• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of natural frequency for imaging interface in liquid lens

    2021-10-28 07:01:38NaXie謝娜
    Chinese Physics B 2021年10期
    關鍵詞:謝娜

    Na Xie(謝娜)

    College of Electronic and Optical Engineering and College of Microelectronics,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    Keywords: natural frequency,liquid–liquid interface,capillary wave,liquid lens

    1. Introduction

    Since electrowetting liquid lens was innovated, it has been received increased attention across a number of scientific inquiries in recent years,[1–12]such as the imaging of portable lens,[4,5]realizing the bionic compound eyes,[6]composing array displays,[7]enhancement of scanning microscopes,[8,9]and construction of holographic display systems.[10]There were also interesting studies of the liquid–liquid (L–L) interface in the lens for interference imaging,[11]which can be used to enhance the encryption randomness of phase mask in optical communication systems to prevent confrontational attacks.[12]

    In all kinds of applications,the rapid response of milliseconds is a major advantage for the liquid lens.[13]The response time mainly depends on the time difference between the applying of voltage signal and the stabilization of the L–L interface. Due to the instant electrical field establishment, the response time is mainly the interval between the changes of liquid–liquid–solid three-phase angle on the side wall to the stabilization of the L–L interface. In essence, the response characteristics of the surface wave on the interface is determined in a closed vessel,which is a capillary hydrodynamics problem as it is in capillary scale.

    To date, previous studies have investigated the dynamic response of liquid lens based mainly on the experimental observations.[5,14–16]Some researchers used transparent cylinder wall for investigating the interface profiles,[5]and some employed the beam imaging to reflect the fluctuation characteristics of the lens indirectly.[15]Obviously,prior studies have not been able to convincingly show the theoretical basis of the liquid lens imaging interface fluctuation.[17]

    In the last few decades,due to the aerospace and nuclear technology boom,there were extensive studies on the surface wave in vessels such as the fuel storage containers.[18–21]But as far as we know,there was no special study about the capillary wave on L–L interface in a closed container. In general,the electrowetting liquid lens is at the size around the capillary constant,which for water is 0.39 cm at 20°.The gravity can be neglected because the difference of the pressure due to gravity is zero at the L–L interface when the density of the liquids is as the same.

    Recent developments in liquid lens have heightened the need for the theoretical basis of the lens. In this study, the hydrodynamic analysis of the L–L interface fluctuation based on the equations of Euler and fluid continuity is proposed,and the natural frequencies of capillary wave of modes 0 and 1 are obtained. The analytical results in our research are in a good consistent with the experiments documented in the literature. The influences of the radius, the height ratio and the height-to-diameter ratio of the double layer cylinder on natural frequencies are also studied. It is hoped that this research will contribute to a deeper understanding of the interface dynamics in the liquid lens and provide a basis for the precise control of the interface for beam modulation.

    2. Research methods

    2.1. Liquid lens model

    With the same density,different viscosities and refractive indexes,the conductive ion water and insulating oil are encapsulated in a cylindrical container. The spherical L–L interface between the two liquids can modulate the beam spatially,and the diopter of the interface can be controlled by the applied voltage.

    A simple model of the electrowetting liquid lens is shown in Fig. 1(a). The upper liquid is ion solution with heighth′,while the lower is oil with heighth,and both are encapsulated in a cylindrical container with radiusa. When no voltage applied, the three-phase angleαis obtuse at the internal wall where coated a thin hydrophobic layer,and it is a concave lens as the refractive index of the oil is larger. When the voltage is applied,according to Young’s equation,[3]the contact angleαbecomes smaller and the curvature of the interface changes accordingly,so the focal length changes.

    In our previous studies,[22]it was found that the natural frequency of the interface decreases with the decrease of the interface curvature. Therefore,the natural frequency of the interface is affected apparently by the contact angle. To simplify the mathematical problem, here we focus on the fluctuation characteristics of a capillary wave on a flat interface, that is,the contact angle is equal to 90°, and the curvature of the interface is infinity. In this case, it is accurate to establish a mathematical model using cylindrical coordinates. Otherwise,the interface is spherical when the contact angle is not equal to 90°. The spherical coordinates are more suitable to solve the problem,but the theoretical analysis will be more complicated.

