• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and multistability analysis of five-value memristor-based chaotic system with hidden attractors?

    2021-10-28 07:07:30LiLianHuang黃麗蓮ShuaiLiu劉帥JianHongXiang項建弘andLinYuWang王霖郁
    Chinese Physics B 2021年10期
    關(guān)鍵詞:劉帥

    Li-Lian Huang(黃麗蓮) Shuai Liu(劉帥) Jian-Hong Xiang(項建弘) and Lin-Yu Wang(王霖郁)

    1College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China

    2MIIT Key Laboratory of Advanced Marine Communication and Information Technology,Harbin 150001,China

    Keywords: five-valued memristor,chaotic system,hidden attractor,multistability

    1. Introduction

    In 1971, professor Chua first proposed the concept of memristor and confirmed that it is the fourth basic circuit element used to describe the relationship between charge and magnetic flux except resistance, capacitance, and inductance.[1]In 1976, professor Chua further extended the concept of ideal memristor to the dynamic system of generalized memristor,namely memristor system.[2]However,due to the incomplete preparation technology at that time, it is difficult to make the real memristor, resulting in the following quite a long time, the related research on memristor has not been well developed. Until 2008, HP Lab confirmed the scientific prediction of 37 years ago to the world, and realized the physical model of the world’s first memristor using titanium dioxide material,[3]which confirmed its physical realizability,and promoted the development process of world electronic science and technology. At the same time,many mathematical models with memristor characteristics have been reported, such as piecewise linear memristor,[1,4]quadratic nonlinear memristor,[5,6]and cubic nonlinear memristor.[7,8]These memristor models have simple structure and obvious memristor characteristics, which are suitable for the application and research of memristor in various oscillation circuits.

    Memristor has potential application value in many fields,such as logic circuit,[9]neural network,[10]nonvolatile memristor memory,[11]and information security,[12]because of its unique nonlinear characteristics and easy to combine with oscillation circuits to produce complex and changeable chaotic signals. The design of new chaotic circuit based on memristor are also the current research hotspot. In Ref.[4],Itoh and Chua designed a Chua’s chaotic circuit based on memristor by replacing the nonlinear resistance in Chua’s circuit with broken line memristor, whose dynamic behavior becomes more complex. In Ref. [13], Mutthuswamy designed a new piecewise linear memristor model and replaced the nonlinear resistance in Chua’s chaotic circuit to obtain a memristor-based chaotic system, which can produce double scroll attractors.In Ref. [14], Xi proposed piecewise linear, quadratic nonlinear, cubic nonlinear and quartic nonlinear memristors-based fractional-order Lorenz systems, and intermittent chaos was observed.In Ref.[15],Bao proposed an inductance-free memristor circuit which is linearly coupled by an active band-pass filter, a shunt memristor, and a capacitor filter. Its stability is closely related to the initial value of memristor, and it shows extreme multistability.

    With the further study of memristor theory and memristor chaotic circuit,more and more scholars pay attention to explore new memristor chaotic systems with special dynamic behavior. In Ref.[16],Wang proposed a memristor chaotic system with infinite equilibrium points,which can produce a huge and complex basin of attraction. In Ref.[17],Zhou proposed a new three-dimensional(3D)chaotic system with hidden dynamic behavior,which can generate a variety of different types of hidden coexisting attractors, and implemented the system using DSP platform. In Ref. [18], Zhang introduced a multiscroll hyperchaotic system with hidden attractors based on jerk system, which has infinite number of equilibrium points and the number of scroll is controllable. In Ref. [19], Deng proposed a hidden attractor chaotic system with a stable equilibrium point, which can produce four-scroll attractors, singlescroll attractors,and attractors coexisting with the period and quasi period. In Ref. [20], Yan proposed a memristor-based fractional-order hyperchaotic system,the coexisting hidden attractors are observed with different initial conditions and the hidden dynamic characteristics of the system are verified by using the SampEn complexity. In Ref.[21],a new fractionalorder chaotic system is proposed based on the Adomian decomposition method, three characteristic initial offset boosting behaviors were observed by varying the initial conditions of the system and the digital circuit was implemented on a DSP platform.

    Inspired by Refs.[22,23],this paper proposes a five-value memristor model and design a new chaotic system based on the model. However,different from Ref.[22],the five-valued memristor has more segmented characteristics,and the memductance function becomes more complex.Compared with the memristor chaotic system introduced in the reference,the system in this paper has more abundant dynamic characteristics,such as multistabilities and super-multistabilities. The chaotic system introduced in Ref.[23]has rich dynamic behaviors,but it is not extended to hidden attractors and transient chaos,and the number of scroll of attractor is at most 2. The system introduced in this paper not only produces 1-scroll and 2-scroll,but also generates 4-scroll attractors.

    The paper is organized as follows. In Section 2, a fluxcontrolled five-value piecewise linear memristor model is proposed,and the hysteresis loop characteristics of the model are simulated. In Section 3,based on the classical Liu–Chen system, a new chaotic system with hidden attractors is designed by using the five-valued memristor, and the dynamic behavior of the new system is analyzed in detail. In Section 4, the circuit of the memristor chaotic system is designed and simulated,and the results are in good agreement with the numerical analysis. Finally,the work of this paper is summarized in the last section.

