• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Crystal growth and magnetic properties of quantum spin liquid candidate KErTe2?

    2021-10-28 07:02:58WeiweiLiu劉維維DayuYan閆大禹ZhengZhang張政JiantingJi籍建葶YouguoShi石友國FengJin金峰andQingmingZhang張清明
    Chinese Physics B 2021年10期
    關(guān)鍵詞:金峰維維石友

    Weiwei Liu(劉維維) Dayu Yan(閆大禹) Zheng Zhang(張政) Jianting Ji(籍建葶)Youguo Shi(石友國) Feng Jin(金峰) and Qingming Zhang(張清明)

    1Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices,Renmin University of China,Beijing 100872,China

    2Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    3School of Physical Science and Technology,Lanzhou University,Lanzhou 730000,China

    Keywords: quantum spin liquids,exchange and superexchange interactions,magnetic anisotropy

    1. Introduction

    Quantum spin liquid is a novel quantum state in which no spontaneous symmetry break occurs even at zero temperature.[1]After the discovery of high temperature superconductivity(HTS),Anderson tried to apply the QSL picture to understand the mechanism of HTS. It was proposed that when doped with holes, the resonating valence bond is a singlet state with coherent mobile carriers and is indistinguishable in terms of symmetry from a singlet BCS superconductor.Based on this idea,many theoretical concepts have been proposed to understand the connection between QSLs and hightemperature superconductivity, for example, the spin–charge separation (holon and spinon),[2]the slave-boson theory,[3]and the mean-field theory.[4–7]

    Experimentally, several compounds with spinS= 1/2,such as herbertsmithite (ZnCu3(OH)6Cl2), YbMgGaO4, andα-RuCl3,have been proven to be QSL candidates.[8–21]However, most of them suffer from one or more problems (such as site disorder, interlayer exchange interactions, or antisymmetric Dzyaloshinsky–Moriya(DM)interactions[22,23])which make these systems complex to explore. For example,the recently discovered YbMgGaO4has a perfect triangular lattice structure(Rˉ3m)[11–14,16,24,25]with the adjacent triangle layers having a relative large distance. Thus,the interlayer exchange interactions and the DM interactions can be ignored in this system.However,it still suffers from the issue of Ga/Mg disorder,which was suggested to be responsible for the disordered spin state and/or QSL stability.[11,26–28]

    Recently, we discovered the family of rare-earth chalcogenides ARECh2(A = alkli or monovalent ions, Re = rare earth, Ch=O, S, Se, Te) as QSL candidates, which has attracted much attention since these systems inherit almost all the advantages of YbMgGaO4,but do not suffer from the site disorder issue.[29–34]The compounds have a high symmetry with space groupRˉ3mand the magnetic rare-earth ions form triangular layers that are well separated.[29]Compared with transition metal ions, the 4f rare-earth ions with odd number of electrons have stronger spin orbital couplings and are protected by time reversal symmetry (Kramers doublets). Thus,they can be treated as an ion with effective spinS=1/2 on the crystalline-electronic field(CEF)ground state. Moreover,the huge difference of radii of the cations makes the site disorder impossible. Thus, the rare-earth chalcogenides family ARECh2(A=alkli or monovalent ions, Re=rareearth,Ch=O,S,Se,Te)provide a platform to study QSLs.

    On the other hand,it is noted that with increasing the radius of the chalcogen ions,the charge gapΔdecreases,for example,ΔNaYbO2?4.5 eV>ΔNaYbS2?2.7 eV>ΔNaYbSe2?1.9 eV.[29]Then it is interesting to ask what will happen if the chalcogen ions are replaced by bigger ions(such as Te2?).Particularly, is it possible to realize the crossover from QSL to metallization even superconductivity? This basically motivates the present work.

    In this paper,we report the successful synthesis of a new rare-earth chalcogenide compound KErTe2. It shares the same structure(Rˉ3m)as NaYbSe2with the magnetic rare-earth ions forming perfect triangular layers. No structural and magnetic transition are observed down to 1.8 K in susceptibility and specific heat measurements. Moreover,the charge gap of KErTe2is roughly 0.93±0.35 eV,which is the smallest gap among all QSL candidates. These findings suggest that KErTe2represents a QSL candidate with much smaller charge gap. Thus,KErTe2provides a platform on which one can easily tune the charge gap and may have chance to explore the connection between QSLs and high-temperature superconductivity.

