• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of temperature on thermal relaxation of exchange bias field in CoFe/Cu/CoFe/IrMn spin valve?

    2021-10-28 07:15:40XianJinQi祁先進(jìn)NiNaYang楊妮娜XiaoXuDuan段孝旭andXueZhuLi李雪竹
    Chinese Physics B 2021年10期
    關(guān)鍵詞:妮娜

    Xian-Jin Qi(祁先進(jìn)) Ni-Na Yang(楊妮娜) Xiao-Xu Duan(段孝旭) and Xue-Zhu Li(李雪竹)

    1Engineering Research Center of Metallurgical Energy Conservation and Emission Reduction,Ministry of Education,Kunming University of Science and Technology,Kunming 650093,China

    2State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming University of Science and Technology,Kunming 650093,China

    Keywords: exchange bias field,spin valves,temperature,thermal relaxation

    1. Introduction

    In 1986, Grunberget al.[1]found that in the Fe/Cr/Fe sandwiched structure, exchange coupling between Fe layers occurs through the Cr layer, and when the Cr layer thickness is appropriate value,antiferromagnetic coupling is present between the two Fe layers. In 1988, Baibichet al.[2]reported that at a low temperature (4.2 K) with an outfield of 20 kOe(1 Oe=79.5775 A·m?1), the resistance of Fe (3.0 nm)/Cr(0.9 nm) multilayered film prepared by molecular beam epitaxy is increased by 50%, far exceeding the anisotropic magnetoresistance(about 0.2%)of the pure Fe layer.This is called the giant magnetoresistance(GMR)effect,which has attracted attention because of its wide application prospects in highdensity readout heads and magnetic storage devices (such as hard disks).[3–6]Therefore,the recording density of computer hard disks and the data reading speed of magnetic heads are greatly increased, which allows the hard disk capacity to be increased while their sizes are reduced. Because the exchange bias principle in ferromagnetic/antiferromagnetic systems has important applications in GMR heads, non-volatile memory,and magnetic transducers for high-density magnetic recording,materials with exchange coupling effects,such as spin valves and tunnel junctions,have been extensively investigated.[7–11]

    The magnetic electronic devices,when being used, must be able to withstand high temperatures or magnetic fields,which reduces the size of the exchange bias field of the devices and also restricts their performances. The thermal stability of an exchange bias greatly influences the reliability of magnetic electronic device. For example, after being treated at 250°C,the FeMn nailing spin valve multilayered film loses the nailing effect of its antiferromagnetic layer,and the GMR may even disappear.[12]In the IrMn nailing spin valve multilayered film,after about 100-°C temperature treatment,it was found that the nailing effect of IrMn antiferromagnetic layer is weakened, and exchange bias field is reduced.[13]Therefore,a study of the thermal–magnetic stability of the exchange bias will help design and use magnetic electronic devices. In addition,the study of thermal relaxation of an exchange bias field will reveal the nature of the exchange bias.

    This paper focuses mainly on the influence of temperature on the structure and magnetic properties of spin valve.The relationship between temperature and exchange bias field is analyzed through modeling.At the same time,the characteristics of thermal relaxation of spin valve multilayered film are studied,and the thermal relaxation phenomenon is reasonably analyzed.

    2. Experimental process

    CoFe/Cu/CoFe/IrMn spin valve was prepared on a silicon substrate by high-vacuum magnetron sputtering (Japan vacuum MPS-4000-HC2). The structure and thickness of the spin valve was Ta(5 nm)/Co75Fe25(5 nm)/Ir20Mn80(12 nm)/Ta(8 nm). To prevent the sample from being oxidized in the air,an 8-nm-thick Ta layer was deposited on the IrMn layer as a protective layer. During sputtering,the background vacuum degree was higher than 5×10?7Pa.High-purity argon gas was used for sputtering,the air pressure was 7×10?2Pa,the sputtering power was 120 W, and the growth rate was controlled at 0.03 nm/s–0.12 nm/s. During deposition,an external magnetic field of 100 Oe was applied parallel to the film surface to induce an easy magnetization direction.

    An HH10 VSM was used to measure hysteresis loops at room temperature. The magnetic field was applied parallel to the film surface,and the positive field direction was parallel to the external field direction added during deposition. The magnetic field scanning range was from?800 Oe to 800 Oe,and the scanning speed was 3 Oe/s. The texture of the film was studied with a D8-Advance XRD,and the interface roughness was studied by AFM.

    During the thermal relaxation of spin valve,the magnetic field was swept from the forward saturation field to the reverse saturation field,and then remained under the reverse magnetic field with an absolute value greater than 200 Oe–300 Oe.After holding for a certain time,the magnetic field was swept from the reverse saturation field to the forward saturation field.During magnetic field conversion, the back branch curve of the hysteresis loop can be measured. When there is no hold time in the forward saturation field, the front hysteresis loop can be measured by sweeping directly from the forward field to the reverse field. A second residence was then performed at a magnetic field in a range of 200 Oe–300 Oe in the reverse saturation field. The effect of temperature on the thermomagnetic properties of the exchange bias field of the spin valves was studied by the time accumulation method.