    Fig. 1. (a)A liquid lens in a cylinder container with upper liquid ion water and lower oil. (b)The cylindrical coordinates of the lens.

    2.2. Fluid dynamics equations

    In accordance with the general assumptions of fluid dynamics, we assume that the upper water and lower oil are incompressible and irrotational fluids.[17]The fluctuation amplitude of the L–L interface is supposed to be small compared with the radius of the cylinder,so the linear surface wave approximation is established. The cylindrical coordinates are shown in Fig. 1(b), where the L–L interface is a plane and the origin is set on it. According to the hydrodynamics, the velocity potentialφof oil andφ′of water should satisfy the Laplace equations,respectively,which are By using the trigonometric function formula, the natural frequency can be written as

    3. Results and discussion

    3.1. Comparison with experiments

    In order to compare with the experimental data of commercial lens Varioptic 39N0, the model is set with parameters similar to 39N0 in scale as follows:σ=0.0445 N·m?1,ρ=1×103kg·m?3,h=1.3×10?3m,andh′=8.5×10?4m.Compared with natural frequencies of four modes obtained accurately by Strauch Met al.,[11]where they observed all the frequencies except 17.95 Hz of mode(1,1)and 209.25 Hz of mode(0,3),the frequenciesf1–f4of the rest four modes have a good match with our analysis and the error is no more than 4.90%,as shown in Table 1.

    When the frequency is low,the transmission beam cannot form interference superposition at the interface with a discontinuous standing wave, so the interference fringes cannot be observed. When the frequency is higher than 200 Hz,the liquid surface no longer vibrates conspicuously due to the inertia of the liquid, and the interference fringes cannot be formed either.

    The errors in Table 1 may be caused as follows. Firstly,the cavity of commercial Varioptic 39N0 liquid lens is actually in the shape of a conical frustum,which is designed not only to increase the range of contact angle variation,but also to minimize the center deviation of the L–L interface while enhance its imaging stability. For the conical frustum model,spherical coordinates are more accurate than the cylinder coordinates.Secondly,in order to improve the response speed,the viscosity of the oil solution is modulated generally to make the oscillation of the interface near critical damping. Moreover,the viscosity dissipation of the interface and the friction at the side wall both have effects on the interface fluctuation.For simplicity of analysis,all those effects are ignored here. Therefore,to obtain more accurate results,hydrodynamic analysis should be carried out in spherical coordinate system under the influence of viscous damping and side wall friction.

    In addition,the linear wave condition is no longer applicable when the amplitude of the wave is large at low frequencies. The condition that the amplitude is much smaller than the wavelength cannot be satisfied,and the nonlinear theory is needed.

    Table 1. Comparison with the experiments in four modes.

    3.2. Simulation analysis

    3.2.1. Influence of lens radius on eigenfrequency

    Curves in Fig. 2 are natural frequencies of each mode plotted with the lens radius according to Eq. (14). As the lens radius increases, the natural frequencies of modes 0 and 1 decrease,which means the smaller the lens is,the higher the natural frequencies are. Theoretically, the higher frequency modes are difficult to be measured due to the influence of inertia of the liquid,while the resonant modes of them at lower frequencies can be observed easily. Compared with the experimental results,curves in Fig.2 can be observed easily except mode(0,3)with the highest eigenfrequencies and mode(1,1)with the lowest eigenfrequencies.

    Fig.2. Natural frequencies of modes 0 and 1 changing with radius a.

    3.2.2. Influence of liquid height ratio on eigenfrequency

    The radius of the lens is fixed asa=1.95×10?3m,and the height of the lens is fixed asH=h+h′=3×10?3m,which is set to be a little larger than the actual height of 39N0 for larger range of variation.We take the ratio of ionic solution height to total heighth′/Has the variable,and each of the first three intrinsic frequencies inm=0 andm=1 are shown in

    Fig.3. With the increase of the height of the ion solution,the natural frequencies increase and tend to be constant when the ratioh′/His close to 0.5.If the range of the horizontal axis extends to 1 in Fig.3,we will get symmetrical arch curves with the central symmetry point 0.5,as can be seen from Eq.(14).