    2. Experiments and methods

    Single crystals of KErTe2were synthesized by the selfflux method with molar ratio K:Er:Te=1.5:1:9. K, Er,and Te elements were put into the carton crucible orderly,then sealed into the quartz tube in vacuum. The quartz tube was annealed at 800°C for 20 h,and then the ampoule was slowly cooled down to 500°C with about 2°C/h. Finally, the ampoule was span in a centrifuge. The same processwas also used to successfully grow KLuTe2single crystals. The obtained KErTe2single crystal is shown in Fig.1(a).

    Fig.1. (a)XRD pattern of KErTe2 single crystal on the(00L)plane. Inset:An image of the synthesized sample. (b) EDX and (c) crystal structure of KErTe2.

    After the successful synthesis of single crystals KErTe2,several measurements were used to characterize them,such as x-ray diffractometer(XRD;Bruker-D8),energy-dispersive xray spectroscopy (EDX; Oxford X-Max 50), and four-circle single crystal diffractometer (X’Pert3MRD). All these measurements indicate the high quality of the synthesized KErTe2single crystals and the detailed results will be discussed in the next section.

    The magnetic susceptibility and heat capacity measurements were performed using a Quantum Design physical property measurement system (QD PPMS DynaCool) over the temperature range from 1.8 K to 300 K and under magnetic fields of up to 9 T.The absorption spectrum of the sample was collected by a UV-Vis absorption spectrometer (PerkinElmer Lambda 750)to obtain the charge gap of KErTe2.

    3. Results and discussion

    Figure 1(a) displays the XRD pattern of the synthesized KErTe2single crystals, and several discrete peaks can be observed. These peaks can be well described by the Bragg equation 2dsinθ=nλand no other impurity peaks can be observed, indicating the high quality of the synthesized single crystals. In addition,the EDX spectroscopy is used to characterize the atomic ratios of the single crystals(Fig.1(b)). The determinted average atomic ratios are K:Er:Te=1.05(3):1:2.04(5),close to the stoichiometric ratio of KErTe2.All above results indicate the high quality of the synthesized KErTe2single crystals.

    Moreover, we further determined the crystal structure and the lattice parameters of the KErTe2by x-ray four-circle diffraction. Its space group isRˉ3mand the detailed lattice parameters are summarized in Table 1. According to the determined lattice parameters, the schematic structure of KErTe2is shown in Fig.1(c), which is isomorphic to NaYbCh2. The magnetic 4f rare-earth Er3+ions form perfect triangular layers that are well separated by nonmagnetic K layers. The distance between the two adjacent triangular layers is 8.131 °A while the nearest neighbor distance between magnetic Er3+ions is 4.4294(9) °A. Due to the larger radius of Te2?, both of these two distances are larger than those of KErSe2.

    Table 1. Structural parameters of KErTe2 given by x-ray four-circle diffraction (space group Rˉ3m, No. 166; a = 4.4294(9) °A, and c =24.392(7) °A).

    To characterize the behavior of the local moment of Er3+,we first measured the magnetic susceptibility of single crystals KErTe2(Fig. 2(a)). Down to 1.8 K, no magnetic order/transition can be observed for magnetic fieldsHapplied both in theabplane (H//ab) and along thec-axis (H//c).We also examined the magnetic susceptibilities in field cooling(FC)and zero-field cooling(ZFC)measurements.No splitting was detected between the FC and ZFC results down to 1.8 K,indicating the absence of spin glassy transitions (Fig. 2(a)).These magnetic properties imply that KErTe2is a perfect platform to study novel magnetic properties in the frustrated system.

    Figures 2(e) and 2(f) present the temperature-dependent magnetic susceptibility under different magnetic fields with the fieldH//ab(Fig.2(e))andH//c(Fig.2(f)),respectively.For both directions of the field,the susceptibilityχ(T)shows similar behaviors, decreasing with increasing field. This behavior indicates that huge frustrations in KErTe2exist at zero field and with increasing field, the frustrations are strongly suppressed. Anyway,the above magnetic measurements suggest that the magnetic Er3+ions are antiferromagnetically coupled with each other and even down to 1.8 K,these local moments are disorderly distributed. Thus, KErTe2represents a QSL candidate.

    Table 2. Parameters extracted from Curie–Weiss fitting for KErTe2.

