• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of natural frequency for imaging interface in liquid lens

    2021-10-28 07:01:38NaXie謝娜
    Chinese Physics B 2021年10期
    關鍵詞:謝娜

    Na Xie(謝娜)

    College of Electronic and Optical Engineering and College of Microelectronics,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    Keywords: natural frequency,liquid–liquid interface,capillary wave,liquid lens

    1. Introduction

    Since electrowetting liquid lens was innovated, it has been received increased attention across a number of scientific inquiries in recent years,[1–12]such as the imaging of portable lens,[4,5]realizing the bionic compound eyes,[6]composing array displays,[7]enhancement of scanning microscopes,[8,9]and construction of holographic display systems.[10]There were also interesting studies of the liquid–liquid (L–L) interface in the lens for interference imaging,[11]which can be used to enhance the encryption randomness of phase mask in optical communication systems to prevent confrontational attacks.[12]

    In all kinds of applications,the rapid response of milliseconds is a major advantage for the liquid lens.[13]The response time mainly depends on the time difference between the applying of voltage signal and the stabilization of the L–L interface. Due to the instant electrical field establishment, the response time is mainly the interval between the changes of liquid–liquid–solid three-phase angle on the side wall to the stabilization of the L–L interface. In essence, the response characteristics of the surface wave on the interface is determined in a closed vessel,which is a capillary hydrodynamics problem as it is in capillary scale.

    To date, previous studies have investigated the dynamic response of liquid lens based mainly on the experimental observations.[5,14–16]Some researchers used transparent cylinder wall for investigating the interface profiles,[5]and some employed the beam imaging to reflect the fluctuation characteristics of the lens indirectly.[15]Obviously,prior studies have not been able to convincingly show the theoretical basis of the liquid lens imaging interface fluctuation.[17]

    In the last few decades,due to the aerospace and nuclear technology boom,there were extensive studies on the surface wave in vessels such as the fuel storage containers.[18–21]But as far as we know,there was no special study about the capillary wave on L–L interface in a closed container. In general,the electrowetting liquid lens is at the size around the capillary constant,which for water is 0.39 cm at 20°.The gravity can be neglected because the difference of the pressure due to gravity is zero at the L–L interface when the density of the liquids is as the same.

    Recent developments in liquid lens have heightened the need for the theoretical basis of the lens. In this study, the hydrodynamic analysis of the L–L interface fluctuation based on the equations of Euler and fluid continuity is proposed,and the natural frequencies of capillary wave of modes 0 and 1 are obtained. The analytical results in our research are in a good consistent with the experiments documented in the literature. The influences of the radius, the height ratio and the height-to-diameter ratio of the double layer cylinder on natural frequencies are also studied. It is hoped that this research will contribute to a deeper understanding of the interface dynamics in the liquid lens and provide a basis for the precise control of the interface for beam modulation.

    2. Research methods

    2.1. Liquid lens model

    With the same density,different viscosities and refractive indexes,the conductive ion water and insulating oil are encapsulated in a cylindrical container. The spherical L–L interface between the two liquids can modulate the beam spatially,and the diopter of the interface can be controlled by the applied voltage.

    A simple model of the electrowetting liquid lens is shown in Fig. 1(a). The upper liquid is ion solution with heighth′,while the lower is oil with heighth,and both are encapsulated in a cylindrical container with radiusa. When no voltage applied, the three-phase angleαis obtuse at the internal wall where coated a thin hydrophobic layer,and it is a concave lens as the refractive index of the oil is larger. When the voltage is applied,according to Young’s equation,[3]the contact angleαbecomes smaller and the curvature of the interface changes accordingly,so the focal length changes.

    In our previous studies,[22]it was found that the natural frequency of the interface decreases with the decrease of the interface curvature. Therefore,the natural frequency of the interface is affected apparently by the contact angle. To simplify the mathematical problem, here we focus on the fluctuation characteristics of a capillary wave on a flat interface, that is,the contact angle is equal to 90°, and the curvature of the interface is infinity. In this case, it is accurate to establish a mathematical model using cylindrical coordinates. Otherwise,the interface is spherical when the contact angle is not equal to 90°. The spherical coordinates are more suitable to solve the problem,but the theoretical analysis will be more complicated.