    Because we ignore the viscosity of the oil, and the two liquids have the same density, the height of the ion waterh′and the height of the oilhhave the same effect on the eigenfrequency of the lens, which can be seen from Eq. (14). So when the variable is set to beh/H, the curves are exactly as the same as Fig.3.When either of the liquid is lower,its height will have more effect on the natural frequencies.

    Fig.3. Natural frequencies of modes 0 and 1 changing with ratio h′/H.

    3.2.3. Influence of height-to-diameter ratio on eigenfrequency

    If the two liquids have the same height,h′=h, and we take the height-to-diameter ratioh′/aas the variable, each of the first three intrinsic frequencies in modes 0 and 1 are analyzed,as shown in Fig.4. With the increase of the ratioh′/a,the natural frequencies increase and tend to be constant when the ratio exceeds 0.5. In other words, the flatter the cylinder is, the effect of the liquid height on the eigenfrequencies is greater. As the same as before, if the variable set to beh/a,the curves are the same as those shown in Fig.4.

    Fig.4. Natural frequencies of modes 0 and 1 changing with ratio h′/a.

    In conclusion,for a liquid lens of a flat cylinder with twolayer, the larger the radius is, the lower the intrinsic frequencies are; the larger the height difference of the two liquids is,the lower the eigenfrequencies are;and the smaller the heightto-diameter ratio of the lens is,the lower the intrinsic frequencies are.

    4. Conclusion

    An approximate model of a commercial electrowetting liquid lens is established,and the analysis of the capillary wave in the lens is carried out. Based on hydrodynamics,the analytical expression for the natural frequency of the lens has been derived in cylindrical coordinates. The results are in good agreement with the experiments in previous literature. This study provides a basis for the use of dynamic response of the lens,such as response time optimization,optical space modulation,optical communication encryption and many other applications.