    To better characterize the ground state of KErTe2,we performed temperature-dependent specific heat measurements on KErTe2single crystals.As shown in Fig.3(a),below 10 K,the heat capacity of KErTe2exhibits a significant different behavior from that of a perfect nonmagnetic reference compound KLuTe2, whose lattice is nearly the same as that of KErTe2.Moreover, it can be found that the heat capacity of KLuTe2can be well described by the Debye phonon heat capacity model, indicating that it is totally contributed by the lattice.Thus, other contributions to the heat capacity of KErTe2can be precisely extracted by directly subtracting the lattice contributions,i.e.,the heat capacity of KLuTe2from that of KErTe2.As shown in Fig.3(b),two broad peaks located at~2 K and~10 K can be well resolved. The origin of these two peaks due to the impurities can be excluded since no impurity signal has been found from the structural and magnetic susceptibility measurements.

    Fig.2. (a)Temperature-dependence of the magnetic susceptibility χ(T)measured under zero-field cooling(ZFC,opend circles)and field cooling(FC,solid curves)with the field μ0H =0.1 T applied in the ab plane and along the c axis. Paramagnetic behavior is observed at low temperature with no obvious differences between ZFC and FC data. (b)Curie–Weiss fitting of the high temperature magnetization data(HT:100–200 K).The ftiting results in Curie temperatures of =?0.3 K and =?6.0 K.(c)Curie–Weiss ftiting of the low temperature magnetization data(LT:1.8–4 K).The ftiting results in Curie temperatures of =?0.4 K and CW =?7.6 K.(d)The magnetic hysteresis loop curves of KErTe2 at 1.8 K.The field-dependence of the χ(T)curves with the field applied(e)in ab-plane and(f)along c axis is also shown.

    Fig.3.(a)The zero-field heat capacities of KErTe2 and KLuTe2.The dashed curve is the fitting result based on the Debye model.(b)By directly subtracting the lattice contributions,other contributions to heat capacities of KErTe2 are obtained. (c)The temperature-dependence of heat capacities under several different magnetic fields. (d)Same as(c)with the lattice heat capacities having been subtracted.

    In order to better understand the origin of these two peaks, the field-dependent specific heat measurements were performed on KErTe2single crystals, as shown in Figs. 3(c)and 3(d). One can find that with increasing field, both these two peaks move to high temperatures and above 4 T, these two peaks overlap with each other. Such a behavior suggests that the two peaks can not be related to the spin exchange interaction since the heat capacities contributed by the spin exchange interaction will move to low temperatures with increasing magnetic field, inconsistent with our observation. Moreover,based on the Curie–Weiss fitting of the susceptibility,one can estimate that the spin exchange interaction is about 1 K,which is lower than the observed two peaks, also indicating that these two peaks do not origin from the spin exchange interaction.

    Having exclude the possible origins of impurities and spin exchange interaction, we suggest that these two peaks origin from the CEF of Er3+. The reason is that these two peaks exhibit the same behavior as those observed in KErSe2,[35]where two broad peaks are also observed below 10 K, and move to high temperatures with increasing field. Thus, we believe that the two peaks at~2 K and~10 K have the same origin as that observed in KErSe2. A quantitative understanding of these two peaks requires more theoretical work in the future and goes beyond the scope of this paper.

    We further performed absorption spectrum measurements to get the charge gap of KErTe2. As shown in Fig. 4, the absorption spectrum exhibits an un-saturated behavior over a wide wavelength range (from~2150 nm (0.58 eV) to~980 nm(1.27 eV)).Thus,the charge gap can be roughly estimated as 0.93±0.35 eV.Compared with the charge gaps of other QSL candidates(see Table 3),one can find that KErTe2has the smallest charge gap. Thus, it provides a perfect platform for metallization of QSL insulators to explore the connection between QSLs and high-temperature superconductivity.

    Table 3. Charge gaps of some reported QSL candidates.

    Fig.4. The UV-Vis absorption spectrum of KErTe2.

    4. Summary

    In conclusion, we report the successful synthesis of a new rare-earth chalcogenide compound KErTe2. Specific heat and magnetic susceptibility measurements on KErTe2single crystals reveal no structural and magnetic transition down to 1.8 K, suggesting that KErTe2represents a well QSL candidate. Moreover, the absorption spectrum shows that the charge gap of KErTe2is roughly 0.93±0.35 eV,which is the smallest gap among all QSL candidates. These findings suggest that KErTe2represents a QSL candidate with much small charge gap, providing a perfect platform to explore the connection between QSLs and high-temperature superconductivity by means of tuning the charge gap(for example hydrogen doping or pressure).

