免费完整| 视频区图区小说| 精品国产一区二区三区四区第35| 久久精品久久精品一区二区三区| 日本-黄色视频高清免费观看| 三级国产精品片| 亚洲av男天堂| 18禁国产床啪视频网站| av国产久精品久网站免费入址| 母亲3免费完整高清在线观看 | 街头女战士在线观看网站| 亚洲av在线观看美女高潮| √禁漫天堂资源中文www| 亚洲中文av在线| 午夜激情av网站| 国产欧美日韩综合在线一区二区| 国产精品香港三级国产av潘金莲 | 成人漫画全彩无遮挡| 国产精品一区二区在线观看99| 亚洲欧美一区二区三区国产| 日本wwww免费看| 日韩一区二区视频免费看| 国产1区2区3区精品| 国产成人精品久久二区二区91 | 久久久久久久亚洲中文字幕| 黄色怎么调成土黄色| 国产免费福利视频在线观看| 欧美成人精品欧美一级黄| av网站在线播放免费| 久久久久国产网址| 欧美日韩精品网址| 国产精品秋霞免费鲁丝片| 久久精品aⅴ一区二区三区四区 | 亚洲在久久综合| 老司机亚洲免费影院| 婷婷色综合大香蕉| 亚洲精品久久成人aⅴ小说| 少妇猛男粗大的猛烈进出视频| 日韩av不卡免费在线播放| 国产在线一区二区三区精| 国产精品一区二区在线不卡| 一级毛片黄色毛片免费观看视频| 成人二区视频| 日韩av免费高清视频| 久久久久久久久久久免费av| 秋霞在线观看毛片| 一级毛片 在线播放| 免费在线观看完整版高清| 超碰成人久久| 看非洲黑人一级黄片| 久久精品aⅴ一区二区三区四区 | 国产在线视频一区二区| 久久久久精品性色| 精品一区二区三区四区五区乱码 | 国产精品久久久久久精品古装| 777米奇影视久久| 精品酒店卫生间| 在线免费观看不下载黄p国产| 国产成人免费观看mmmm| 精品少妇黑人巨大在线播放| 99久久精品国产国产毛片| 亚洲天堂av无毛| 久久这里有精品视频免费| 亚洲成人手机| 亚洲精品日韩在线中文字幕| 久久久a久久爽久久v久久| 久久青草综合色| 欧美精品人与动牲交sv欧美| 十八禁高潮呻吟视频| 综合色丁香网| 欧美精品人与动牲交sv欧美| 十八禁高潮呻吟视频| 黄片播放在线免费| 最近最新中文字幕大全免费视频 | 亚洲欧美一区二区三区国产| av片东京热男人的天堂| 久久精品国产亚洲av涩爱| 曰老女人黄片| 日本vs欧美在线观看视频| 亚洲成av片中文字幕在线观看 | 亚洲中文av在线| 日韩一区二区三区影片| 国产男人的电影天堂91| 性高湖久久久久久久久免费观看| 一级a爱视频在线免费观看| 亚洲av男天堂| 亚洲精品美女久久av网站| 久久久久国产精品人妻一区二区| 国产成人免费观看mmmm| 久久久久精品人妻al黑| 久久精品夜色国产| 日韩三级伦理在线观看| 精品酒店卫生间| 青春草国产在线视频| 大片电影免费在线观看免费| 免费高清在线观看日韩| 蜜桃国产av成人99| www.熟女人妻精品国产| 黄频高清免费视频| 九九爱精品视频在线观看| 久久久久久久久免费视频了| 美女大奶头黄色视频|