    猜你喜歡
    謝娜
    Influence of water environment on paint removal and the selection criteria of laser parameters
    安安琪琪的故事23給我遙控器!我要看謝娜
    媽媽寶寶(2019年7期)2019-07-05 09:16:38
    章子怡和謝娜的用心之誼
    謝娜:我們的太陽女神
    文苑(2018年17期)2018-11-09 01:29:38
    照亮人生路的蠟燭
    謝娜
    謝娜張杰:“女話嘮”和靦腆男的婚姻小情歌
    謝娜:厚臉皮是她的最大優(yōu)勢
    謝娜為什么沒時間學文化?
    文苑(2015年1期)2015-01-06 06:02:02
    謝娜為什么沒時間學文化?
    文苑(2015年1期)2015-01-01 03:11:28
    国产精品一区二区免费欧美| 亚洲avbb在线观看| 国产成人影院久久av| 波多野结衣高清作品| 一级a爱片免费观看的视频| 少妇高潮的动态图| 精品国内亚洲2022精品成人| 欧美中文日本在线观看视频| av女优亚洲男人天堂| 十八禁人妻一区二区| 久久精品综合一区二区三区| 午夜a级毛片| 色在线成人网| 国产高潮美女av| 国产精品1区2区在线观看.| 中文字幕高清在线视频| 亚洲在线观看片| 欧美国产日韩亚洲一区| 99热6这里只有精品| 国产淫片久久久久久久久 | 99久久精品一区二区三区| 国产在线精品亚洲第一网站| 尤物成人国产欧美一区二区三区| 久久精品国产99精品国产亚洲性色| 桃色一区二区三区在线观看| 国产视频内射| 51午夜福利影视在线观看| a级毛片a级免费在线| 久久久久久国产a免费观看| 亚洲精品美女久久久久99蜜臀| 哪里可以看免费的av片| 丰满的人妻完整版| 精品人妻1区二区| 天天一区二区日本电影三级| 欧美一级a爱片免费观看看| 欧美中文日本在线观看视频| or卡值多少钱| 精品一区二区三区人妻视频| 天天一区二区日本电影三级| 免费在线观看日本一区| 一本久久中文字幕| 亚洲性夜色夜夜综合| 美女黄网站色视频| 亚洲专区中文字幕在线| 91九色精品人成在线观看| 亚洲在线自拍视频| 亚洲精品456在线播放app | 熟女少妇亚洲综合色aaa.| 久久久国产成人免费| or卡值多少钱| 国产精品,欧美在线| 国产一区在线观看成人免费| 老熟妇仑乱视频hdxx| 久久国产精品影院| 中文字幕人妻熟人妻熟丝袜美 | 亚洲第一电影网av| 久久久久性生活片| 免费看美女性在线毛片视频| 色噜噜av男人的天堂激情| 成人国产一区最新在线观看| 亚洲av中文字字幕乱码综合| 亚洲天堂国产精品一区在线| 99久国产av精品| 别揉我奶头~嗯~啊~动态视频| 欧美性猛交黑人性爽| 久久久久亚洲av毛片大全| 国产精品久久久久久久电影 | 国产成人系列免费观看| 国产一级毛片七仙女欲春2| 天天一区二区日本电影三级| 色综合婷婷激情| 亚洲不卡免费看| 亚洲人成电影免费在线| 一区二区三区免费毛片| 亚洲精品国产精品久久久不卡| 高清日韩中文字幕在线| 3wmmmm亚洲av在线观看| 亚洲精品亚洲一区二区| 不卡一级毛片| 在线观看免费视频日本深夜| 18+在线观看网站| 精品久久久久久久久久免费视频| 免费人成视频x8x8入口观看| www日本黄色视频网| 99国产极品粉嫩在线观看| 精品一区二区三区视频在线观看免费| 搞女人的毛片| 成人精品一区二区免费| 欧美一级a爱片免费观看看| 丰满人妻熟妇乱又伦精品不卡| 91麻豆av在线| 国产91精品成人一区二区三区| 午夜免费成人在线视频| 老汉色∧v一级毛片| 黄色日韩在线| 亚洲精品一卡2卡三卡4卡5卡| 