    Fig. 1. (a)A liquid lens in a cylinder container with upper liquid ion water and lower oil. (b)The cylindrical coordinates of the lens.

    2.2. Fluid dynamics equations

    In accordance with the general assumptions of fluid dynamics, we assume that the upper water and lower oil are incompressible and irrotational fluids.[17]The fluctuation amplitude of the L–L interface is supposed to be small compared with the radius of the cylinder,so the linear surface wave approximation is established. The cylindrical coordinates are shown in Fig. 1(b), where the L–L interface is a plane and the origin is set on it. According to the hydrodynamics, the velocity potentialφof oil andφ′of water should satisfy the Laplace equations,respectively,which are By using the trigonometric function formula, the natural frequency can be written as

    3. Results and discussion

    3.1. Comparison with experiments

    In order to compare with the experimental data of commercial lens Varioptic 39N0, the model is set with parameters similar to 39N0 in scale as follows:σ=0.0445 N·m?1,ρ=1×103kg·m?3,h=1.3×10?3m,andh′=8.5×10?4m.Compared with natural frequencies of four modes obtained accurately by Strauch Met al.,[11]where they observed all the frequencies except 17.95 Hz of mode(1,1)and 209.25 Hz of mode(0,3),the frequenciesf1–f4of the rest four modes have a good match with our analysis and the error is no more than 4.90%,as shown in Table 1.

    When the frequency is low,the transmission beam cannot form interference superposition at the interface with a discontinuous standing wave, so the interference fringes cannot be observed. When the frequency is higher than 200 Hz,the liquid surface no longer vibrates conspicuously due to the inertia of the liquid, and the interference fringes cannot be formed either.

    The errors in Table 1 may be caused as follows. Firstly,the cavity of commercial Varioptic 39N0 liquid lens is actually in the shape of a conical frustum,which is designed not only to increase the range of contact angle variation,but also to minimize the center deviation of the L–L interface while enhance its imaging stability. For the conical frustum model,spherical coordinates are more accurate than the cylinder coordinates.Secondly,in order to improve the response speed,the viscosity of the oil solution is modulated generally to make the oscillation of the interface near critical damping. Moreover,the viscosity dissipation of the interface and the friction at the side wall both have effects on the interface fluctuation.For simplicity of analysis,all those effects are ignored here. Therefore,to obtain more accurate results,hydrodynamic analysis should be carried out in spherical coordinate system under the influence of viscous damping and side wall friction.

    In addition,the linear wave condition is no longer applicable when the amplitude of the wave is large at low frequencies. The condition that the amplitude is much smaller than the wavelength cannot be satisfied,and the nonlinear theory is needed.

    Table 1. Comparison with the experiments in four modes.

    3.2. Simulation analysis

    3.2.1. Influence of lens radius on eigenfrequency

    Curves in Fig. 2 are natural frequencies of each mode plotted with the lens radius according to Eq. (14). As the lens radius increases, the natural frequencies of modes 0 and 1 decrease,which means the smaller the lens is,the higher the natural frequencies are. Theoretically, the higher frequency modes are difficult to be measured due to the influence of inertia of the liquid,while the resonant modes of them at lower frequencies can be observed easily. Compared with the experimental results,curves in Fig.2 can be observed easily except mode(0,3)with the highest eigenfrequencies and mode(1,1)with the lowest eigenfrequencies.

    Fig.2. Natural frequencies of modes 0 and 1 changing with radius a.