    猜你喜歡
    金峰維維石友
    蘇州金峰物流設(shè)備有限公司
    “果然”有意思
    蘇州金峰物流設(shè)備有限公司
    本期石友通訊錄
    寶藏(2021年7期)2021-08-28 08:18:14
    本期石友通訊錄
    寶藏(2021年6期)2021-07-20 06:12:30
    本期石友通訊錄
    寶藏(2021年11期)2021-01-01 06:17:42
    石友天地
    寶藏(2020年10期)2020-11-19 01:47:58
    總是“大不了”的維維
    蘇州金峰物流設(shè)備有限公司
    Numerical simulation of submarine landslide tsunamis using particle based methods*
    精品国产一区二区三区四区第35| 黄色一级大片看看| 丁香六月天网| 欧美在线黄色| 国产又爽黄色视频| 亚洲国产成人一精品久久久| 如何舔出高潮| 国产精品久久久久久精品电影小说| 亚洲五月色婷婷综合| 一本大道久久a久久精品| 亚洲欧洲日产国产| 亚洲欧美成人综合另类久久久| 久久精品国产亚洲av高清一级| 人人妻人人添人人爽欧美一区卜| 日产精品乱码卡一卡2卡三| 亚洲av综合色区一区| 亚洲欧美中文字幕日韩二区| 好男人视频免费观看在线| 国语对白做爰xxxⅹ性视频网站| 久久国内精品自在自线图片| 人妻少妇偷人精品九色| 国产 精品1| 亚洲国产欧美日韩在线播放| 韩国精品一区二区三区| 午夜免费观看性视频| 精品人妻熟女毛片av久久网站| 赤兔流量卡办理| 大香蕉久久网| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 色哟哟·www| 国产精品女同一区二区软件| www.精华液| av国产精品久久久久影院| 两个人看的免费小视频| 久久精品aⅴ一区二区三区四区 | 日本爱情动作片www.在线观看| av福利片在线| 日本vs欧美在线观看视频| 黑人猛操日本美女一级片| 丰满少妇做爰视频| 婷婷色综合www| 一级a爱视频在线免费观看| 三级国产精品片| 久久久久久人妻| 在线观看人妻少妇| 久久精品熟女亚洲av麻豆精品| www.av在线官网国产| 精品视频人人做人人爽| 久久精品熟女亚洲av麻豆精品| 久久精品国产鲁丝片午夜精品| 久久国产精品男人的天堂亚洲| 午夜福利乱码中文字幕| 如何舔出高潮| 国产在线一区二区三区精| 精品视频人人做人人爽| a级片在线免费高清观看视频| 久久精品熟女亚洲av麻豆精品| 亚洲精品美女久久av网站| 国产男女超爽视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 成人毛片60女人毛片免费| 日韩中字成人| 欧美精品国产亚洲| 亚洲 欧美一区二区三区| 春色校园在线视频观看| 中国国产av一级| 亚洲av电影在线观看一区二区三区| 在线观看国产h片| 男男h啪啪无遮挡| 国语对白做爰xxxⅹ性视频网站| 少妇 在线观看| 丝袜在线中文字幕| 国产精品麻豆人妻色哟哟久久| 午夜福利乱码中文字幕| 精品国产乱码久久久久久男人| 国产极品天堂在线| 亚洲精品日韩在线中文字幕| 国产熟女午夜一区二区三区| 这个男人来自地球电影免费观看 | 在线看a的网站| 成年美女黄网站色视频大全免费| 男的添女的下面高潮视频| 亚洲天堂av无毛| 色吧在线观看| 男女国产视频网站| 亚洲欧洲精品一区二区精品久久久 | 青青草视频在线视频观看| 啦啦啦在线观看免费高清www| 人人妻人人添人人爽欧美一区卜| av女优亚洲男人天堂| 飞空精品影院首页| 欧美97在线视频| 免费大片黄手机在线观看| 国产成人一区二区在线| 亚洲精品一区蜜桃| 久久午夜福利片| 不卡av一区二区三区| 色婷婷久久久亚洲欧美| 国产欧美日韩一区二区三区在线| 亚洲,欧美精品.