    2. Flux-controlled five-valued memristor

    Different from the classical binary memristor, the memristor model proposed in this section has five different memristor states and is extremely sensitive to the change of excitation voltage frequency,which mathematical model is expressed as

    whereqis charges,?is magnetic flux. The derivative of Eq.(1)is shown below:

    where dq/dt=i(t), d?/dt=v(t),sgn(·)is a symbolic function,the memductance functionW(?)of flux-controlled fivevalued memristor is shown as

    after sorting out, the relationship between memductance and magnetic flux is obtained as follows:

    The characteristic curve of the five-valued memristor described by Eq. (1) on?–qis shown in Fig. 1(a), which is composed of five straight lines with different slopes. Equation (2) describes the volt–ampere relationship of the fivevalued memristor. The memductance relationship described by Eq. (3) and equation (4) is shown in Fig. 1(b). Obviously,the memristor is controlled by its internal state variable flux, and the corresponding memductance value in each state is equal to the slope of the straight line segment in the?–qcurve.

    According to the general definition of memristor,[24,25]the flux-controlled five-valued memristor model can be represented as

    wherevis input voltage,iis output current.

    Consider a single port network with only one five-valued memristor described by Eq. (5). A sinusoidal voltage source is applied to the network port as the excitation,and the mathematical expression is as follows:

    whereVmis amplitude andfis frequency.

    Fig. 1. Characteristic curve and memductance relationship curve of fvie-valued memristor. (a) The ?–q characteristic curve, (b) the memductance relationship curve.

    Set amplitudeVm= 2 V, internal initial condition of memristor?0=?3 Wb,and when the frequencyfis 0.2 Hz,0.5 Hz, and 1 Hz, thev–icharacteristic curve is shown in Fig.2. Obviously,when a sinusoidal excitation is applied,the characteristic curve of the memristor on thev–iplane is a hysteresis loop which is compressed at the origin. Meanwhile,with the increase of frequency, the sidelobe area of hysteresis loop decreases monotonously and shrinks to a single value function, which is consistent with the essential characteristic of the memristor.[26]

    Letf=0.1 Hz,?0=?3 Wb, when the value ofVmis 1 V, 5 V, and 10 V, thev–icharacteristic curve is shown in Fig. 3. LetVm=2 V,f=0.1 Hz, when the value of?0is?2 Wb, 0 Wb, and 1.5 Wb, thev–icharacteristic curve is shown in Fig. 4. From the simulation results, it can be seen that under the sinusoidal voltage excitation, regardless of the excitation amplitude,frequency,and the internal initial conditions of the memristor, it can show the characteristics of the hysteresis loop at the origin in thev–iplane,which is the main feature of the memristor different from other non-memristor elements.

    Fig.2. The v–i curve of five-valued memristor at different frequencies: (a) f =0.2 Hz,(b) f =0.5 Hz,(c) f =1.0 Hz

    Fig.3. The v–i curve of five-valued memristor at different amplitudes: (a)Vm=1 V,(b)Vm=5 V,(c)Vm=10 V.

    Fig.4.The v–i curve of five-valued memristor at different internal initial conditions of the memristor:(a)?0=?2 Wb,(b)?0=0 Wb,(c)?0=1.5 Wb.

    3. Five-valued memristor-based chaotic system

    In 2004,Liu–Chen proposed a pseudo four-wing chaotic system, which can produce a pair of two-scroll coexisting attractors with close position arrangement,and have good symmetry and rich dynamic behavior.[27,28]In this paper, a new memristor-based 4D chaotic system is constructed by introducing a five-valued memristor,which mathematical model is expressed as

    whereεis an arbitrary constant. Therefore the system has infinitely many equilibrium points. The jacobian matrix is obtained by linearizing system(7)at the equilibrium pointO,as shown in the following formula:

    According to Eq.(10), the characteristic equation can be further obtained as

    By solving the above equation, the characteristic root of the system is shown below:

    Set system parametersa=5,b=10,c=2,d=0.1,e=1,f=0.1 andk=0.1,it is found that no matter what the value ofεis,the eigenvalueλ4is always greater than 0,so the system is unstable at the equilibrium point setO.

    Whenk/=0,by solving Eq.(8),it is easy to getx=y=0,dz=kby taking it into the third equation we get?ck/d=0,but the parameterscandkare all non-zero constants, obviously this is a contradiction Therefore, in the case ofk/=0,there is no solution to the equilibrium equation,so no equilibrium point exists in the system. According to the definition of hidden attractors,[29]no matter what the value of parameterkis,the system has hidden attractor generation.

    Fig.5. Hidden attractor phase diagram of five-valued memristor based chaotic system. (a)The two-dimensional(2D)plot in plane x–y plane,(b)the 2D plot in x–z plane,(c)the 2D plot in y–z plane,(d)The 3D plot in x–y–z space.

    Let the initial values of the state variables be(1,1,1,10).In the limited simulation time, a hidden double scroll attractor is obtained,and its phase diagram is shown in Fig.5. The Lyapunov exponentLE1= 1.40,LE2=?0.003948,LE3=?0.06238,LE4=?8.339, and Lyapunov dimensionDL=3.1609 are calculated. Obviously, the system (7) has a positive Lyapunov exponent and fractional dimension, which is consistent with the Lyapunov exponent and dimension characteristics of the chaotic system,and chaotic behavior will occur.

    3.1. Dissipative analysis

    The dissipativity of system(7)can be represented by

    whena,b,csatisfya?b?c<0,the system is dissipative.

    Bring in the parametera?b?c=?7,so the system(7)satisfies the dissipative condition. Therefore, the phase space of the system converges exponentially and the volume elementV0shrinks toV0e?(b+c?a)tatttime. If the timetapproaches infinity,the trajectories of the system will be compressed into a set whose volume is close to zero,namely the trajectories are infinitely close to the attractor region.The existence of chaotic attractors is proved.