    3.2.2. Influence of liquid height ratio on eigenfrequency

    The radius of the lens is fixed asa=1.95×10?3m,and the height of the lens is fixed asH=h+h′=3×10?3m,which is set to be a little larger than the actual height of 39N0 for larger range of variation.We take the ratio of ionic solution height to total heighth′/Has the variable,and each of the first three intrinsic frequencies inm=0 andm=1 are shown in

    Fig.3. With the increase of the height of the ion solution,the natural frequencies increase and tend to be constant when the ratioh′/His close to 0.5.If the range of the horizontal axis extends to 1 in Fig.3,we will get symmetrical arch curves with the central symmetry point 0.5,as can be seen from Eq.(14).

    Because we ignore the viscosity of the oil, and the two liquids have the same density, the height of the ion waterh′and the height of the oilhhave the same effect on the eigenfrequency of the lens, which can be seen from Eq. (14). So when the variable is set to beh/H, the curves are exactly as the same as Fig.3.When either of the liquid is lower,its height will have more effect on the natural frequencies.

    Fig.3. Natural frequencies of modes 0 and 1 changing with ratio h′/H.

    3.2.3. Influence of height-to-diameter ratio on eigenfrequency

    If the two liquids have the same height,h′=h, and we take the height-to-diameter ratioh′/aas the variable, each of the first three intrinsic frequencies in modes 0 and 1 are analyzed,as shown in Fig.4. With the increase of the ratioh′/a,the natural frequencies increase and tend to be constant when the ratio exceeds 0.5. In other words, the flatter the cylinder is, the effect of the liquid height on the eigenfrequencies is greater. As the same as before, if the variable set to beh/a,the curves are the same as those shown in Fig.4.

    Fig.4. Natural frequencies of modes 0 and 1 changing with ratio h′/a.

    In conclusion,for a liquid lens of a flat cylinder with twolayer, the larger the radius is, the lower the intrinsic frequencies are; the larger the height difference of the two liquids is,the lower the eigenfrequencies are;and the smaller the heightto-diameter ratio of the lens is,the lower the intrinsic frequencies are.

    4. Conclusion

    An approximate model of a commercial electrowetting liquid lens is established,and the analysis of the capillary wave in the lens is carried out. Based on hydrodynamics,the analytical expression for the natural frequency of the lens has been derived in cylindrical coordinates. The results are in good agreement with the experiments in previous literature. This study provides a basis for the use of dynamic response of the lens,such as response time optimization,optical space modulation,optical communication encryption and many other applications.