| 男女下面插进去视频免费观看| 哪个播放器可以免费观看大片| 欧美精品av麻豆av| 亚洲国产成人一精品久久久| 国产av码专区亚洲av| 桃花免费在线播放| 性色avwww在线观看| 熟妇人妻不卡中文字幕| 亚洲一码二码三码区别大吗| 午夜久久久在线观看| 最近的中文字幕免费完整| 国产午夜精品一二区理论片| 国产精品偷伦视频观看了| 看免费av毛片| 自线自在国产av| 99国产综合亚洲精品| 在线观看三级黄色| 亚洲欧美一区二区三区国产| 国产伦理片在线播放av一区| 成人黄色视频免费在线看| 在线观看免费高清a一片| 涩涩av久久男人的天堂| 18在线观看网站| 校园人妻丝袜中文字幕| 少妇精品久久久久久久| 男女下面插进去视频免费观看| 国产视频首页在线观看| www.自偷自拍.com| 国产男女超爽视频在线观看| √禁漫天堂资源中文www| 黄网站色视频无遮挡免费观看| 久久久久精品人妻al黑| 亚洲成国产人片在线观看| 丝袜脚勾引网站| 久久狼人影院| 这个男人来自地球电影免费观看 | 国产精品免费视频内射| 久热这里只有精品99| 免费人妻精品一区二区三区视频| 热re99久久国产66热| 国产乱人偷精品视频| 边亲边吃奶的免费视频| 最近中文字幕高清免费大全6| 亚洲精品中文字幕在线视频| 久久影院123| 99热国产这里只有精品6| 国产亚洲最大av| 欧美激情高清一区二区三区 | 青草久久国产| www.精华液| 亚洲一区中文字幕在线| 国产精品麻豆人妻色哟哟久久| 国产在线免费精品| 国产精品成人在线| 成年女人毛片免费观看观看9 | 丝袜脚勾引网站| 男女无遮挡免费网站观看| 欧美xxⅹ黑人| 一级片'在线观看视频| 9191精品国产免费久久| 免费看不卡的av| 一区在线观看完整版| 国产成人a∨麻豆精品| 亚洲五月色婷婷综合| 18+在线观看网站| 成人毛片a级毛片在线播放| 久久精品久久久久久噜噜老黄| 精品久久久精品久久久| 成年女人在线观看亚洲视频| 最新中文字幕久久久久| 97精品久久久久久久久久精品| 久久鲁丝午夜福利片| 亚洲av.av天堂| 亚洲国产色片| 国产欧美亚洲国产| 久久久久国产一级毛片高清牌| 麻豆乱淫一区二区| 国产免费现黄频在线看| 亚洲av电影在线观看一区二区三区| 九九爱精品视频在线观看| 国产成人精品无人区| 精品第一国产精品| 欧美av亚洲av综合av国产av | 国产片内射在线| 国产乱来视频区| 亚洲在久久综合| 成人国产av品久久久| 成年av动漫网址| 狠狠婷婷综合久久久久久88av| 国产精品三级大全| 亚洲国产精品国产精品| 18在线观看网站| 精品少妇内射三级| 免费看不卡的av| av福利片在线| 秋霞在线观看毛片| 欧美日韩一区二区视频在线观看视频在线| 亚洲伊人久久精品综合| 日韩中文字幕欧美一区二区 | 伦精品一区二区三区| 精品久久久久久电影网| 韩国av在线不卡| 亚洲成色77777| 亚洲av福利一区| 麻豆精品久久久久久蜜桃| 日韩电影二区| 性少妇av在线| 侵犯人妻中文字幕一二三四区| 久久久久久久久久久免费av| 精品一区在线观看国产| av线在线观看网站| 汤姆久久久久久久影院中文字幕| 在线观看国产h片| 亚洲av在线观看美女高潮| 电影成人av| 高清不卡的av网站| 午夜福利视频在线观看免费| 91aial.com中文字幕在线观看| 国语对白做爰xxxⅹ性视频网站| 精品人妻在线不人妻| 国产黄色免费在线视频| 成人影院久久| 久久久a久久爽久久v久久| 免费高清在线观看视频在线观看| 看免费av毛片| 国产av一区二区精品久久| 美女大奶头黄色视频| 中文字幕最新亚洲高清| www.