    3. Results and discussion

    3.1. Effect of temperature on structure of spin valves

    Figure 1 shows the x-ray diffraction (XRD) pattern of the CoFe/Cu/CoFe/IrMn spin valve film at room temperature,150°C,and 275°C and IrMn has a good(111)direction texture. When the temperature increases to 150°C,the peak intensity of IrMn(111)decreases(curveband curvecin Fig.1).When the temperature reaches 275°C, the diffraction peak shifts towards a higher 2θvalue, possibly because of chemical diffusion and strain-relief.[14,15]

    Fig.1. XRD patterns of spin valves at room temperature(curve a),150 °C(curve b),and 275 °C(curve c).

    To further investigate the effect of temperature on the structure of the spin valve multilayered film, the surface/interface morphologies are studied by using AFM. It is generally believed that multilayered film deposited by magnetron sputtering is continuous and coherent at a certain thickness when it is deposited continuously at the same pressure.In this way,when the interface is not far away from the surface,the surface morphology is approximately the same as the interface morphology.[16]The ferromagnetic/antiferromagnetic interface in the bilayer film studied in this paper is 20 nm away from the surface. Thus, it is likely that the surface roughness of the sample can indirectly reflect the interfacial roughness between IrMn and CoFe layers.

    The AFM images are shown in Fig.2,where figures 2(a),2(b), and 2(c) show the three-dimensional topograph of the sample at room temperature, 150°C, and 275°C, respectively. The correspondingRrmsroughness of the sample is 0.542 nm, 0.791 nm, and 1.078 nm, respectively. The surface/interfaceRrmsincreases with the temperature rising after the spin valve has been heated.This is consistent with the conclusion obtained by Chenet al.,[17]in which the roughness of NiFe/FeMn bilayer increases with the temperature rising.

    Fig.2. AFM images of spin valve at(a)room temperature,(b)150 °C,and(c)275 °C.

    3.2. Effect of temperature on magnetic properties of multilayer spin valve film

    Figure 3 shows that the shape of the hysteresis loop of the CoFe/Cu/CoFe/IrMn spin valve changes greatly with the increase of temperature.Hex=(Hc1+Hc2)/2(Hc1is the value of the forward branch of the hysteresis loop deviating from the zero field,andHc2is the value of the backward branch of the hysteresis loop deviating from the zero field.) shows that the exchange bias field decreases as the temperature increases(specific data are given in Table 1). The coercive force of the pinned layer and the free layer can be obtained from the formula,Hc=(Hc1?Hc2)/2. The coercivity of the nailed layer decreases at higher temperatures, while the coercivity of the free layer increases as the temperature increases(specific data are listed in Table 1).

    Fig.3. Hysteresis loops of samples at Tm =room temperature(RT),150 °C,and 275 °C.

    Table 1. Values of spin valve exchange bias field, pinning layer, and free layer coercivity at three different temperatures.

    According to the XRD pattern(Fig.1), IrMn has a good(111) directional texture after it has been heated at different temperatures,showing that the multilayered spin valve experiences exchange bias after having been heated. However,upon increasing the heating temperature,the IrMn(111)directional texture is weakened,which reduces the pinning effect of IrMn and the spin valve exchange bias field as well.

    Roughness is also an important factor that affects exchange bias.[17–19]Generally, the exchange bias field decreases upon increasing the roughness;[20,21]therefore,the increased surface/interface roughness after heating at 150°C and 275°C is another major reason for the reduction in the multilayer exchange bias field of the spin valves.

    The relationship between the temperatureTmand exchange bias fieldHexfor the spin valve is shown in Fig. 4,whereHexis normalized.Hexdecreases monotonically with temperature increasing, which has already been found in many thin films of exchange coupled systems, such as CoFe/IrMn exchange-coupled bilayer[22]and(CoFe, Co, and NiFe)/Cu/CoFe/IrMn spin valves.[23]The cutoff temperature of thin film can be determined by the linear extrapolation of the exchange bias and temperature plot,and this method shows that the cutoff temperature of the CoFe/Cu/CoFe/IrMn spin valve is about 340°C.

    Fig.4. Measured and calculated variation of exchange bias field(Hex)with temperature of pinning layer in a spin valve.

    In general, when the temperature is room temperature(Tm),the relation of the exchange bias field with the exchange coupling constant and the saturated magnetic moment can be written as[24]

    whereHex(Tm) is the exchange bias field atTm,J(Tm) is the interface exchange coupling constant atTm,Msp(Tm)is the saturation magnetic moment of the pinned ferromagnetic layer atTm, andtFis the thickness of the pinned ferromagnetic layer of the spin valve.

    The relationship betweenJandTmcan be written as[25,26]

    whereJ(0) is the exchange bias constant between ferromagnetism and antiferromagnetism at 0 K,andTNis the Nell temperature.