搞女人的毛片| 99久久精品一区二区三区| 色精品久久人妻99蜜桃| aaaaa片日本免费| 国产伦精品一区二区三区视频9 | www日本在线高清视频| 国产真实乱freesex| 久久精品91无色码中文字幕| 国产一区二区亚洲精品在线观看| 天堂动漫精品| 九九久久精品国产亚洲av麻豆| 少妇人妻一区二区三区视频| 日本成人三级电影网站| 手机成人av网站| 国产免费男女视频| 免费看光身美女| 成人高潮视频无遮挡免费网站| 国产成+人综合+亚洲专区| 国产色婷婷99| 中文字幕久久专区| 色视频www国产| 久久久久性生活片| 午夜老司机福利剧场| 18禁在线播放成人免费| 成年女人永久免费观看视频| 国产私拍福利视频在线观看| 国产精品香港三级国产av潘金莲| 成人三级黄色视频| 人人妻,人人澡人人爽秒播| 欧美日韩黄片免| 变态另类成人亚洲欧美熟女| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲男人的天堂狠狠| 国产亚洲av嫩草精品影院| 俄罗斯特黄特色一大片| 91麻豆精品激情在线观看国产| 草草在线视频免费看| 男女下面进入的视频免费午夜| 婷婷精品国产亚洲av在线| 此物有八面人人有两片| 亚洲 欧美 日韩 在线 免费| 亚洲精品在线美女| 国产乱人伦免费视频| 国产黄片美女视频| 一个人看的www免费观看视频| 久久精品国产亚洲av涩爱 | 看黄色毛片网站| 欧美日韩亚洲国产一区二区在线观看| 国产v大片淫在线免费观看| 国产v大片淫在线免费观看| 99久久精品国产亚洲精品| 操出白浆在线播放| 一边摸一边抽搐一进一小说| 观看美女的网站| 91久久精品国产一区二区成人 | 亚洲内射少妇av| 18禁国产床啪视频网站| 国产精品免费一区二区三区在线| 香蕉av资源在线| avwww免费| 久久婷婷人人爽人人干人人爱| 欧美bdsm另类| 在线观看一区二区三区| 亚洲精品日韩av片在线观看 | 亚洲中文字幕一区二区三区有码在线看| 亚洲精品在线美女| 久久精品91蜜桃| 不卡一级毛片| 老汉色∧v一级毛片| 最新在线观看一区二区三区| 性色av乱码一区二区三区2| 精品久久久久久,| 免费在线观看影片大全网站| 熟妇人妻久久中文字幕3abv| 天天一区二区日本电影三级| 色老头精品视频在线观看| 欧美精品啪啪一区二区三区| 国产午夜精品论理片| 两个人看的免费小视频| 久久人妻av系列| 亚洲在线自拍视频| 黄色丝袜av网址大全| 国产成人av激情在线播放| 在线播放国产精品三级| 日本撒尿小便嘘嘘汇集6| 99久国产av精品| 女人被狂操c到高潮| 91麻豆av在线| 人妻久久中文字幕网| 欧美中文日本在线观看视频| 99热这里只有精品一区| 久久伊人香网站| 尤物成人国产欧美一区二区三区| 亚洲男人的天堂狠狠| 日韩欧美在线二视频| 日韩欧美国产在线观看| 欧美一级a爱片免费观看看| 天堂影院成人在线观看| 国内久久婷婷六月综合欲色啪| 欧美大码av| a级一级毛片免费在线观看| 脱女人内裤的视频| 91在线观看av| 制服人妻中文乱码| 日日摸夜夜添夜夜添小说| 午夜视频国产福利| 欧美一级a爱片免费观看看| 日韩欧美在线二视频| 亚洲人成伊人成综合网2020| xxxwww97欧美| aaaaa片日本免费| 1024手机看黄色片| 一级作爱视频免费观看| 欧美激情在线99| 嫩草影院入口| 国产精品久久久久久人妻精品电影| 久久久久久久精品吃奶| 中亚洲国语对白在线视频| 国产精华一区二区三区| 一级作爱视频免费观看| 国产麻豆成人av免费视频| 少妇人妻精品综合一区二区 | 听说在线观看完整版免费高清| 久久精品综合一区二区三区| 欧美日韩乱码在线| 久久精品91无色码中文字幕| 成年人黄色毛片网站| 真人一进一出gif抽搐免费| 