自偷自拍.com| 街头女战士在线观看网站| 久久精品国产综合久久久| 免费看不卡的av| 精品一区二区免费观看| 欧美亚洲日本最大视频资源| 中文字幕另类日韩欧美亚洲嫩草| 啦啦啦视频在线资源免费观看| 日韩精品免费视频一区二区三区| 久久久久久伊人网av| 亚洲三区欧美一区| 美女高潮到喷水免费观看| 亚洲综合色网址| 一级黄片播放器| 黄色配什么色好看| 免费av中文字幕在线| 久久久久久人妻| 亚洲av中文av极速乱| 亚洲国产欧美网| 考比视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 丰满饥渴人妻一区二区三| 成年美女黄网站色视频大全免费| 亚洲婷婷狠狠爱综合网| 久久鲁丝午夜福利片| 色哟哟·www| 久久精品国产鲁丝片午夜精品| 久久99精品国语久久久| 午夜激情av网站| 久久国产精品大桥未久av| 国产人伦9x9x在线观看 | 精品一区二区免费观看| 国产日韩欧美视频二区| 国产女主播在线喷水免费视频网站| 亚洲精品久久午夜乱码| 亚洲视频免费观看视频| 一级片'在线观看视频| 亚洲精品国产av蜜桃| 狠狠婷婷综合久久久久久88av| 久久影院123| 免费少妇av软件| 美女主播在线视频| 青春草国产在线视频| 黄频高清免费视频| videossex国产| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品国产超薄肉色丝袜足j| 岛国毛片在线播放| 亚洲国产精品一区三区| 五月开心婷婷网| 亚洲欧美成人综合另类久久久| 超碰成人久久| 青春草视频在线免费观看| 欧美精品一区二区大全| 国产亚洲最大av| 在现免费观看毛片| 久久精品aⅴ一区二区三区四区 | 欧美另类一区| 国产精品一二三区在线看| 精品人妻熟女毛片av久久网站| 99热网站在线观看| 国产片特级美女逼逼视频| 熟女av电影| 一区在线观看完整版| 亚洲国产最新在线播放| 日本欧美视频一区| 男人操女人黄网站| 性色avwww在线观看| 久久狼人影院| 免费人妻精品一区二区三区视频| 日韩成人av中文字幕在线观看| 国产深夜福利视频在线观看| 免费大片黄手机在线观看| 少妇的丰满在线观看| 国产日韩欧美视频二区| 国产在线免费精品| 欧美bdsm另类| 亚洲国产最新在线播放| 久久久久久久亚洲中文字幕| 美女高潮到喷水免费观看| 天天躁夜夜躁狠狠久久av| 美国免费a级毛片| 国产在线视频一区二区| 色视频在线一区二区三区| 久久毛片免费看一区二区三区| 日韩中文字幕视频在线看片| 免费黄频网站在线观看国产| 日韩精品有码人妻一区| 建设人人有责人人尽责人人享有的| 天天躁日日躁夜夜躁夜夜| 狠狠婷婷综合久久久久久88av| 日本午夜av视频| 国产成人av激情在线播放| 晚上一个人看的免费电影| 国产高清不卡午夜福利| 午夜福利网站1000一区二区三区| 久久这里有精品视频免费| 狠狠婷婷综合久久久久久88av| 亚洲av欧美aⅴ国产| 可以免费在线观看a视频的电影网站 | 中国三级夫妇交换| 少妇人妻精品综合一区二区| 国产一区二区三区综合在线观看| 欧美日韩一级在线毛片| 色视频在线一区二区三区| 亚洲伊人色综图| 成年美女黄网站色视频大全免费| 久久国产亚洲av麻豆专区| 在线观看www视频免费| 成年美女黄网站色视频大全免费| 9色porny在线观看| 精品亚洲成国产av| 日产精品乱码卡一卡2卡三| 欧美 亚洲 国产 日韩一| 亚洲国产精品999| av网站在线播放免费| 女的被弄到高潮叫床怎么办| 最近最新中文字幕大全免费视频 | 天堂中文最新版在线下载| 精品一区在线观看国产| 精品亚洲成国产av| 国产精品无大码| 2021少妇久久久久久久久久久| 午夜影院在线不卡| 