    3.2. Initial value sensitivity

    Let the initial value of the system(7)be(1,1,1,10)without external interference and(100000001, 1,1,10)with external interference. Solve the system equations in the above two cases and the simulation results are shown in Fig.6. The blue part in the figure shows no interference and the red part shows interference. Obviously, although the added disturbance is very weak, the time-domain waveform and phase diagram of the system have undergone very obvious changes. Especially in Fig. 6(a), it can be clearly seen that the time series without interference and with interference almost coincide at the beginning,but with the evolution of time,the two trajectories are separated quickly,accompanied by strong aperiodicity and pseudorandomness,and finally form two completely different trajectories.

    Fig.6. Sensitivity analysis of initial value. (a)The t–x sequence diagram,(b)the 3D plot in x–y–z space.

    Fig.7. Poincare mapping with z=10 section. (a)The 2D plot in plane x–y plane,(b)the 3D spatial structure.

    3.3. Poincare mapping

    Poincare mapping is a common method to analyze the dynamic system. The specific method is to select a cross section ofn ?1 dimension in then-dimensional phase space of the system, and analyze the motion law of the system by observing the intersection distribution of the evolution trajectory and the cross section of the system. When there is a continuous curve or a dense sheet point set,the system is chaotic. Select the cross section asz=10, and the corresponding Poincare mapping is shown in Fig. 7(a). In order to have a more intuitive feeling about the acquisition of Poincare mapping,figure 7(b) shows the 3D spatial structure of Poincare mapping.Obviously,there are a lot of dense points on the cross section,which is consistent with the essential characteristics of chaos,and further verifies the chaotic behavior of the system.

    3.4. System parameter influence

    Fig.8. Lyapunov exponent spectrum and bifurcation diagram varying with k. (a)Lyapunov exponent spectrum,(b)bifurcation diagram.

    The change of parameters will directly affect the dynamic behavior of the system.In this section,the bifurcation diagram and Lyapunov exponent spectrum are used to analyze the dynamic behavior with the change of parameters. Let the parametersa=5,b=10,c=2,d=0.1,e=1,f=0.1,the initial value is(1,1,1,10). We make the parameterkchange in the range of interval[?30,30].The first three Lyapunov exponent spectra and bifurcation diagrams of state variablezare drawn,as shown in Figs.8(a)and 8(b),respectively. When the maximum Lyapunov exponent is greater than zero, the system is chaotic. It can be seen from Fig. 8(b) that in the process of parameterkchanging, the system (7) appears to period doubling bifurcation and reverse period doubling bifurcation,and the path from period to chaos and from chaos to period is observed. When thekvalues are 1, 8, 12, and 30, the projection of the motion trajectory of the system on thex–zplane is shown in Fig.9, and the result corresponds to the bifurcation behavior of the system varying withk.

    Fig.9. Hidden attractor phase diagrams with different k values: (a)k=1,(b)k=8,(c)k=12,(d)k=30.

    In 2004,Gottwald and Melbourne proposed a binary test method[30]to test whether nonlinear systems have chaotic behavior,which is called 0–1 test method. The basic idea of this method is to establish a random dynamic process for the data,and to study the results of the scale evolution of the process over time. If the trajectory of the system on thep–splane is similar to the unbounded behavior of brownian motion, then the system is chaotic. On the contrary,if the trajectory on the plane is bounded,then the system is periodic. Let the parametersa=5,b=10,c=2,d=0.1,e=1,f=0.1,k=1,and the initial values be(1,1,1,10),and the 0–1 test results of the system(7)on thep–splane are shown in Fig.10(a). Keeping other parameters unchanged,letk=30,the 0–1 test result of the system is shown in Fig.10(b). Obviously,the trajectories shown in Fig.10(a)are unbounded,and the trajectories shown in Fig.10(b)are bounded. The 0–1 test results correspond to the simulation results of the attractor phase diagram, which further shows that the parameter changes have an impact on the dynamic behavior of the system.

    Fig.10. The 0–1 test results of system(7): (a)k=1,(b)k=30.

    3.5. Hidden multistability-dependent on initial memristor values

    Leta=5,b=10,c=2,d=0.1,e=1,f=0.1,k=0.1,the initial value is (1, 1, 1,w(0)). When the initial value of memristorw(0) changes within the range of [?30,30], the four Lyapunov exponent spectrums of the system (7) changing withw(0) are shown in Fig. 11(a), represented by blue,red,green,and pink curves respectively. Obviously,the maximum Lyapunov exponent of the system is always positive,so the system is always in a chaotic state under the corresponding parameters and initial values, and it is inferred that the system may have infinite hidden attractors. The bifurcation diagram of state variablezchanging withw(0) is shown in Fig. 11(b), whose bifurcation trajectory changes corresponding to Fig.11(a).

    Whenw(0)values are?5, 0, and 5, the system presents three hidden coexisting attractors with different topologies,which are represented by red, blue, and green trajectories respectively, their phase diagrams are shown in Fig. 12. When thew(0)value is 0,four scroll attractors appear in the system,and when thew(0) value is?5 and 5, two double scroll attractors with different structures appear in the system, which indicates that the system(7)has hidden heterogeneous multistabilities.

    Fig.11. Lyapunov exponent spectrums and bifurcation diagram varying with w(0): (a)Lyapunov exponent spectrum,(b)bifurcation diagram.

    Whenw(0)values are?10,?20,and?30,the first kind of hidden coexisting attractors with the same topology appear in the system, which are represented by red, green, and pink trajectories respectively, their phase diagrams are shown in Fig.13. When thew(0)values are 10,20,and 30,the second kind of hidden coexisting attractors with the same topological structure appear in the system,which are represented by blue,orange,and gray trajectories respectively,their phase diagrams are shown in Fig. 14. Obviously, the topological structure of attractors is the same,but the spatial positions are different,so the system(7)has hidden homogenous multistabilities in these two cases.