美女高潮的动态| 久久伊人香网站| 成人欧美大片| 中文字幕久久专区| 内射极品少妇av片p| 啦啦啦观看免费观看视频高清| 午夜视频国产福利| 亚洲va日本ⅴa欧美va伊人久久| 伊人久久精品亚洲午夜| 九九在线视频观看精品| 日本熟妇午夜| 亚洲成人免费电影在线观看| 国产一级毛片七仙女欲春2| 免费在线观看影片大全网站| 精品一区二区三区视频在线观看免费| 最好的美女福利视频网| 久久亚洲精品不卡| 国产成人福利小说| 亚洲av第一区精品v没综合| 亚洲精品久久国产高清桃花| 在线观看免费午夜福利视频| 很黄的视频免费| 色尼玛亚洲综合影院| 免费人成在线观看视频色| 亚洲一区二区三区不卡视频| 亚洲国产精品合色在线| 久久香蕉精品热| 欧美+亚洲+日韩+国产| 97碰自拍视频| 午夜a级毛片| 久久精品影院6| 亚洲av第一区精品v没综合| 最近最新免费中文字幕在线| 久久6这里有精品| 久久6这里有精品| 性色av乱码一区二区三区2| 亚洲av熟女| 国产精品嫩草影院av在线观看 | 真人一进一出gif抽搐免费| 日本一二三区视频观看| 18禁裸乳无遮挡免费网站照片| 操出白浆在线播放| 国产97色在线日韩免费| 内地一区二区视频在线| 亚洲欧美日韩高清在线视频| 在线观看舔阴道视频| 国产精品99久久99久久久不卡| 伊人久久大香线蕉亚洲五| 搡女人真爽免费视频火全软件 | 99在线视频只有这里精品首页| 桃色一区二区三区在线观看| 最新美女视频免费是黄的| 啦啦啦韩国在线观看视频| 手机成人av网站| 99久久九九国产精品国产免费| 精品电影一区二区在线| 亚洲精品一区av在线观看| 一进一出好大好爽视频| a级毛片a级免费在线| 嫩草影院入口| 成人性生交大片免费视频hd| 女警被强在线播放| 在线播放国产精品三级| 波多野结衣巨乳人妻| 麻豆成人av在线观看| 大型黄色视频在线免费观看| 一区福利在线观看| 国产av不卡久久| 欧美激情在线99| 一本久久中文字幕| 色视频www国产| 国产精品一区二区免费欧美| 午夜视频国产福利| 久久精品国产亚洲av涩爱 | 亚洲国产精品久久男人天堂| 国产av一区在线观看免费| 国产激情欧美一区二区| 老司机在亚洲福利影院| ponron亚洲| 国产男靠女视频免费网站| 国产精品免费一区二区三区在线| 久久久久久久午夜电影| 99久久无色码亚洲精品果冻| 青草久久国产| 女人被狂操c到高潮| 啦啦啦韩国在线观看视频| 成人一区二区视频在线观看| 国产毛片a区久久久久| 久久久久亚洲av毛片大全| 精品乱码久久久久久99久播| 少妇裸体淫交视频免费看高清| 国产亚洲av嫩草精品影院| 亚洲av不卡在线观看| 一区二区三区国产精品乱码| 变态另类成人亚洲欧美熟女| 国产男靠女视频免费网站| 99精品欧美一区二区三区四区| 欧美日韩乱码在线| 午夜免费激情av| 国产成人av教育| 国产av一区在线观看免费| 国产精品永久免费网站| 国产激情偷乱视频一区二区| 波野结衣二区三区在线 | 亚洲久久久久久中文字幕| 亚洲欧美日韩东京热| 色噜噜av男人的天堂激情| 女人十人毛片免费观看3o分钟| 中出人妻视频一区二区| 天堂av国产一区二区熟女人妻| 老汉色∧v一级毛片| 十八禁网站免费在线| 在线观看日韩欧美| 黄色丝袜av网址大全| 亚洲欧美日韩东京热| 欧美+日韩+精品| 日本免费一区二区三区高清不卡| www.