    According to Eqs. (1) and (2), the equation representing the effect of the size ofHexbecomes

    According to formula(3),the relation betweenHexandTmis fitted as shown by the dotted line in Fig. 4, which indicates that there is a slight deviation between the fitted data and the experimental data. This is mainly because changes in the microstructure,such as grain size and texture,are not considered in the fitting formula. However, in the actual processes, increasing the temperature will affect the microstructure(Fig.1).

    Figure 5 shows the coercivity of the free layerHcfversustemperature and the saturation magnetic momentMspversustemperature of the spin valve multilayered film. The change in the coercivity withTmof the free layer in spin valve is nonmonotonic, and the maximum value appears atTm=225°C.This phenomenon has also been observed in exchange-coupled NiFe[27]and CoFe films.[28,29]

    Fig. 5. Coercivity of the free layer (Hcf) and saturation magnetic moment(Ms)versus temperature of the spin valve multilayered film.

    When the temperature is lower than 225°C,bothTmandHcfincrease, mainly because of the phase transition of the CoFe free layer. In general,when CoFe is deposited on the Cu layer,an fcc structure forms easily.[30]In this study,the CoFe free layer deposited on the Ta seed layer may form a partial bcc structure. As the temperature increases, some CoFe with a bcc structure changes into an fcc structure, which increases the fcc phase in the CoFe free layer. Because fcc phase is harder than bcc phase,Hcfincreases withTmincreasing when the temperature is lower than 225°C.

    When the temperature is higher than 225°C,Tmincreases andHcfdecreases. This is mainly due to the decline in the texture direction of CoFe(111) in the free layer at elevatedTm(Fig. 1), resulting in a less-anisotropic material.[31]In addition, the transition from a bcc structure to an fcc structure of the CoFe free layer may terminate at about 225°C. For these two reasons,Hcfdecreases asTmincrease at temperatures greater than 225°C.

    Fig.6. Normalized coercivity Hcp varying with temperature in nailed layer.

    Figure 6 shows the variation in the coercivity of the nailing layerHcpwith temperatureTm. The normalized coercivityHcpof the nailed layer decreases monotonically with the temperature increasing,which is consistent with the Lam Yet al.’s result,[32]who studied the influence of temperature on the coercivity of NiMn/CoFe/NiMn film.

    3.3. Effect of temperature on thermal relaxation of multilayer spin valve film

    The effect of temperature on the thermal relaxation of the spin valve is studied by placing the samples in a reverse saturated field for different times. Figure 7 shows the variations of multilayered film exchange bias field with residence time in the reverse saturation field of the spin valves at different temperatures. As can be seen from Fig.7, when the temperature is lower than 200°C the exchange bias field decreases as the residence time increases At the beginning of the negative saturation field,the exchange bias field decreases first faster,and then slowly gradually. When the temperature is higher than 200°C,the exchange bias field remains unchanged as the residence time increases.

    Fig. 7. Curves of spin valve multilayered film exchange bias field (Hex)versus residence time in reverse saturation field(tsat)at(curve a)room temperature, (curve b) 50 °C, (curve c) 100 °C, (curve d) 150 °C, (curve e)200 °C,(curve f)250 °C,(curve g)275 °C,and(curve g)300 °C.

    When the temperature is lower than 200°C,the exchange bias field of the spin valves decreases with the residence time increasing because the magnetic moments in some regions of the antiferromagnetic layer are reversed due to the thermal activation across the energy barrier.[33–35]When the applied magnetic field is scanned from the forward saturation to the reverse saturation,the magnetic moment direction of the ferromagnetic layer is parallel to the direction of the external magnetic field, for the Zeeman energy produced by the external magnetic field is greater than the exchange coupling energy between ferromagnetism and antiferromagnetism. However,the anisotropy of the antiferromagnetic layer is greater than that of the Zeeman energy generated by the external magnetic field. Therefore, the magnetic moment of the antiferromagnetic layer does not change with the direction of the external magnetic field but remains in its original direction.At this time, the system is in a metastable state. When the CoFe/Cu/CoFe/IrMn spin valve multilayered film is still in the reverse saturation field,the magnetic moment of antiferromagnetism begins to reverse due to exchange coupling between strong ferromagnetism and strong antiferromagnetism. The anisotropy energy of the antiferromagnetic layer decreases with the reversal of the magnetic moment,which weakens the pinning effect of the antiferromagnetic layer.With the increase of the residence time of CoFe/Cu/CoFe/IrMn in the reverse saturation field,more magnetic moments in the antiferromagnetic layer are reversed by thermal activation across the energy barrier distribution. Finally,the multilayer film exchange bias field of the spin valve decreases with the increase of the residence time in the reverse saturation field.