    Whenw(0) values are?25,?15,?6, 0, 6, 15, 25, the phase diagrams are shown in Fig.15. In fact, the system can produce more or even infinite hidden attractors by changing the initial conditions of the memristor. Therefore,it is inferred that the system(7)also has hidden super multistabilities.

    Fig.12. Hidden coexisting attractors with different topologies. (a)The 2D plot in x–z plane,(b)the 2D plot in y–z plane,(c)the 2D plot in z–w plane(d),the 3D plot in w–z–x space.

    Fig.13. The first kind of hidden coexisting attractors with the same topology. (a)The 2D plot in z–w plane;(b)the 3D plot in w–z–x space.

    Fig.14. The second kind of hidden coexisting attractors with the same topology. (a)The 2D plot in z–w plane,(b)the 3D plot in w–z–x space.

    Fig.15. Infinite number of hidden coexisting attractors. (a)The 2D plot in z–w plane,(d)the 3D plot in w–z–x space.

    3.6. Hidden transient chaos and state transition behavior

    Transient chaos refers to the special phenomenon that the system is in a chaotic state for a period of time, but with the evolution of time, it changes into another periodic or chaotic state. In this section,the hidden transient chaos and state transition behavior of the system(7)depending on the initial condition of memristor are discussed. Set the parametersa=5,b=10,c=2,d=0.95,e=1,f=0.1,k=0.1,the initial condition is(0,?1,?5,w(0)),set the simulation timet=1000 s,and the step size is 0.01. Whenw(0)=10, the time-domain waveform of the state variablexis shown in Fig.16(a). It can be observed that the time-domain waveform changes from disorderly to regular in the vicinity oft=72 s,the system has a state transition. In addition,the local waveforms near the state transition are amplified for easy understanding. Int1∈[0,72]andt2∈(72,1000]thex–zplane phase diagram of the motion trajectory of the system is shown in Fig.16(b). Obviously,the attractor with chaotic characteristics appears in the short time beforet=72 s,and the periodic limit cycle appears in a long time aftert=72 s,which fully shows that the system has hidden transient chaos under the corresponding parameters and initial conditions.

    Fig.16. The t–x waveform and the x–z phase diagram when w(0)=10,(a)t–x,(b)x–z.

    Fig.17. The t–x waveform and the x–z phase diagram when w(0)=100,(a)t–x,(b)x–z.

    Fig.18. The t–x waveform and the x–z phase diagram when w(0)=180,(a)t–x,(b)x–z.

    Similarly,whenw(0)=100,the system has a state transition neart=395 s. The time domain waveform and phase diagram of state variablexare shown in Figs.17(a)and 17(b),the simulation results are similar to the former, but the existence time of the transient chaos is obviously prolonged.Whenw(0)=180, set the simulation timet=1500 s, and the time-domain waveform of the state variablexis shown in Fig.18(a),which is completely different from the former two cases. At this time,neart=608 s,the system turns to another kind of chaos rather than period. The phase diagram trajectory in thex–zplane is shown in Fig.18(b). It can be seen that the attractors before and after transfer are obviously different.

    4. Circuit design and implementation

    In order to further observe the chaotic attractor and verify the correctness of the system,based on the previous numerical analysis, the analog circuit of the system (7) is designed and simulated in this section. In the simulation, the operational amplifier,multiplier,resistance and capacitance are used,and the complex dynamic behavior of the system is observed on the analog oscilloscope. The input voltage of analog operational amplifiers is set to+15 V and 15 V,the gain of analog multipliers is set to 1. In order to limit the dynamic range of the state variable to the saturation voltage range of the elements, we compress the values of the state variablesx,y,z,andwto 1/5 times of the original. The dimensionless equation is

    whereRCis the time scale transformation factor. The circuit diagram of system(7)is shown in Fig.19,and the circuit equation is as follows:

    where,vx,vy,vz, andvwcorrespond to the voltages of capacitorsC1,C2,C3,andC4,respectively.

    Fig.19. Circuit diagram of chaotic system with five-valued memristor.

    Comparing Eqs. (14) and (15), we getR1=R/a,R2=R5=R7=R/5,R3=R/d,R4=R/b,R6=R/c,R8=R/f,Rk=R/2k,C1=C2=C3=C4=C. LetR= 100 k?,C= 10 nF, when the parameters of system (7) area= 5,b=10,c=2,d=0.1,e=1,f=0.1,k=0.1, the parameters of elements are obtained as

    Adjust the parameters of the elements in the circuit, and run the simulation to get the double scroll chaotic attractor as shown in Fig. 20. In order to further observe the influence of parameters on the dynamic behavior of the system, the resistance values of the regulatingRkare 6.25 k? and 1.67 k?respectively. The corresponding circuit simulation results are shown in Figs.21 and 22,which are obviously consistent with the numerical simulation results ofk=8 andk=30. The correctness and physical realizability of the chaotic system based on five-valued memristor are verified.

    Fig.20. Circuit simulation results of five-valued memristor-based chaotic system. (a)In the x–y space,(b)in the x–z space,(c)in the y–z space,(d)in the z–w space.

    Fig.21. Circuit simulation results when Rk=6.25 k?. (a)In the x–z plane,(b)in the y–z plane.

    Fig.22. Circuit simulation results when Rk=1.67 k? for(a)In the x–z plane and(b)in the y–z plane.