    猜你喜歡
    謝娜
    Influence of water environment on paint removal and the selection criteria of laser parameters
    安安琪琪的故事23給我遙控器!我要看謝娜
    媽媽寶寶(2019年7期)2019-07-05 09:16:38
    章子怡和謝娜的用心之誼
    謝娜:我們的太陽女神
    文苑(2018年17期)2018-11-09 01:29:38
    照亮人生路的蠟燭
    謝娜
    謝娜張杰:“女話嘮”和靦腆男的婚姻小情歌
    謝娜:厚臉皮是她的最大優(yōu)勢
    謝娜為什么沒時間學文化?
    文苑(2015年1期)2015-01-06 06:02:02
    謝娜為什么沒時間學文化?
    文苑(2015年1期)2015-01-01 03:11:28
    亚洲av电影在线观看一区二区三区| 国产真实伦视频高清在线观看| av免费观看日本| 黑人猛操日本美女一级片| 毛片一级片免费看久久久久| 熟妇人妻不卡中文字幕| 91精品一卡2卡3卡4卡| 亚洲欧美精品自产自拍| 美女国产视频在线观看| 一二三四中文在线观看免费高清| 啦啦啦啦在线视频资源| 人妻制服诱惑在线中文字幕| 精品国产乱码久久久久久小说| 我要看日韩黄色一级片| 狂野欧美激情性bbbbbb| 精品视频人人做人人爽| 亚洲欧美一区二区三区黑人 | 男女无遮挡免费网站观看| av天堂中文字幕网| av福利片在线| 在线观看免费高清a一片| 少妇人妻精品综合一区二区| 少妇被粗大的猛进出69影院 | 特大巨黑吊av在线直播| 18+在线观看网站| 纵有疾风起免费观看全集完整版| a级毛片免费高清观看在线播放| 老司机亚洲免费影院| av在线app专区| 国产在线视频一区二区| 亚洲精品日韩av片在线观看| 国产av国产精品国产| 久久99热6这里只有精品| 两个人免费观看高清视频 | 久久精品夜色国产| 中国美白少妇内射xxxbb| 婷婷色麻豆天堂久久| 黑人猛操日本美女一级片| 乱系列少妇在线播放| 精品亚洲成国产av| 日本黄大片高清| 国产一区二区在线观看av| 亚洲一级一片aⅴ在线观看| 亚洲av男天堂| 日韩av免费高清视频| 精品一区在线观看国产| 高清av免费在线| 色吧在线观看| 亚洲真实伦在线观看| 国产在线免费精品| 国产伦理片在线播放av一区| 尾随美女入室| 欧美一级a爱片免费观看看| 亚洲丝袜综合中文字幕| 九草在线视频观看| 午夜av观看不卡| 嫩草影院新地址| 国产一级毛片在线| 国产精品.久久久| 又大又黄又爽视频免费| 人妻人人澡人人爽人人| 中文字幕久久专区| 欧美亚洲 丝袜 人妻 在线| 国产亚洲最大av| 久久精品夜色国产| 亚洲图色成人| 久久久a久久爽久久v久久| 成人18禁高潮啪啪吃奶动态图 | 国产av精品麻豆| 国产av精品麻豆| 欧美日韩精品成人综合77777| 美女xxoo啪啪120秒动态图| 麻豆乱淫一区二区| 国产成人精品福利久久| 各种免费的搞黄视频| 一本大道久久a久久精品| 亚洲第一av免费看| 这个男人来自地球电影免费观看 | 三级国产精品片| 日韩一区二区视频免费看| 欧美精品人与动牲交sv欧美| 伦理电影免费视频| 如何舔出高潮| .