    At each temperature below 200°C, at the beginning of the negative saturation field,Hexdecreases first faster and then slowly gradually because the smaller antiferromagnetic (AF)domain barrier is lower. The smaller AF domains are reversed more easily than the larger ones.[36]The number of small domains with low energy barriers in the antiferromagnetic layer decreases with residence time increasing at each temperature.In addition, magnetic domain nucleation and domain growth occur during inversion. Under a negative saturation field, vacancies and crystal defects are generated in the thin film,and the magnetic domain nucleation process is more likely to occur near crystal defects.[37]With the film’s residence time in the negative saturation field increasing, the number of defects available for nucleation gradually decreases in comparison with the number of initial nucleation defects. Thus, at the beginning of the residence in a negative saturation field,at each temperature,Hexbegan to decrease first faster and then slowly gradually.

    When the temperature is higher than 200°C, the exchange bias field does not change with the residence time increasing, which is mainly because the high temperature increases the energy barrier of magnetic moment inversion in some regions of the antiferromagnetic layer and narrows the overall energy barrier distribution. During residence in a reverse saturation field, the exchange coupling energy between the ferromagnetic layer and the antiferromagnetic layer cannot overcome the energy barrier of the antiferromagnetic moment reversal, because the energy barrier of the moment reversal of each part of the antiferromagnetic layer is relatively large. That is to say, the magnetic moment of the antiferromagnetic layer does not flip when the residence time in the reverse saturation field increases. Therefore, when the temperature is greater than 200°C,the exchange bias field of the spin valve does not change at a longer residence time.

    It can be seen from Fig.7 that temperature speeds up the thermal relaxation ofHexin the exchange bias field, that is,the increase of temperature quickens the decrease ofHex. The distribution of the energy barrier determines AF domain inversion, and the mechanism of AF domain inversion is different at different temperatures.[38]When the temperature is relatively low, the magnetic domain of AF layer is reversed uniformly. The energy barrier is fairly wide. To achieve a reversal,all domains must simultaneously cross the highest energy barrier. This reversal pattern must therefore be powerful enough.As the temperature increases,the reversal mechanism changes from uniform inversion to the inversion in the helical domain form. The energy barrier distribution of the inversion in the spiral domain form is relatively narrow,so it is easier to realize the inversion. As the temperature increases, the number of reversals increases due to the helical domains formed by magnetic domains.[36,38]So this speeds up the decrease ofHex. Therefore,the temperature increase can quicken the thermal relaxation of the spin valve exchange bias fieldHex.

    4. Conclusions

    The effect of temperature on the thermal relaxation of CoFe/Cu/CoFe/IrMn spin valve in an exchange bias field is studied. The results show that the temperature affects the structure and magnetic properties of CoFe/Cu/CoFe/IrMn. As the temperature increases,the texture of IrMn(111)decreases,the surface roughness and interface roughness increase, and the exchange bias field decreases. When the temperature is lower than 200°C,the exchange bias field decreases with residence time increasing, and when the temperature is greater than 200°C, the exchange bias field is basically unchanged though the residence time increases.