    5. Conclusion

    In this paper,a five-value memristor model is proposed it is proved that the model has a typical hysteresis loop by analyzing the relationship between voltage and current. Then,the model is introduced into Liu–Chen system and a new memristor-based 4D chaotic system is designed. The dynamic behaviors of the system are analyzed,such as dissipativity,initial value sensitivity and poincare mapping. The results show that the system can generate hidden periodic limit cycles,hidden single scroll attractors, hidden double scroll attractors,and hidden four scroll attractors. Meanwhile,the system also shows extreme sensitivity to initial values of the state variable,and has hidden multistabilities, hidden super-multistabilities,and state transition behavior. Finally, the design and simulation of the memristor-based chaotic circuit are completed,and the results are consistent with the numerical simulation results.This study shows that the five-valued memristor model is suitable for chaotic circuit design, which expands the realization way of the memristor model and nonlinear system, and has potential application value in information security and other fields.

    猜你喜歡
    劉帥
    “大胃王”重返素人:舌尖上的幸福愛的味道
    Volumetric Langmuir probe mapping of a transient pulsed plasma thruster plume
    劉帥:支教路上暖意濃
    兒子復仇太瘋狂,大義繼父發(fā)動親情保衛(wèi)戰(zhàn)
    THE PIGHEAD DINER
    漢語世界(2017年3期)2017-03-07 12:34:16
    有理數(shù)的確“有理”
    在數(shù)形結(jié)合中感悟坐標思想
    臨時“麻辣女友”
    故事林(2016年5期)2016-03-04 08:04:32
    用愛組成完整的家
    37°女人(2015年7期)2015-12-23 06:52:31
    把握核心要點 做好期末復習
    日本免费一区二区三区高清不卡| 亚洲精品国产精品久久久不卡| 麻豆av在线久日| 精品日产1卡2卡| 国产伦精品一区二区三区四那| 757午夜福利合集在线观看| 97碰自拍视频| 九九热线精品视视频播放| 丝袜人妻中文字幕| 欧美国产日韩亚洲一区| 无限看片的www在线观看| 麻豆久久精品国产亚洲av| 香蕉av资源在线| 国产精品 国内视频| 精品久久蜜臀av无| www日本在线高清视频| 亚洲精品一区av在线观看| 亚洲精品粉嫩美女一区| 国产成人av教育| 看免费av毛片| 精品电影一区二区在线| 亚洲精品国产精品久久久不卡| 一本一本综合久久| 精品久久久久久久久久免费视频| 免费在线观看影片大全网站| 亚洲精品粉嫩美女一区| aaaaa片日本免费| 真人做人爱边吃奶动态| 欧美一区二区精品小视频在线| 亚洲,欧美精品.| 欧美xxxx黑人xx丫x性爽| 亚洲国产中文字幕在线视频| av天堂中文字幕网| 在线免费观看的www视频| 色精品久久人妻99蜜桃| 真实男女啪啪啪动态图| 国产午夜福利久久久久久| 免费电影在线观看免费观看| 18禁裸乳无遮挡免费网站照片| 欧洲精品卡2卡3卡4卡5卡区| 国产乱人伦免费视频| ponron亚洲| 欧美午夜高清在线| 高清毛片免费观看视频网站| 看免费av毛片| 亚洲真实伦在线观看| 亚洲无线在线观看| 成人鲁丝片一二三区免费| 欧美乱码精品一区二区三区| 在线视频色国产色| 一个人观看的视频www高清免费观看 | 国产人伦9x9x在线观看| 变态另类成人亚洲欧美熟女| 国产精品免费一区二区三区在线| 在线观看午夜福利视频| 两个人看的免费小视频| 久久久久久人人人人人| 成在线人永久免费视频| 99久久精品国产亚洲精品| 亚洲中文日韩欧美视频| 国内少妇人妻偷人精品xxx网站 | 国产成人精品久久二区二区免费| 国产精品一区二区精品视频观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产色片| 国产亚洲精品久久久com| 叶爱在线成人免费视频播放| 99国产综合亚洲精品| 国内毛片毛片毛片毛片毛片| 夜夜爽天天搞| 热99在线观看视频| av国产免费在线观看| 亚洲av免费在线观看| 一个人免费在线观看的高清视频| 亚洲七黄色美女视频| www.www免费av| 非洲黑人性xxxx精品又粗又长| 久久久久精品国产欧美久久久| 中文在线观看免费www的网站| 中文字幕久久专区| 国内少妇人妻偷人精品xxx网站 | 国产成人精品久久二区二区免费| 国产又色又爽无遮挡免费看| 黄片大片在线免费观看| 国产1区2区3区精品| 日韩免费av在线播放| 亚洲精品国产精品久久久不卡| 国产美女午夜福利| 看黄色毛片网站| 午夜福利高清视频| 在线观看美女被高潮喷水网站 | а√天堂www在线а√下载| 在线观看午夜福利视频| 中出人妻视频一区二区| 国产熟女xx| 亚洲欧美精品综合一区二区三区| 国产一区二区在线av高清观看| tocl精华| 国产激情偷乱视频一区二区| 亚洲成人中文字幕在线播放| 免费观看的影片在线观看| 久久久精品大字幕| 日韩精品青青久久久久久| 嫩草影院精品99| 成人鲁丝片一二三区免费| 欧美激情久久久久久爽电影| 天堂动漫精品| 国产美女午夜福利| 超碰成人久久| 国产高清激情床上av| 欧美成人一区二区免费高清观看 | 听说在线观看完整版免费高清| 日本黄色片子视频| 超碰成人久久| av中文乱码字幕在线| 成人三级黄色视频| 亚洲午夜理论影院| 国产高潮美女av| 久久国产乱子伦精品免费另类| 日韩 欧美 亚洲 中文字幕| 国产野战对白在线观看| 日韩欧美三级三区| 岛国在线免费视频观看| 欧美日韩福利视频一区二区| 亚洲欧美日韩东京热| 久久精品国产亚洲av香蕉五月| 日本一二三区视频观看| 国产熟女xx| 精品国产三级普通话版| 别揉我奶头~嗯~啊~动态视频| 午夜日韩欧美国产| 国产伦精品一区二区三区视频9 | 欧美色视频一区免费| 天堂av国产一区二区熟女人妻| 亚洲真实伦在线观看| 成人午夜高清在线视频| 啦啦啦观看免费观看视频高清| 嫩草影视91久久| 18禁美女被吸乳视频| 国产高清videossex| av在线蜜桃| 午夜福利免费观看在线| 成人18禁在线播放| 欧美一区二区精品小视频在线| 免费看美女性在线毛片视频| 国产高清videossex| 日韩欧美 国产精品| 黄色视频,在线免费观看| 色综合欧美亚洲国产小说| 久久国产精品影院| 国产精品爽爽va在线观看网站| 免费看日本二区| 又紧又爽又黄一区二区| 国产精品爽爽va在线观看网站| 欧美成人免费av一区二区三区| 精品不卡国产一区二区三区| 黄色女人牲交| 男女视频在线观看网站免费| 国产av麻豆久久久久久久| 国产男靠女视频免费网站| 91久久精品国产一区二区成人 | 国产亚洲精品一区二区www| 最新中文字幕久久久久 | 久久国产精品影院| 国产一区二区激情短视频| www国产在线视频色| 国产亚洲av高清不卡| 国产精品日韩av在线免费观看| 又爽又黄无遮挡网站| 一二三四在线观看免费中文在| 亚洲18禁久久av| 国内精品久久久久久久电影| 国产亚洲av高清不卡| 亚洲av日韩精品久久久久久密| 人妻久久中文字幕网| 日本黄色视频三级网站网址| 国产精品女同一区二区软件 | 亚洲精品国产精品久久久不卡| 狂野欧美激情性xxxx| 99视频精品全部免费 在线 | 动漫黄色视频在线观看| 亚洲欧美一区二区三区黑人| 99久久精品一区二区三区| 国产男靠女视频免费网站| 中国美女看黄片| 精品久久久久久久人妻蜜臀av| 一级a爱片免费观看的视频| 毛片女人毛片| 亚洲国产精品合色在线| 九色成人免费人妻av| 国产成人欧美在线观看| 两个人的视频大全免费| 亚洲国产精品成人综合色| 精品国产乱子伦一区二区三区| 村上凉子中文字幕在线| 一本一本综合久久| 一二三四在线观看免费中文在| 久久久久久久午夜电影| 级片在线观看| 美女午夜性视频免费| 一本一本综合久久| 超碰成人久久| 午夜福利成人在线免费观看| 国产一级毛片七仙女欲春2| 欧美性猛交╳xxx乱大交人| 欧美国产日韩亚洲一区| 国产成人系列免费观看| 国产精品,欧美在线| 亚洲av第一区精品v没综合| 日韩欧美在线二视频| 欧美精品啪啪一区二区三区| 国产成人av教育| 好看av亚洲va欧美ⅴa在| 国产伦精品一区二区三区视频9 | 日韩人妻高清精品专区| 免费看a级黄色片| 久久天躁狠狠躁夜夜2o2o| 一级毛片高清免费大全| 亚洲,欧美精品.| 欧美黄色淫秽网站| 好男人电影高清在线观看| 精品久久久久久久末码| 两性午夜刺激爽爽歪歪视频在线观看| 九九热线精品视视频播放| svipshipincom国产片| 伊人久久大香线蕉亚洲五| 一边摸一边抽搐一进一小说| 国产伦在线观看视频一区| 五月玫瑰六月丁香| 亚洲国产精品久久男人天堂| 91av网一区二区| 午夜精品久久久久久毛片777| 又黄又爽又免费观看的视频| 精华霜和精华液先用哪个| 国产精品 国内视频| 亚洲欧洲精品一区二区精品久久久| 日韩人妻高清精品专区| 午夜亚洲福利在线播放| 老司机午夜福利在线观看视频| 曰老女人黄片| 热99在线观看视频| 最近最新免费中文字幕在线| www.