国产精品久久| 精品一区二区免费观看| 男人爽女人下面视频在线观看| 国产高清三级在线| 天天操日日干夜夜撸| 高清av免费在线| a 毛片基地| 赤兔流量卡办理| 亚洲一区二区三区欧美精品| 一区二区三区四区激情视频| 高清毛片免费看| av天堂中文字幕网| 色哟哟·www| 狂野欧美激情性bbbbbb| 人妻一区二区av| 国产精品偷伦视频观看了| 18禁在线播放成人免费| 妹子高潮喷水视频| 国产熟女欧美一区二区| 久久人人爽人人爽人人片va| 久久精品久久久久久久性| 久久久久久久久久成人| 亚洲国产精品专区欧美| 乱系列少妇在线播放| 97超碰精品成人国产| 久久99蜜桃精品久久| 观看美女的网站| 中文字幕亚洲精品专区| 欧美xxⅹ黑人| 亚洲精品久久午夜乱码| 亚洲精品乱码久久久v下载方式| 久久国产精品大桥未久av | a级一级毛片免费在线观看| 日韩av在线免费看完整版不卡| 99九九线精品视频在线观看视频| 黑人巨大精品欧美一区二区蜜桃 | av有码第一页| 韩国av在线不卡| 伦精品一区二区三区| 69精品国产乱码久久久| 大香蕉97超碰在线| 80岁老熟妇乱子伦牲交| 国产极品粉嫩免费观看在线 | 午夜激情福利司机影院| 国产白丝娇喘喷水9色精品| 日本vs欧美在线观看视频 | 国产黄频视频在线观看| 观看美女的网站| 国产深夜福利视频在线观看| 久久热精品热| 午夜福利视频精品| 国产高清三级在线| 一区在线观看完整版| 精品国产国语对白av| 免费黄频网站在线观看国产| av在线观看视频网站免费| 久久青草综合色| 亚洲av在线观看美女高潮| 亚洲电影在线观看av| 国产男女内射视频| 三级国产精品片| 十八禁网站网址无遮挡 | 久久这里有精品视频免费| 汤姆久久久久久久影院中文字幕| 一本久久精品| 人妻一区二区av| 99久久精品热视频| 午夜激情福利司机影院| 全区人妻精品视频| 午夜激情久久久久久久| 三级国产精品片| 亚洲欧美日韩东京热| 亚洲伊人久久精品综合| 大香蕉97超碰在线| 久久鲁丝午夜福利片| 国内揄拍国产精品人妻在线| 简卡轻食公司| av福利片在线观看| 一级片'在线观看视频| 亚洲精品第二区| 欧美激情国产日韩精品一区| 国产亚洲91精品色在线| 久热久热在线精品观看| 亚洲欧美精品自产自拍| 国产日韩一区二区三区精品不卡 | 午夜影院在线不卡| 国产极品天堂在线| 偷拍熟女少妇极品色| 丰满少妇做爰视频| 色视频www国产| 日韩电影二区| 成人午夜精彩视频在线观看| 内射极品少妇av片p| 九草在线视频观看| 老司机影院毛片| 精品国产露脸久久av麻豆| 亚洲激情五月婷婷啪啪| 最新的欧美精品一区二区| 国产精品秋霞免费鲁丝片| 欧美少妇被猛烈插入视频| av在线播放精品| 国产免费一区二区三区四区乱码| 如何舔出高潮| 黄色配什么色好看| 一本—道久久a久久精品蜜桃钙片| 麻豆成人午夜福利视频| 不卡视频在线观看欧美| 精品久久久久久久久av| 亚洲国产欧美日韩在线播放 | 熟女人妻精品中文字幕| av福利片在线观看| 日韩成人av中文字幕在线观看| 乱人伦中国视频| 美女大奶头黄色视频| 国产综合精华液| 啦啦啦啦在线视频资源| 插逼视频在线观看| 美女xxoo啪啪120秒动态图| 国产在线一区二区三区精| 欧美精品人与动牲交sv欧美| 午夜福利影视在线免费观看| 亚洲欧美日韩东京热| 久久人人爽人人爽人人片va| 在线亚洲精品国产二区图片欧美 | 中文精品一卡2卡3卡4更新| 午夜激情福利司机影院| 在线天堂最新版资源| 偷拍熟女少妇极品色| av黄色大香蕉| 国产精品福利在线免费观看| 久久国内精品自在自线图片| 不卡视频在线观看欧美| 免费久久久久久久精品成人欧美视频 | 中国美白少妇内射xxxbb| www.色视频.com| 水蜜桃什么品种好| av.