    猜你喜歡
    妮娜
    當(dāng)考拉離開桉葉
    女報(bào)(2020年6期)2020-08-17 07:15:49
    電影《黑天鵝》物質(zhì)意象的心理分析
    斑鬣狗的小心愿
    淘氣鬼妮娜
    印度裔女孩首獲美國小姐桂冠 跳寶萊塢舞
    電影畫刊(2013年9期)2013-11-19 03:58:06
    完美的代價(jià)——電影《黑天鵝》的一種解讀
    對(duì)自我的超越:影片《黑天鵝》解讀
    戲劇之家(2012年7期)2012-08-15 00:42:11
    今天你做夢(mèng)了嗎?
    《黑天鵝》:自戀與完美的達(dá)成
    戲劇之家(2011年9期)2011-07-11 03:36:54
    保姆妮娜
    短小說(2009年3期)2009-06-04 09:37:03
    亚洲欧美日韩高清在线视频 | 色播在线永久视频| 日韩欧美免费精品| av线在线观看网站| 美国免费a级毛片| 91国产中文字幕| 亚洲成人免费av在线播放| 人人澡人人妻人| 免费人妻精品一区二区三区视频| 日韩欧美一区视频在线观看| 日本黄色视频三级网站网址 | 久久性视频一级片| 男女边摸边吃奶| 国产男女超爽视频在线观看| av视频免费观看在线观看| 国产视频一区二区在线看| 久久99热这里只频精品6学生| 最近最新免费中文字幕在线| 成人免费观看视频高清| 国产不卡一卡二| 又黄又粗又硬又大视频| 色综合欧美亚洲国产小说| 欧美日韩成人在线一区二区| 国产欧美日韩精品亚洲av| 黄色 视频免费看| 久久久久久久久免费视频了| 国产亚洲午夜精品一区二区久久| √禁漫天堂资源中文www| 亚洲精品国产一区二区精华液| 可以免费在线观看a视频的电影网站| 桃花免费在线播放| 成人国产av品久久久| 亚洲精品av麻豆狂野| 免费一级毛片在线播放高清视频 | 午夜久久久在线观看| 日本vs欧美在线观看视频| 在线观看免费日韩欧美大片| 欧美亚洲 丝袜 人妻 在线| 一级片免费观看大全| 久久精品91无色码中文字幕| 久久精品91无色码中文字幕| 欧美乱妇无乱码| 美女主播在线视频| 老司机午夜十八禁免费视频| 国产极品粉嫩免费观看在线| 国产极品粉嫩免费观看在线| 99热网站在线观看| 免费久久久久久久精品成人欧美视频| 在线播放国产精品三级| 正在播放国产对白刺激| 国产片内射在线| 99香蕉大伊视频| 99久久精品国产亚洲精品| aaaaa片日本免费| av片东京热男人的天堂| 首页视频小说图片口味搜索| 午夜激情久久久久久久| 中文字幕最新亚洲高清| 高潮久久久久久久久久久不卡| 丰满迷人的少妇在线观看| 日日夜夜操网爽| 亚洲欧美一区二区三区久久| 色视频在线一区二区三区| svipshipincom国产片| 99久久国产精品久久久| av福利片在线| 欧美黄色淫秽网站| 黑人猛操日本美女一级片| 怎么达到女性高潮| 国产成+人综合+亚洲专区| 亚洲一区中文字幕在线| 精品国产超薄肉色丝袜足j| 大型黄色视频在线免费观看| 亚洲第一av免费看| 美女高潮喷水抽搐中文字幕| 19禁男女啪啪无遮挡网站| 天天添夜夜摸| 国产成人精品无人区| 欧美亚洲 丝袜 人妻 在线| 亚洲国产av新网站| 国产亚洲欧美精品永久| 搡老乐熟女国产| 精品国产乱子伦一区二区三区| 久久99热这里只频精品6学生| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精华国产精华精| 如日韩欧美国产精品一区二区三区| 日本一区二区免费在线视频| 777米奇影视久久| 丰满迷人的少妇在线观看| 热re99久久国产66热| 国产精品98久久久久久宅男小说| 蜜桃国产av成人99| 国产野战对白在线观看| 两个人免费观看高清视频| 国产精品九九99| 亚洲国产欧美一区二区综合| 日本av免费视频播放| 精品一区二区三区四区五区乱码| 国产精品免费大片| 日日摸夜夜添夜夜添小说| 欧美精品啪啪一区二区三区| 黑人巨大精品欧美一区二区mp4| 国产高清视频在线播放一区| 国产精品熟女久久久久浪| 国产欧美日韩一区二区三区在线| 热re99久久精品国产66热6| 午夜福利视频在线观看免费| 亚洲成人国产一区在线观看| 免费高清在线观看日韩| 高清黄色对白视频在线免费看| 国产黄频视频在线观看| av又黄又爽大尺度在线免费看| 国产高清国产精品国产三级| 我的亚洲天堂| 一本久久精品| 天堂俺去俺来也www色官网| 天天躁夜夜躁狠狠躁躁| 国产xxxxx性猛交| 亚洲,欧美精品.