色视频.com| 久久久精品欧美日韩精品| 国产精华一区二区三区| 蜜桃亚洲精品一区二区三区| 亚洲人成网站在线播| 小蜜桃在线观看免费完整版高清| 国产伦一二天堂av在线观看| 亚洲中文字幕一区二区三区有码在线看| 国产成人系列免费观看| 有码 亚洲区| 久久久久国内视频| 免费在线观看亚洲国产| 精品久久久久久久久久久久久| 老司机深夜福利视频在线观看| 亚洲av二区三区四区| 午夜福利在线在线| 天堂√8在线中文| 久久亚洲真实| 免费在线观看成人毛片| 最近最新免费中文字幕在线| 真人一进一出gif抽搐免费| 禁无遮挡网站| 婷婷丁香在线五月| 在线播放无遮挡| 国产精品98久久久久久宅男小说| 午夜影院日韩av| 国内少妇人妻偷人精品xxx网站| www日本黄色视频网| 90打野战视频偷拍视频| 免费大片18禁| 青草久久国产| 老司机福利观看| 亚洲午夜理论影院| 精品一区二区三区视频在线观看免费| 亚洲精品成人久久久久久| 19禁男女啪啪无遮挡网站| 亚洲欧美日韩卡通动漫| aaaaa片日本免费| 国产色婷婷99| 国产免费男女视频| 国产精品久久久久久久电影 | 十八禁网站免费在线| 色播亚洲综合网| 欧美黄色淫秽网站| av专区在线播放| 久久精品91蜜桃| 婷婷六月久久综合丁香| 极品教师在线免费播放| 国内精品久久久久久久电影| 成人欧美大片| 成人特级黄色片久久久久久久| 国产三级在线视频| 国产三级黄色录像| tocl精华| 91麻豆av在线| 无限看片的www在线观看| 日本五十路高清| 亚洲av日韩精品久久久久久密| 给我免费播放毛片高清在线观看| 久久久久精品国产欧美久久久| 国产精品一区二区三区四区免费观看 | 中文字幕av在线有码专区| 国产午夜精品论理片| 又粗又爽又猛毛片免费看| 亚洲,欧美精品.| 狠狠狠狠99中文字幕| 黄色片一级片一级黄色片| 免费人成在线观看视频色| 国语自产精品视频在线第100页| 久久精品国产自在天天线| 亚洲七黄色美女视频| 亚洲欧美激情综合另类| 免费一级毛片在线播放高清视频| 女同久久另类99精品国产91| 国产精品香港三级国产av潘金莲| 乱人视频在线观看| 一进一出抽搐动态| 日韩大尺度精品在线看网址| 在线观看66精品国产| 国产三级在线视频| 变态另类丝袜制服| 91在线精品国自产拍蜜月 | 精品国内亚洲2022精品成人| 久久香蕉精品热| 他把我摸到了高潮在线观看| 夜夜爽天天搞| 99久久综合精品五月天人人| 国产午夜精品论理片| 国产精品久久久久久亚洲av鲁大| 五月玫瑰六月丁香| 久久性视频一级片| 国产免费男女视频| 亚洲av成人av| 桃色一区二区三区在线观看| av福利片在线观看| 极品教师在线免费播放| 国产又黄又爽又无遮挡在线| 村上凉子中文字幕在线| 中国美女看黄片| netflix在线观看网站| 国产欧美日韩一区二区三| 亚洲人成伊人成综合网2020| 国产老妇女一区| 免费大片18禁| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品久久久久久久久久久久久| 日本免费一区二区三区高清不卡| 69人妻影院| 高潮久久久久久久久久久不卡| 美女免费视频网站| 真人一进一出gif抽搐免费| 亚洲色图av天堂| 欧美性猛交黑人性爽| 在线播放国产精品三级| 好男人电影高清在线观看| 少妇熟女aⅴ在线视频| 免费看a级黄色片| 在线观看日韩欧美| 中文亚洲av片在线观看爽| 老鸭窝网址在线观看| 国产精品99久久久久久久久| 19禁男女啪啪无遮挡网站| 制服人妻中文乱码| 日本 av在线| 99久久综合精品五月天人人| 精品电影一区二区在线| 男插女下体视频免费在线播放| 精品福利观看| 日本免费a在线| 少妇的逼水好多| 免费高清视频大片| 国产高清三级在线| 亚洲专区中文字幕在线| 一夜夜www| 好看av亚洲va欧美ⅴa在| 婷婷六月久久综合丁香| 久久久久九九精品影院| 国产精品乱码一区二三区的特点| 色综合站精品国产| 真实男女啪啪啪动态图| 国产免费av片在线观看野外av| 成人亚洲精品av一区二区| 亚洲精品一区av在线观看| 可以在线观看的亚洲视频| 国产精品野战在线观看| 