精华液| 黑人巨大精品欧美一区二区mp4| 精品乱码久久久久久99久播| 午夜福利视频1000在线观看| 怎么达到女性高潮| 亚洲 国产 在线| 国产一区二区三区在线臀色熟女| 欧美色欧美亚洲另类二区| 国产精品99久久久久久久久| 国产又色又爽无遮挡免费看| 日韩高清综合在线| 黑人欧美特级aaaaaa片| 成人av一区二区三区在线看| 哪里可以看免费的av片| 好男人在线观看高清免费视频| 国产伦一二天堂av在线观看| 久久久国产精品麻豆| 亚洲欧洲精品一区二区精品久久久| 日韩欧美精品v在线| 1024手机看黄色片| 欧美三级亚洲精品| 成人无遮挡网站| 搞女人的毛片| 天天添夜夜摸| 国产精品野战在线观看| 美女黄网站色视频| 国产av一区在线观看免费| 男女午夜视频在线观看| 精品无人区乱码1区二区| 久久精品91蜜桃| 免费搜索国产男女视频| 岛国在线观看网站| 午夜福利免费观看在线| 亚洲av成人精品一区久久| 精品国产三级普通话版| 国产成人欧美在线观看| 日本与韩国留学比较| 1024手机看黄色片| 亚洲中文字幕一区二区三区有码在线看 | 99久久成人亚洲精品观看| 亚洲自拍偷在线| 午夜精品久久久久久毛片777| 又紧又爽又黄一区二区| 久久精品91无色码中文字幕| 欧美不卡视频在线免费观看| 两个人视频免费观看高清| 亚洲av成人一区二区三| 欧美性猛交黑人性爽| 日本一本二区三区精品| 香蕉av资源在线| 一卡2卡三卡四卡精品乱码亚洲| 国产男靠女视频免费网站| 别揉我奶头~嗯~啊~动态视频| 99视频精品全部免费 在线 | 国产三级中文精品| 狂野欧美白嫩少妇大欣赏| 国产一区二区三区视频了| 中国美女看黄片| www.自偷自拍.com| 亚洲人成电影免费在线| 老熟妇仑乱视频hdxx| 桃红色精品国产亚洲av| 熟女电影av网| 欧美xxxx黑人xx丫x性爽| www日本在线高清视频| 亚洲性夜色夜夜综合| 成人欧美大片| 88av欧美| 国产成人av激情在线播放| 在线永久观看黄色视频| av黄色大香蕉| 国产又色又爽无遮挡免费看| 精品99又大又爽又粗少妇毛片 | 国产人伦9x9x在线观看| 欧美午夜高清在线| 国产av一区在线观看免费| 一a级毛片在线观看| 成年免费大片在线观看| 精品人妻1区二区| 午夜精品久久久久久毛片777| 一区二区三区激情视频| 国产精华一区二区三区| 亚洲成人免费电影在线观看| 午夜福利在线观看吧| 亚洲国产精品合色在线| 91久久精品国产一区二区成人 | 亚洲精品在线美女| 给我免费播放毛片高清在线观看| 动漫黄色视频在线观看| 久久午夜亚洲精品久久| 国产一级毛片七仙女欲春2| 性色avwww在线观看| 免费无遮挡裸体视频| 18禁美女被吸乳视频| 中文资源天堂在线| 综合色av麻豆| 国产亚洲精品av在线| 成人特级av手机在线观看| 精品国产乱子伦一区二区三区| 黄片小视频在线播放| 99久久成人亚洲精品观看| 亚洲美女视频黄频| svipshipincom国产片| 国产精品香港三级国产av潘金莲| 国产久久久一区二区三区| 中文字幕人成人乱码亚洲影| 亚洲男人的天堂狠狠| 美女免费视频网站| 国产激情久久老熟女| 国产又色又爽无遮挡免费看| 国产精品 欧美亚洲| avwww免费| 成人亚洲精品av一区二区| 美女午夜性视频免费| 国产v大片淫在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 精品久久蜜臀av无| 国产真人三级小视频在线观看| 国产单亲对白刺激| 中文字幕人成人乱码亚洲影| svipshipincom国产片| 国产精品av视频在线免费观看| 人妻久久中文字幕网| 国产又色又爽无遮挡免费看| 色尼玛亚洲综合影院| 热99在线观看视频| 中文字幕精品亚洲无线码一区| 国产精品一区二区精品视频观看| 老汉色∧v一级毛片| 国内揄拍国产精品人妻在线| 亚洲色图 男人天堂 中文字幕| 欧美乱色亚洲激情| 免费电影在线观看免费观看| 亚洲欧美激情综合另类| 精品一区二区三区视频在线观看免费| 夜夜爽天天搞| 国产精品亚洲美女久久久| 亚洲av成人av| 色综合欧美亚洲国产小说| 午夜福利在线在线| 香蕉国产在线看| 麻豆一二三区av精品| 久久精品国产亚洲av香蕉五月| 狂野欧美激情性xxxx| 国产高潮美女av| 日本 欧美在线| 夜夜躁狠狠躁天天躁| 日韩 欧美 亚洲 中文字幕| 精品一区二区三区视频在线 | 在线国产一区二区在线| 亚洲国产看品久久| 在线免费观看不下载黄p国产 | 日韩欧美三级三区| 欧美中文日本在线观看视频| 悠悠久久av| 亚洲国产精品成人综合色| 亚洲午夜理论影院| АⅤ资源中文在线天堂| 老司机福利观看| 国产乱人视频| 18美女黄网站色大片免费观看| 国产熟女xx| 99在线人妻在线中文字幕| 亚洲天堂国产精品一区在线| 午夜影院日韩av| 免费观看的影片在线观看| 亚洲国产精品合色在线| or卡值多少钱| 日本在线视频免费播放| 午夜影院日韩av| 精品熟女少妇八av免费久了| 国产免费男女视频| 天堂动漫精品| 日本在线视频免费播放| 亚洲美女黄片视频| 91麻豆av在线| 国产精品久久久久久亚洲av鲁大| 欧美成狂野欧美在线观看| 又黄又粗又硬又大视频| 99热只有精品国产| 在线观看日韩欧美| netflix在线观看网站| 久久亚洲精品不卡| av片东京热男人的天堂| 每晚都被弄得嗷嗷叫到高潮| bbb黄色大片| 久久人人精品亚洲av| 亚洲第一欧美日韩一区二区三区| 亚洲美女视频黄频| 