| 久久国产精品大桥未久av| 中亚洲国语对白在线视频| 热99re8久久精品国产| 国产精品免费大片| 国产成人av激情在线播放| 天天躁日日躁夜夜躁夜夜| 亚洲欧美精品综合一区二区三区| 精品一区二区三区av网在线观看 | 久久 成人 亚洲| 欧美性长视频在线观看| 天堂俺去俺来也www色官网| 精品亚洲成国产av| 亚洲视频免费观看视频| 国产有黄有色有爽视频| 久久天躁狠狠躁夜夜2o2o| 精品国产一区二区久久| 搡老乐熟女国产| 精品久久久精品久久久| 建设人人有责人人尽责人人享有的| 91字幕亚洲| kizo精华| 51午夜福利影视在线观看| 免费人妻精品一区二区三区视频| 亚洲第一欧美日韩一区二区三区 | 国产精品98久久久久久宅男小说| 日韩免费av在线播放| 无遮挡黄片免费观看| 人妻一区二区av| 久久人妻熟女aⅴ| 欧美日韩一级在线毛片| 正在播放国产对白刺激| www日本在线高清视频| 18禁观看日本| 国产精品国产av在线观看| 91av网站免费观看| 在线看a的网站| 视频区图区小说| 青青草视频在线视频观看| 色婷婷久久久亚洲欧美| 欧美日韩亚洲高清精品| 日韩欧美三级三区| 久久久久久久精品吃奶| 国产麻豆69| 在线播放国产精品三级| 美女国产高潮福利片在线看| 好男人电影高清在线观看| 午夜福利一区二区在线看| 久久99一区二区三区| 一进一出抽搐动态| 在线播放国产精品三级| 又黄又粗又硬又大视频| 日韩欧美国产一区二区入口| 国产精品国产av在线观看| 国产亚洲精品久久久久5区| 99香蕉大伊视频| www.熟女人妻精品国产| 亚洲午夜理论影院| 日本黄色视频三级网站网址 | 日韩欧美一区二区三区在线观看 | 国产亚洲精品第一综合不卡| 亚洲成av片中文字幕在线观看| 大型av网站在线播放| 久久久精品国产亚洲av高清涩受| 久久 成人 亚洲| 国产成人欧美| 老汉色av国产亚洲站长工具| 香蕉国产在线看| 青青草视频在线视频观看| 精品国产超薄肉色丝袜足j| 亚洲男人天堂网一区| 久久午夜亚洲精品久久| 久久人妻av系列| 在线观看www视频免费| 亚洲,欧美精品.| 亚洲色图 男人天堂 中文字幕| 国产精品一区二区免费欧美| www日本在线高清视频| 国产又爽黄色视频| 少妇被粗大的猛进出69影院| 欧美激情高清一区二区三区| 99热网站在线观看| 亚洲欧美一区二区三区久久| 国产欧美日韩一区二区三区在线| www.999成人在线观看| 中亚洲国语对白在线视频| 欧美另类亚洲清纯唯美| 又黄又粗又硬又大视频| 中文字幕制服av| 80岁老熟妇乱子伦牲交| 天堂中文最新版在线下载| 国产国语露脸激情在线看| 青青草视频在线视频观看| 国产精品99久久99久久久不卡| 免费少妇av软件| 叶爱在线成人免费视频播放| 99久久国产精品久久久| 国产在线精品亚洲第一网站| 久久国产精品影院| 日韩视频在线欧美| 国产成人精品无人区| 成人国产av品久久久| 男女午夜视频在线观看| 精品久久久久久久毛片微露脸| 免费观看a级毛片全部| 9色porny在线观看| 老司机在亚洲福利影院| 日韩视频在线欧美| 黄频高清免费视频| 一进一出抽搐动态| 久久国产亚洲av麻豆专区| 日韩免费av在线播放| 美女高潮到喷水免费观看| 久久香蕉激情| 亚洲色图综合在线观看| 久久婷婷成人综合色麻豆| 大香蕉久久网| 亚洲国产av影院在线观看| 国精品久久久久久国模美| 美女视频免费永久观看网站| 亚洲中文av在线| 操出白浆在线播放| 两个人看的免费小视频| 欧美激情久久久久久爽电影 | 久久精品亚洲精品国产色婷小说| 自线自在国产av| 亚洲熟妇熟女久久| 久久午夜亚洲精品久久| av一本久久久久| 国产精品久久久久成人av| 欧美日韩亚洲高清精品| 国产精品国产av在线观看| 高清毛片免费观看视频网站 | tube8黄色片| 香蕉丝袜av| 性少妇av在线| 一本综合久久免费| 精品人妻1区二区| 99国产综合亚洲精品| 桃花免费在线播放| 成人永久免费在线观看视频 | 色婷婷av一区二区三区视频| 亚洲国产欧美网| 免费在线观看影片大全网站| 日韩三级视频一区二区三区| 两性夫妻黄色片| 91大片在线观看| 亚洲专区国产一区二区| h视频一区二区三区| 男女下面插进去视频免费观看| 久久久国产一区二区| 在线 av 中文字幕| 丝袜喷水一区| 免费观看av网站的网址| 国产区一区二久久| 免费在线观看视频国产中文字幕亚洲| 亚洲国产毛片av蜜桃av| 久久精品国产亚洲av高清一级| 精品欧美一区二区三区在线| 国产老妇伦熟女老妇高清| 一区福利在线观看| 国产精品 国内视频| 欧美国产精品一级二级三级| 久久久久网色| 国产又色又爽无遮挡免费看| 人成视频在线观看免费观看| 欧美另类亚洲清纯唯美| 午夜激情av网站| 在线观看免费视频网站a站| 