在线天堂| 久久久久人妻精品一区果冻| 亚洲第一av免费看| 亚洲av成人精品一二三区| 久久久久网色| 九草在线视频观看| 成人18禁高潮啪啪吃奶动态图 | kizo精华| 99久久中文字幕三级久久日本| 色视频www国产| 成人亚洲欧美一区二区av| 男女边吃奶边做爰视频| 精品亚洲乱码少妇综合久久| 深夜a级毛片| 老司机深夜福利视频在线观看 | 丰满少妇做爰视频| 在线精品无人区一区二区三| 国产精品免费大片| 丝瓜视频免费看黄片| 老鸭窝网址在线观看| av国产精品久久久久影院| 免费少妇av软件| 国产精品偷伦视频观看了| 亚洲av片天天在线观看| 久久av网站| 操出白浆在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久视频综合| 亚洲欧美日韩另类电影网站| av在线老鸭窝| 日韩有码中文字幕| 又紧又爽又黄一区二区| 久久99一区二区三区| 在线观看免费高清a一片| 少妇被粗大的猛进出69影院| 久久久久国产一级毛片高清牌| 久久国产精品影院| 男女午夜视频在线观看| 一区在线观看完整版| 一边摸一边抽搐一进一出视频| 在线观看一区二区三区激情| 国产色视频综合| 国产一区二区 视频在线| 欧美av亚洲av综合av国产av| 精品一区二区三区四区五区乱码| 国产欧美日韩一区二区三区在线| 91国产中文字幕| 亚洲专区字幕在线| 欧美日韩中文字幕国产精品一区二区三区 | 欧美人与性动交α欧美精品济南到| 在线 av 中文字幕| 成人亚洲精品一区在线观看| 国产97色在线日韩免费| 日日摸夜夜添夜夜添小说| 久久精品熟女亚洲av麻豆精品| 国产国语露脸激情在线看| 久久人人爽人人片av| 午夜福利在线免费观看网站| 国产日韩一区二区三区精品不卡| 精品人妻在线不人妻| 色婷婷av一区二区三区视频| 亚洲精品中文字幕在线视频| 免费高清在线观看日韩| 国产1区2区3区精品| 免费在线观看完整版高清| 在线观看免费午夜福利视频| 欧美 亚洲 国产 日韩一| 国产精品久久久av美女十八| 国产极品粉嫩免费观看在线| 老司机靠b影院| 男女边摸边吃奶| 国产亚洲精品一区二区www | 热99久久久久精品小说推荐| 欧美另类亚洲清纯唯美| 国产精品99久久99久久久不卡| 精品国产一区二区三区久久久樱花| 9色porny在线观看| 男人添女人高潮全过程视频| 国产欧美日韩综合在线一区二区| 高清欧美精品videossex| av有码第一页| 在线观看免费高清a一片| 亚洲,欧美精品.| 欧美黄色淫秽网站| 侵犯人妻中文字幕一二三四区| 亚洲成av片中文字幕在线观看| 最近最新中文字幕大全免费视频| 国产成人啪精品午夜网站| 韩国高清视频一区二区三区| 国产精品久久久人人做人人爽| bbb黄色大片| 窝窝影院91人妻| 十八禁高潮呻吟视频| 91成年电影在线观看| 日韩制服骚丝袜av| 午夜日韩欧美国产| 侵犯人妻中文字幕一二三四区| 美女中出高潮动态图| 黄片大片在线免费观看| 两个人看的免费小视频| 久久久精品区二区三区| 久久天堂一区二区三区四区| 90打野战视频偷拍视频| 日本wwww免费看| 高潮久久久久久久久久久不卡| 丝袜在线中文字幕| 精品人妻熟女毛片av久久网站| 亚洲精品中文字幕一二三四区 | 亚洲av电影在线观看一区二区三区| 热re99久久精品国产66热6| 五月开心婷婷网| 可以免费在线观看a视频的电影网站| 久久久久久免费高清国产稀缺| 人人妻人人澡人人爽人人夜夜| 黑丝袜美女国产一区| 十八禁网站网址无遮挡| 成人国产av品久久久| 成在线人永久免费视频| 国产成人影院久久av| 熟女少妇亚洲综合色aaa.