国产精品蜜桃在线观看| 制服丝袜香蕉在线| 最近中文字幕高清免费大全6| 亚洲国产看品久久| 亚洲国产av新网站| 国产精品免费视频内射| 亚洲中文av在线| 亚洲内射少妇av| 亚洲成人一二三区av| 在线天堂最新版资源| 成人影院久久| 男女无遮挡免费网站观看| 国产国语露脸激情在线看| 日韩欧美精品免费久久| 国产精品不卡视频一区二区| 一区二区av电影网| 一本大道久久a久久精品| 黄片小视频在线播放| 精品国产一区二区久久| 午夜激情av网站| 人妻一区二区av| 亚洲成国产人片在线观看| 建设人人有责人人尽责人人享有的| 免费女性裸体啪啪无遮挡网站| 校园人妻丝袜中文字幕| 日韩电影二区| 七月丁香在线播放| 久久精品久久久久久久性| 永久网站在线| 国产精品久久久久久av不卡| 另类亚洲欧美激情| 七月丁香在线播放| 欧美成人精品欧美一级黄| 日韩人妻精品一区2区三区| 黄色毛片三级朝国网站| 蜜桃在线观看..| 一本色道久久久久久精品综合| 亚洲国产欧美日韩在线播放| 成人毛片a级毛片在线播放| 日韩欧美精品免费久久| a级片在线免费高清观看视频| 国产成人91sexporn| 一级a爱视频在线免费观看| 人人妻人人澡人人爽人人夜夜| 97在线视频观看| 男人舔女人的私密视频| 天天躁夜夜躁狠狠久久av| 日韩欧美精品免费久久| 国产成人精品一,二区| 国产极品天堂在线| 亚洲成人手机| 亚洲国产精品999| 午夜激情久久久久久久| 精品99又大又爽又粗少妇毛片| 日产精品乱码卡一卡2卡三| h视频一区二区三区| 久久精品久久久久久噜噜老黄| 亚洲欧美日韩另类电影网站| 中文字幕另类日韩欧美亚洲嫩草| 日韩成人av中文字幕在线观看| 久久久精品免费免费高清| 26uuu在线亚洲综合色| 免费黄色在线免费观看| 日本-黄色视频高清免费观看| 黄色毛片三级朝国网站| 国产不卡av网站在线观看| 久久久久国产一级毛片高清牌| 亚洲美女搞黄在线观看| 青草久久国产| 一级黄片播放器| 婷婷色麻豆天堂久久| 亚洲精品成人av观看孕妇| 男女边摸边吃奶| 久久久久网色| 亚洲欧美一区二区三区黑人 | 热99久久久久精品小说推荐| 在线观看三级黄色| 精品人妻一区二区三区麻豆| 亚洲美女黄色视频免费看| 狂野欧美激情性bbbbbb| 国产免费现黄频在线看| 天美传媒精品一区二区| 国产精品香港三级国产av潘金莲 | 亚洲图色成人| 日韩av不卡免费在线播放| 国产1区2区3区精品| 女人高潮潮喷娇喘18禁视频| 精品福利永久在线观看| 国产精品欧美亚洲77777| 天堂俺去俺来也www色官网| 久久精品国产亚洲av高清一级| 色婷婷av一区二区三区视频| 免费黄网站久久成人精品| 亚洲伊人久久精品综合| 精品一品国产午夜福利视频| 观看美女的网站| 女性生殖器流出的白浆| 在现免费观看毛片| 在线观看免费日韩欧美大片| 天天躁夜夜躁狠狠躁躁| av片东京热男人的天堂| av线在线观看网站| 国产国语露脸激情在线看| 精品午夜福利在线看| 建设人人有责人人尽责人人享有的| 欧美xxⅹ黑人| av国产久精品久网站免费入址| 精品人妻熟女毛片av久久网站| 欧美日韩亚洲国产一区二区在线观看 | 18禁动态无遮挡网站| 国产精品无大码| 久久精品夜色国产| 国产精品 国内视频| 国产精品熟女久久久久浪| 狠狠婷婷综合久久久久久88av| 丰满少妇做爰视频| 伦理电影大哥的女人| 亚洲成人手机| 亚洲人成77777在线视频| 亚洲成人手机| 国产精品av久久久久免费| 9191精品国产免费久久| 日韩熟女老妇一区二区性免费视频| av在线播放精品| 美女高潮到喷水免费观看| 少妇猛男粗大的猛烈进出视频| 女性生殖器流出的白浆| 在线观看免费高清a一片| 国产精品.