黄频高清免费视频| 精品午夜福利视频在线观看一区 | 国产精品国产av在线观看| 久久性视频一级片| 91老司机精品| 自线自在国产av| 久久人妻福利社区极品人妻图片| 少妇的丰满在线观看| 老熟妇乱子伦视频在线观看| 国产91精品成人一区二区三区 | 午夜两性在线视频| 深夜精品福利| 一进一出抽搐动态| 亚洲欧美一区二区三区久久| 日本欧美视频一区| 狠狠狠狠99中文字幕| 男女高潮啪啪啪动态图| 欧美亚洲日本最大视频资源| 精品人妻熟女毛片av久久网站| 国产欧美日韩综合在线一区二区| 50天的宝宝边吃奶边哭怎么回事| 欧美日韩黄片免| 欧美激情极品国产一区二区三区| 色婷婷av一区二区三区视频| 亚洲专区字幕在线| 久热这里只有精品99| 成年人黄色毛片网站| 亚洲欧洲精品一区二区精品久久久| 丝袜在线中文字幕| 亚洲性夜色夜夜综合| 国产激情久久老熟女| 999精品在线视频| 中文字幕人妻丝袜制服| 正在播放国产对白刺激| 大型黄色视频在线免费观看| 一夜夜www| 黑人猛操日本美女一级片| 国产精品亚洲一级av第二区| 亚洲熟妇熟女久久| 性少妇av在线| 97人妻天天添夜夜摸| 99精品欧美一区二区三区四区| 在线观看免费午夜福利视频| 亚洲国产欧美网| 国产成人系列免费观看| 男女之事视频高清在线观看| 精品久久久久久久毛片微露脸| 夜夜夜夜夜久久久久| 国产精品1区2区在线观看. | 欧美国产精品一级二级三级| 麻豆乱淫一区二区| 人妻 亚洲 视频| 男人操女人黄网站| 怎么达到女性高潮| 精品人妻1区二区| 国产亚洲精品久久久久5区| 成人18禁在线播放| 一二三四在线观看免费中文在| 欧美在线黄色| 两性夫妻黄色片| 国产aⅴ精品一区二区三区波| 成人永久免费在线观看视频 | 久久中文看片网| 亚洲av欧美aⅴ国产| 久久久久久久久免费视频了| 亚洲精品在线观看二区| 母亲3免费完整高清在线观看| 青青草视频在线视频观看| 建设人人有责人人尽责人人享有的| 精品国产一区二区三区久久久樱花| 精品久久蜜臀av无| 国产精品亚洲一级av第二区| 国产欧美日韩一区二区三| 国产成人av教育| 少妇 在线观看| 99精品欧美一区二区三区四区| 久久久久久亚洲精品国产蜜桃av| 黑人操中国人逼视频| 少妇粗大呻吟视频| 中文字幕人妻丝袜制服| 久久久久视频综合| 亚洲精品国产区一区二| 黄色视频不卡| 99riav亚洲国产免费| 狠狠精品人妻久久久久久综合| 亚洲精品中文字幕在线视频| 国产精品九九99| 法律面前人人平等表现在哪些方面| 亚洲欧美激情在线| 亚洲人成77777在线视频| 亚洲伊人久久精品综合| 午夜激情av网站| 午夜福利乱码中文字幕| 欧美日韩一级在线毛片| 国产在视频线精品| 天堂动漫精品| 视频区图区小说| 黄色视频在线播放观看不卡| 一本一本久久a久久精品综合妖精| 国产区一区二久久| 在线观看66精品国产| 大陆偷拍与自拍| 欧美日韩视频精品一区| 午夜免费鲁丝| 国产精品99久久99久久久不卡| 天天躁夜夜躁狠狠躁躁| 黄频高清免费视频| 法律面前人人平等表现在哪些方面| 国产欧美日韩一区二区三区在线| 深夜精品福利| 亚洲avbb在线观看| 精品国产超薄肉色丝袜足j| 丝袜美腿诱惑在线| 欧美一级毛片孕妇| 亚洲三区欧美一区| 五月开心婷婷网| 亚洲欧洲日产国产| 欧美日韩黄片免| 18禁美女被吸乳视频| 法律面前人人平等表现在哪些方面| 欧美日韩av久久| 亚洲av美国av| 精品国产一区二区久久| 欧美精品亚洲一区二区| 黄片小视频在线播放| 成人国产av品久久久| 一本大道久久a久久精品| 黄片小视频在线播放| 99久久国产精品久久久| 在线观看免费视频日本深夜| 宅男免费午夜| 欧美成人免费av一区二区三区 | 极品人妻少妇av视频| 一级a爱视频在线免费观看| 美女高潮喷水抽搐中文字幕| 国产单亲对白刺激| 国产日韩欧美视频二区| 极品教师在线免费播放| 国产精品久久电影中文字幕 | 精品乱码久久久久久99久播| 两人在一起打扑克的视频| 搡老熟女国产l中国老女人| 黑人操中国人逼视频| 中文欧美无线码| 精品久久久精品久久久| 国产日韩欧美在线精品| 69av精品久久久久久 | 99国产极品粉嫩在线观看| 日韩大码丰满熟妇| 午夜福利视频精品| av视频免费观看在线观看| 一区在线观看完整版| 国产免费视频播放在线视频| 91成人精品电影| 成人黄色视频免费在线看| 热re99久久国产66热| 亚洲精品一二三| 亚洲国产av新网站| 999久久久精品免费观看国产| 国产一区二区三区在线臀色熟女 | 蜜桃国产av成人99| 亚洲成人国产一区在线观看| 亚洲成国产人片在线观看| 国产亚洲一区二区精品| 