日韩大尺度精品在线看网址| 听说在线观看完整版免费高清| 免费看光身美女| 亚洲黑人精品在线| 不卡一级毛片| 中文字幕精品亚洲无线码一区| 无遮挡黄片免费观看| 精品日产1卡2卡| 欧美午夜高清在线| 美女被艹到高潮喷水动态| 一个人免费在线观看的高清视频| 久久久久国产精品人妻aⅴ院| 麻豆av在线久日| 99久久综合精品五月天人人| 免费观看精品视频网站| 99久久99久久久精品蜜桃| 日韩欧美一区二区三区在线观看| 99热6这里只有精品| 午夜精品一区二区三区免费看| 中文字幕人成人乱码亚洲影| 国产成人一区二区三区免费视频网站| 欧美日韩综合久久久久久 | 欧美黄色片欧美黄色片| 欧美黄色片欧美黄色片| 精品久久久久久成人av| 午夜影院日韩av| 精品一区二区三区四区五区乱码| 免费在线观看影片大全网站| 俺也久久电影网| 色老头精品视频在线观看| 极品教师在线免费播放| 看片在线看免费视频| 欧美黑人欧美精品刺激| 在线播放国产精品三级| 中文字幕人成人乱码亚洲影| 精品日产1卡2卡| 精品久久久久久,| 首页视频小说图片口味搜索| 日本五十路高清| 欧美色欧美亚洲另类二区| 91字幕亚洲| 亚洲精品456在线播放app | 日日夜夜操网爽| 免费大片18禁| 在线a可以看的网站| 欧美色视频一区免费| 午夜影院日韩av| 高清在线国产一区| 视频区欧美日本亚洲| 国产精品99久久久久久久久| 99riav亚洲国产免费| 伊人久久大香线蕉亚洲五| 精品午夜福利视频在线观看一区| 国产成年人精品一区二区| 91在线观看av| 欧美成人一区二区免费高清观看 | 成人三级做爰电影| 亚洲熟妇中文字幕五十中出| 欧美日韩国产亚洲二区| 这个男人来自地球电影免费观看| 日韩精品青青久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av免费在线观看| 91在线观看av| 在线观看午夜福利视频| 欧美又色又爽又黄视频| 丰满人妻熟妇乱又伦精品不卡| 久久香蕉国产精品| 99国产精品一区二区三区| 18禁裸乳无遮挡免费网站照片| 97碰自拍视频| 亚洲第一电影网av| 90打野战视频偷拍视频| 亚洲专区国产一区二区| 国产成人一区二区三区免费视频网站| 久久精品aⅴ一区二区三区四区| 99精品在免费线老司机午夜| а√天堂www在线а√下载| 成年女人看的毛片在线观看| 欧美黄色淫秽网站| 国产精品免费一区二区三区在线| 搡老熟女国产l中国老女人| 成人无遮挡网站| 波多野结衣高清无吗| 色尼玛亚洲综合影院| 色综合站精品国产| h日本视频在线播放| 国产成人aa在线观看| 男人舔女人下体高潮全视频| 99精品在免费线老司机午夜| 亚洲aⅴ乱码一区二区在线播放| 免费在线观看影片大全网站| 色综合欧美亚洲国产小说| 一二三四社区在线视频社区8| 老司机深夜福利视频在线观看| 亚洲精品久久国产高清桃花| 99国产极品粉嫩在线观看| 伦理电影免费视频| 听说在线观看完整版免费高清| 黑人巨大精品欧美一区二区mp4| 免费在线观看亚洲国产| 99国产极品粉嫩在线观看| 桃色一区二区三区在线观看| 日本黄色视频三级网站网址| 国内揄拍国产精品人妻在线| 国产激情久久老熟女| 九九久久精品国产亚洲av麻豆 | 亚洲在线自拍视频| 亚洲精品色激情综合| 国产高清三级在线| 亚洲熟妇中文字幕五十中出| 免费在线观看日本一区| 亚洲欧美日韩卡通动漫| ponron亚洲| 亚洲avbb在线观看| 亚洲国产欧美人成| 国产精品1区2区在线观看.| 国产美女午夜福利| 色综合亚洲欧美另类图片| 91在线观看av| 禁无遮挡网站| 巨乳人妻的诱惑在线观看| 亚洲 欧美一区二区三区| cao死你这个sao货| www.自偷自拍.com| 中文在线观看免费www的网站| 国产精品女同一区二区软件 | 久久草成人影院| 久久精品影院6| 老熟妇乱子伦视频在线观看| 三级毛片av免费| 国产私拍福利视频在线观看| 无限看片的www在线观看| 亚洲欧美日韩高清专用| 日韩 欧美 亚洲 中文字幕| 国产1区2区3区精品| 欧美xxxx黑人xx丫x性爽| 亚洲真实伦在线观看| 久久久久久久久免费视频了| 两个人视频免费观看高清| 国产爱豆传媒在线观看| 日韩欧美在线二视频| 久久久精品欧美日韩精品| 亚洲国产高清在线一区二区三| 99久国产av精品| 美女黄网站色视频| 国产1区2区3区精品| 一个人免费在线观看电影 | 黄色片一级片一级黄色片| 久久99热这里只有精品18| 久久久久免费精品人妻一区二区| 给我免费播放毛片高清在线观看| 亚洲国产看品久久| 亚洲av片天天在线观看| 久久性视频一级片| 国产一区在线观看成人免费| 天堂av国产一区二区熟女人妻| 久久久久国内视频| 搡老岳熟女国产| 99国产精品99久久久久| 又大又爽又粗| 美女免费视频网站| 小蜜桃在线观看免费完整版高清| 嫁个100分男人电影在线观看| 精华霜和精华液先用哪个| 精品久久久久久久人妻蜜臀av| 久久久久九九精品影院| 国产一区二区在线观看日韩 | 久久国产精品影院| 狂野欧美激情性xxxx| 欧美一区二区国产精品久久精品| 九九在线视频观看精品| 老司机午夜福利在线观看视频| 国产精品日韩av在线免费观看| 午夜两性在线视频| 色av中文字幕| 黄色视频,在线免费观看| 悠悠久久av| 中文字幕最新亚洲高清| 欧美成人性av电影在线观看| 97碰自拍视频| 天堂网av新在线| 欧美xxxx黑人xx丫x性爽| 97人妻精品一区二区三区麻豆|