| 丁香六月欧美| av在线app专区| 国产亚洲精品久久久久5区| 欧美一级毛片孕妇| 老司机亚洲免费影院| 新久久久久国产一级毛片| 国产欧美亚洲国产| 99精品久久久久人妻精品| 青青草视频在线视频观看| 一边摸一边抽搐一进一出视频| kizo精华| 超色免费av| 91大片在线观看| 日本五十路高清| 国产精品自产拍在线观看55亚洲 | 亚洲视频免费观看视频| 三级毛片av免费| 国产老妇伦熟女老妇高清| 久久中文看片网| 久久久国产成人免费| 久久女婷五月综合色啪小说| 后天国语完整版免费观看| 女人爽到高潮嗷嗷叫在线视频| 女人高潮潮喷娇喘18禁视频| 性高湖久久久久久久久免费观看| 黄频高清免费视频| 久久精品亚洲av国产电影网| 自拍欧美九色日韩亚洲蝌蚪91| 在线亚洲精品国产二区图片欧美| 国产国语露脸激情在线看| 久久久久久久国产电影| 91国产中文字幕| 亚洲中文字幕日韩| 国产免费福利视频在线观看| 我的亚洲天堂| av线在线观看网站| 99国产精品免费福利视频| 电影成人av| 亚洲综合色网址| 麻豆乱淫一区二区| 一个人免费在线观看的高清视频 | 久久99热这里只频精品6学生| 巨乳人妻的诱惑在线观看| 久久香蕉激情| 777久久人妻少妇嫩草av网站| 日本精品一区二区三区蜜桃| 极品少妇高潮喷水抽搐| 久热爱精品视频在线9| 亚洲七黄色美女视频| 精品国产国语对白av| 亚洲一区二区三区欧美精品| 婷婷丁香在线五月| 老熟妇乱子伦视频在线观看 | 免费观看av网站的网址| 国产免费视频播放在线视频| 80岁老熟妇乱子伦牲交| 亚洲av男天堂| 日韩制服丝袜自拍偷拍| 1024视频免费在线观看| 不卡av一区二区三区| 性高湖久久久久久久久免费观看| 精品少妇久久久久久888优播| 久久精品熟女亚洲av麻豆精品| 亚洲熟女精品中文字幕| 日韩 亚洲 欧美在线| 精品国产乱码久久久久久男人| 黄色a级毛片大全视频| 天天影视国产精品| 中文字幕人妻熟女乱码| 一级黄色大片毛片| av网站免费在线观看视频| av在线播放精品| 精品一区二区三卡| 可以免费在线观看a视频的电影网站| 纯流量卡能插随身wifi吗| 中亚洲国语对白在线视频| a级毛片黄视频| 国产精品av久久久久免费| 国产99久久九九免费精品| 国产在线观看jvid| 日本av免费视频播放| 色老头精品视频在线观看| 免费观看av网站的网址| 咕卡用的链子| 中文字幕人妻丝袜一区二区| 国产一区二区 视频在线| 午夜免费观看性视频| 大码成人一级视频| 自线自在国产av| 久久中文字幕一级| 色视频在线一区二区三区| 精品亚洲乱码少妇综合久久| 久久久国产成人免费| 激情视频va一区二区三区| 69av精品久久久久久 | 高清av免费在线| av线在线观看网站| 中文欧美无线码| 丝袜脚勾引网站| 成人亚洲精品一区在线观看| 亚洲伊人久久精品综合| 日韩一区二区三区影片| 久久精品人人爽人人爽视色| 久久久国产一区二区| 国产精品影院久久| 香蕉国产在线看| 日韩 亚洲 欧美在线| av超薄肉色丝袜交足视频| 精品久久久精品久久久| 五月开心婷婷网| 日日摸夜夜添夜夜添小说| 一本一本久久a久久精品综合妖精| 午夜久久久在线观看| 久久人人97超碰香蕉20202| 国产av又大| 一级a爱视频在线免费观看| 久久精品国产亚洲av高清一级| 国产精品熟女久久久久浪| 黑丝袜美女国产一区| 久久毛片免费看一区二区三区| 日韩欧美一区二区三区在线观看 | 亚洲精品成人av观看孕妇| 国内毛片毛片毛片毛片毛片| 中文字幕高清在线视频| 欧美黄色片欧美黄色片| 国产精品欧美亚洲77777| 午夜影院在线不卡| av片东京热男人的天堂| 热re99久久精品国产66热6| 日本黄色日本黄色录像| 青春草亚洲视频在线观看| 国产免费av片在线观看野外av| 日本一区二区免费在线视频| 国产精品一二三区在线看| 国产成人精品在线电影| 中文字幕最新亚洲高清| 考比视频在线观看| 久久久国产一区二区| 91成人精品电影| 黄色片一级片一级黄色片| 另类精品久久| 满18在线观看网站| 午夜免费鲁丝| 久久中文看片网| 久久ye,这里只有精品| 18禁国产床啪视频网站| 