日本精品一区二区三区蜜桃| 亚洲不卡免费看| av天堂在线播放| 久久久国产成人免费| 亚洲中文字幕日韩| 久久天躁狠狠躁夜夜2o2o| 又黄又粗又硬又大视频| 最近视频中文字幕2019在线8| 精品久久久久久久久久免费视频| 国产私拍福利视频在线观看| 亚洲不卡免费看| 色噜噜av男人的天堂激情| 狂野欧美激情性xxxx| 国产野战对白在线观看| 黄色片一级片一级黄色片| 欧美日韩黄片免| 俺也久久电影网| 日本成人三级电影网站| 啪啪无遮挡十八禁网站| 久久久久国产精品人妻aⅴ院| 最近视频中文字幕2019在线8| 国产亚洲精品av在线| 久久久久久大精品| 国产激情欧美一区二区| 亚洲精品美女久久久久99蜜臀| svipshipincom国产片| eeuss影院久久| 欧美另类亚洲清纯唯美| www日本黄色视频网| 人妻久久中文字幕网| 女人高潮潮喷娇喘18禁视频| tocl精华| 亚洲 欧美 日韩 在线 免费| 国模一区二区三区四区视频| 婷婷精品国产亚洲av| 久久亚洲真实| 国产精品99久久99久久久不卡| 母亲3免费完整高清在线观看| 免费无遮挡裸体视频| 啪啪无遮挡十八禁网站| 少妇高潮的动态图| 久久久久久久精品吃奶| 欧美日韩瑟瑟在线播放| av视频在线观看入口| 亚洲国产精品合色在线| 最近最新中文字幕大全免费视频| www日本在线高清视频| 国产高清有码在线观看视频| 成人高潮视频无遮挡免费网站| 69人妻影院| 欧美日韩瑟瑟在线播放| 啪啪无遮挡十八禁网站| 亚洲色图av天堂| 亚洲精品久久国产高清桃花| 99久久九九国产精品国产免费| 国产精品久久久久久人妻精品电影| 少妇高潮的动态图| 亚洲精品影视一区二区三区av| 欧美绝顶高潮抽搐喷水| 亚洲欧美一区二区三区黑人| 757午夜福利合集在线观看| 色播亚洲综合网| 女同久久另类99精品国产91| 男人的好看免费观看在线视频| 在线观看66精品国产| 少妇裸体淫交视频免费看高清| 757午夜福利合集在线观看| 一夜夜www| 亚洲国产精品合色在线| 色播亚洲综合网| 欧美最新免费一区二区三区 | 久久久久久久久久黄片| 人妻丰满熟妇av一区二区三区| 免费高清视频大片| 国产伦精品一区二区三区四那| 国产成人福利小说| 精品久久久久久久人妻蜜臀av| 国产精品日韩av在线免费观看| 国产亚洲精品综合一区在线观看| 欧美一区二区亚洲| 99国产精品一区二区三区| 欧美在线一区亚洲| 手机成人av网站| 免费看十八禁软件| 国产老妇女一区| 午夜福利视频1000在线观看| 精品一区二区三区视频在线观看免费| 禁无遮挡网站| 国产高潮美女av| 亚洲人成伊人成综合网2020| 人人妻人人澡欧美一区二区| 首页视频小说图片口味搜索| 五月伊人婷婷丁香| 老司机福利观看| 精品国产美女av久久久久小说| 观看免费一级毛片| 国产91精品成人一区二区三区| 日本一本二区三区精品| 99在线人妻在线中文字幕| 少妇的逼水好多| 狠狠狠狠99中文字幕| 网址你懂的国产日韩在线| a在线观看视频网站| 色哟哟哟哟哟哟| 在线免费观看不下载黄p国产 | 国产单亲对白刺激| 少妇丰满av| 国产又黄又爽又无遮挡在线| 国产欧美日韩精品亚洲av| 小蜜桃在线观看免费完整版高清| 色综合站精品国产| 欧美高清成人免费视频www| 久久久精品欧美日韩精品| 在线播放无遮挡| 女人十人毛片免费观看3o分钟| 一级黄色大片毛片| 性色avwww在线观看| 悠悠久久av| 熟女人妻精品中文字幕| 久久人人精品亚洲av| 国内久久婷婷六月综合欲色啪| 在线免费观看的www视频| 国产探花在线观看一区二区| 老汉色av国产亚洲站长工具| 亚洲国产欧美网| 成年女人永久免费观看视频| 在线国产一区二区在线| 国产三级黄色录像| 久久久久免费精品人妻一区二区|