久久久| 嫩草影院入口| 欧美日韩综合久久久久久| 日韩免费高清中文字幕av| 久久人妻熟女aⅴ| 亚洲精品日本国产第一区| 黄频高清免费视频| 在现免费观看毛片| 国产女主播在线喷水免费视频网站| 亚洲国产色片| 日韩av在线免费看完整版不卡| 久久久久国产精品人妻一区二区| 亚洲精品自拍成人| 麻豆乱淫一区二区| 两性夫妻黄色片| 中文字幕亚洲精品专区| 精品久久久久久电影网| 高清在线视频一区二区三区| 日韩不卡一区二区三区视频在线| 99热全是精品| 中文欧美无线码| 成人二区视频| 国产极品粉嫩免费观看在线| 丝瓜视频免费看黄片| 国产成人91sexporn| 国产精品麻豆人妻色哟哟久久| xxx大片免费视频| 男人添女人高潮全过程视频| 午夜激情久久久久久久| 考比视频在线观看| 黑人欧美特级aaaaaa片| 不卡视频在线观看欧美| 一二三四中文在线观看免费高清| 久久精品人人爽人人爽视色| 99久久综合免费| 美女脱内裤让男人舔精品视频| 我要看黄色一级片免费的| 精品福利永久在线观看| 韩国av在线不卡| 欧美日韩视频精品一区| 成年av动漫网址| 色婷婷av一区二区三区视频| 日本欧美视频一区| 一级毛片电影观看| 亚洲,欧美,日韩| 卡戴珊不雅视频在线播放| 最近中文字幕2019免费版| 在现免费观看毛片| 日韩av不卡免费在线播放| 在线免费观看不下载黄p国产| 美女大奶头黄色视频| 人妻系列 视频| 国产一区二区三区av在线| 熟妇人妻不卡中文字幕| 国产精品亚洲av一区麻豆 | 亚洲,欧美精品.| 久久久国产一区二区| 国产xxxxx性猛交| 男女边吃奶边做爰视频| 日韩欧美一区视频在线观看| 久久ye,这里只有精品| 久久av网站| 久久韩国三级中文字幕| 免费观看av网站的网址| 国产精品免费视频内射| 美女主播在线视频| 久久精品国产a三级三级三级| 日韩三级伦理在线观看| 久久久a久久爽久久v久久| 日韩三级伦理在线观看| 久久精品熟女亚洲av麻豆精品| 丰满乱子伦码专区| 亚洲精华国产精华液的使用体验| 少妇的丰满在线观看| 国产免费又黄又爽又色| 亚洲综合色网址| 日韩精品免费视频一区二区三区| 男女边吃奶边做爰视频| 亚洲精品一二三| 精品少妇久久久久久888优播| 女性生殖器流出的白浆| 亚洲综合精品二区| 精品福利永久在线观看| 亚洲精品成人av观看孕妇| 91aial.com中文字幕在线观看| 国产爽快片一区二区三区| 国产麻豆69| 国产色婷婷99| 成人影院久久| 国产一区二区激情短视频| 多毛熟女@视频| 国产免费男女视频| 满18在线观看网站| 国产精品亚洲一级av第二区| a在线观看视频网站| 亚洲三区欧美一区| 少妇 在线观看| 久久精品成人免费网站| 色哟哟哟哟哟哟| bbb黄色大片| 一级毛片女人18水好多| 亚洲成人免费av在线播放| 中出人妻视频一区二区| 在线观看一区二区三区激情| 免费av中文字幕在线| 亚洲激情在线av| av天堂久久9| 国产一区二区三区综合在线观看| 国产亚洲精品综合一区在线观看 | 色精品久久人妻99蜜桃| 亚洲成人久久性| 亚洲第一欧美日韩一区二区三区| 91麻豆精品激情在线观看国产 | 日韩视频一区二区在线观看| 曰老女人黄片| 麻豆国产av国片精品| 国产成人系列免费观看| 最新美女视频免费是黄的| 露出奶头的视频| 亚洲精品一卡2卡三卡4卡5卡| 欧美人与性动交α欧美精品济南到| 亚洲成人精品中文字幕电影 | 成人国产一区最新在线观看| 亚洲avbb在线观看| www.999成人在线观看| 国产伦一二天堂av在线观看| 久久精品成人免费网站| 黑人巨大精品欧美一区二区蜜桃| 亚洲avbb在线观看| 老汉色av国产亚洲站长工具| 免费在线观看视频国产中文字幕亚洲| 日韩大码丰满熟妇| 最好的美女福利视频网| 成人18禁高潮啪啪吃奶动态图| 国产精品av久久久久免费|