夫妻午夜视频| 在线永久观看黄色视频| av福利片在线| 美女视频免费永久观看网站| 成人黄色视频免费在线看| 亚洲一区中文字幕在线| 免费女性裸体啪啪无遮挡网站| 免费在线观看日本一区| 黄片小视频在线播放| 黑人猛操日本美女一级片| 国产精品影院久久| 精品久久久久久电影网| 午夜免费成人在线视频| 操出白浆在线播放| 日韩 亚洲 欧美在线| 精品福利永久在线观看| 国产成人免费无遮挡视频| 十八禁网站免费在线| 午夜免费鲁丝| 岛国毛片在线播放| 国产精品一区二区在线不卡| 青春草视频在线免费观看| 一本色道久久久久久精品综合| 悠悠久久av| 后天国语完整版免费观看| 亚洲精品国产区一区二| 免费高清在线观看视频在线观看| 一级a爱视频在线免费观看| a级毛片在线看网站| 国产在视频线精品| 99精国产麻豆久久婷婷| 亚洲欧美一区二区三区久久| 亚洲av电影在线进入| 午夜日韩欧美国产| 久久久国产精品麻豆| 欧美日韩国产mv在线观看视频| 久久女婷五月综合色啪小说| 少妇猛男粗大的猛烈进出视频| 成人亚洲精品一区在线观看| 亚洲中文日韩欧美视频| videosex国产| 欧美乱码精品一区二区三区| 最近中文字幕2019免费版| 丰满少妇做爰视频| 俄罗斯特黄特色一大片| 美国免费a级毛片| 俄罗斯特黄特色一大片| 精品久久久精品久久久| 国产有黄有色有爽视频| 国产精品久久久久成人av| 在线看a的网站| 99国产精品一区二区三区| 色精品久久人妻99蜜桃| 国产欧美日韩一区二区三区在线| 国产成人啪精品午夜网站| 亚洲成人国产一区在线观看| 午夜福利视频精品| 男女之事视频高清在线观看| 侵犯人妻中文字幕一二三四区| 国产精品秋霞免费鲁丝片| 国产免费av片在线观看野外av| 亚洲成人手机| 亚洲av欧美aⅴ国产| 少妇粗大呻吟视频| 久久久国产一区二区| 美女高潮到喷水免费观看| 美女国产高潮福利片在线看| 最黄视频免费看| 亚洲国产看品久久| 国精品久久久久久国模美| 成年美女黄网站色视频大全免费| 亚洲国产欧美日韩在线播放| 老司机福利观看| 十八禁网站免费在线| 久久精品亚洲熟妇少妇任你| 美女主播在线视频| 国产精品久久久av美女十八| 日日夜夜操网爽| 69av精品久久久久久 | 91麻豆精品激情在线观看国产 | 免费看十八禁软件| 亚洲 国产 在线| 欧美国产精品一级二级三级| 99精国产麻豆久久婷婷| 两性午夜刺激爽爽歪歪视频在线观看 | 国产野战对白在线观看| 一进一出抽搐动态| 久久久精品区二区三区| 桃红色精品国产亚洲av| 丰满饥渴人妻一区二区三| 欧美亚洲 丝袜 人妻 在线| 另类精品久久| 日韩有码中文字幕| 丁香六月天网| 2018国产大陆天天弄谢| av欧美777| 亚洲情色 制服丝袜| 国产欧美日韩精品亚洲av| 美女福利国产在线| 俄罗斯特黄特色一大片| 老司机影院成人| 久久久久久久久久久久大奶| 国产精品国产三级国产专区5o| 制服诱惑二区| www.自偷自拍.com| 婷婷丁香在线五月| 国产精品国产av在线观看| 亚洲 欧美一区二区三区| 性高湖久久久久久久久免费观看| 丰满少妇做爰视频| 电影成人av| 精品国产超薄肉色丝袜足j| 日本av免费视频播放| 91成人精品电影| 亚洲国产中文字幕在线视频| 欧美午夜高清在线| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品美女久久久久99蜜臀| 窝窝影院91人妻| 天堂中文最新版在线下载| 欧美日韩精品网址| 国产精品偷伦视频观看了| 男人舔女人的私密视频| 日韩有码中文字幕| 黑人巨大精品欧美一区二区蜜桃| 亚洲免费av在线视频| 国产又爽黄色视频| 国产片内射在线| 女人久久www免费人成看片| av电影中文网址|