亚洲欧美一区二区三区黑人| 欧美国产精品一级二级三级| 妹子高潮喷水视频| 亚洲国产欧美一区二区综合| 久久国产精品人妻蜜桃| 久久久国产欧美日韩av| 中国美女看黄片| 国产在视频线精品| 亚洲视频免费观看视频| 久久久国产一区二区| 纯流量卡能插随身wifi吗| 一区二区三区精品91| 国产亚洲精品一区二区www | 日韩视频在线欧美| 成年人黄色毛片网站| 岛国在线观看网站| av有码第一页| 亚洲精品国产色婷婷电影| 在线观看人妻少妇| 国产av又大| 超碰成人久久| 午夜福利在线免费观看网站| 少妇的丰满在线观看| 日本五十路高清| 亚洲国产精品一区二区三区在线| 脱女人内裤的视频| 日韩中文字幕欧美一区二区| 亚洲精品国产精品久久久不卡| 少妇的丰满在线观看| 欧美 日韩 精品 国产| 母亲3免费完整高清在线观看| 欧美 亚洲 国产 日韩一| 国产欧美日韩精品亚洲av| 中文字幕最新亚洲高清| 日本欧美视频一区| 日本wwww免费看| 美女国产高潮福利片在线看| 亚洲人成77777在线视频| 丰满人妻熟妇乱又伦精品不卡| 国产成人欧美| 丝袜人妻中文字幕| 9191精品国产免费久久| 最近最新中文字幕大全免费视频| 一区二区三区国产精品乱码| 亚洲精品久久成人aⅴ小说| 日韩一卡2卡3卡4卡2021年| 久久久精品区二区三区| 亚洲精品自拍成人| 精品久久久精品久久久| 天堂动漫精品| 午夜激情久久久久久久| 免费在线观看影片大全网站| 91国产中文字幕| 国产成人精品久久二区二区免费| 男女床上黄色一级片免费看| 十分钟在线观看高清视频www| 久久人人97超碰香蕉20202| 18禁美女被吸乳视频| 久久热在线av| 亚洲国产看品久久| 国产熟女午夜一区二区三区| 精品福利观看| 成人亚洲精品一区在线观看| 精品国内亚洲2022精品成人 | 亚洲中文字幕日韩| 久久精品成人免费网站| 老熟妇乱子伦视频在线观看| 欧美激情高清一区二区三区| 久久国产亚洲av麻豆专区| 久久久精品免费免费高清| 日本撒尿小便嘘嘘汇集6| 老熟女久久久| av福利片在线| 变态另类成人亚洲欧美熟女 | 99re6热这里在线精品视频| 欧美另类亚洲清纯唯美| 精品一区二区三卡| 丝袜人妻中文字幕| 一二三四在线观看免费中文在| 亚洲中文av在线| 亚洲 欧美一区二区三区| av在线播放免费不卡| 老司机午夜福利在线观看视频 | 国产主播在线观看一区二区| 亚洲第一欧美日韩一区二区三区 | 久久精品熟女亚洲av麻豆精品| 精品熟女少妇八av免费久了| 黄色 视频免费看| 又大又爽又粗| 一级黄色大片毛片| 肉色欧美久久久久久久蜜桃| 又黄又粗又硬又大视频| 国产一区二区激情短视频| 一级毛片精品| 久久精品国产亚洲av香蕉五月 | 国产三级黄色录像| 日日摸夜夜添夜夜添小说| 欧美变态另类bdsm刘玥| 一级毛片电影观看| 日韩 欧美 亚洲 中文字幕| 老司机午夜十八禁免费视频| 999精品在线视频| 日本av免费视频播放| 亚洲五月色婷婷综合| 视频在线观看一区二区三区| 老司机亚洲免费影院| 69av精品久久久久久 | 免费在线观看完整版高清| 色综合欧美亚洲国产小说| 亚洲国产毛片av蜜桃av| 操出白浆在线播放| 99久久人妻综合| 国产熟女午夜一区二区三区| 天天躁夜夜躁狠狠躁躁| 一区在线观看完整版| 欧美日韩亚洲高清精品| 成人手机av| 老熟妇仑乱视频hdxx| 中文字幕人妻熟女乱码| 热re99久久精品国产66热6| 欧美乱妇无乱码| 在线观看免费视频日本深夜| 十八禁人妻一区二区| 在线观看66精品国产| 18在线观看网站| 9热在线视频观看99| 1024视频免费在线观看| 手机成人av网站| 久久免费观看电影| 9热在线视频观看99| 一级片免费观看大全| 成年版毛片免费区| 国产精品偷伦视频观看了| 亚洲五月色婷婷综合| 国产黄频视频在线观看| 又紧又爽又黄一区二区| 亚洲一区二区三区欧美精品| 777久久人妻少妇嫩草av网站| 免费看十八禁软件| 亚洲中文日韩欧美视频| 肉色欧美久久久久久久蜜桃| 日本av手机在线免费观看| 日韩欧美一区视频在线观看| 欧美大码av| 国产伦理片在线播放av一区| 一级毛片女人18水好多| 一本一本久久a久久精品综合妖精| 黄色怎么调成土黄色| 人人妻人人爽人人添夜夜欢视频| 一级毛片女人18水好多| 国产精品麻豆人妻色哟哟久久| 国产成人av教育| av免费在线观看网站| 精品国产乱码久久久久久男人| 岛国在线观看网站| 91av网站免费观看| 又紧又爽又黄一区二区| 麻豆国产av国片精品| 精品少妇一区二区三区视频日本电影| 高清毛片免费观看视频网站 | 午夜福利视频在线观看免费| 成人手机av| 日韩欧美国产一区二区入口|