• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variation of electron density in spectral broadening process in solid thin plates at 400 nm?

    2021-10-28 07:10:34SiYuanXu許思源YiTanGao高亦談XiaoXianZhu朱孝先KunZhao趙昆JiangFengZhu朱江峰andZhiYiWei魏志義
    Chinese Physics B 2021年10期
    關鍵詞:思源

    Si-Yuan Xu(許思源) Yi-Tan Gao(高亦談) Xiao-Xian Zhu(朱孝先)Kun Zhao(趙昆) Jiang-Feng Zhu(朱江峰) and Zhi-Yi Wei(魏志義)

    1School of Physics and Optoelectronic Engineering,Xidian University,Xi’an 710071,China

    2Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    4Songshan Lake Material Laboratory,Dongguan 523808,China

    Keywords: nonlinear spectral broadening,time-dependent nonlinear Schr¨odinger equation,self-phase modulation,electron density

    1. Introduction

    Supercontinuum generation is a key to the production of ultrashort femtosecond (1 fs=10?15s) laser pulses.Nowadays, a state-of-the-art titanium-sapphire (Ti:sapphire)chirped-pulse amplifier delivers pulses as short as 13 fs at an 800-nm central wavelength, which still contains almost 5 cycles.[1]The mainstream technique of few-cycle pulse generation is to compress multi-cycle pulses from laser amplifiers with inert-gas-filled hollow-core fibers[2,3]or multiple solid thin plates,[4,5]which broaden the spectrum of the input pulses by self-phase modulation (SPM),[6]and self-steepening.[7]Spectra of more than one octave have been obtained experimentally using hollow-core fibers and multiple thin plates,and utilized to stabilize the carrier-envelope phase (CEP) of the pulses.[8]Few-cycle laser pulses with CEP stabilized are an ideal driver for producing isolated attosecond(1 as=10?18s)pulses through high-order harmonic generation(HHG)in the extreme ultraviolet (XUV) band,[9,10]which is an excellent tool for studying dynamics in atoms and molecules with attosecond time resolution.[11]In HHG, driving pulses with shorter wavelengths have the potential to improve the efficiency and obtain high-flux high-order harmonics and attosecond pulses.[12]

    Femtosecond pulses at 400 nm with a broad spectrum are usually generated by two methods. The first method is to directly double the frequency of a broadband 800-nm pulse,but the output beam in such a scheme carries angular dispersion and broadband frequency doubling is usually challenging and inefficient. The second method is to produce a relatively narrow-band 400-nm femtosecond pulse followed by spectral broadening to produce the desired broad spectrum at 400 nm.Supercontinuum generation by a hollow-core fiber is a very mature technic, while in recent years many groups have used multiple solid thin plates to broaden the spectrum at different wavelengths. Pulses shorter than 10 fs have been obtained at 400 nm,with a spectrum covering 365 nm to 425 nm at?20-dB intensity level.[13,14]To this end, we investigate the generation of continuous spectrum centered at 400 nm from solid thin plates experimentally and numerically. We calculate the change of electron density in the medium to confirm the occurrence of the self-focusing process,and prove our experimental process safely below the documented avalanche plasma density.

    2. Simulation model

    Here, we use the three-dimensional (3D) propagation equation to simulate femtosecond laser pulses at 400 nm to be spectrally broadened by multiple thin plates. The propagation equation is a generalized time-dependent Schr¨odinger equation(TDSE)[15–18]

    Here,zis the propagation variable,tis the retarded time,andUis the linearly-polarized electric field in the form of[15]

    withω0being the angular frequency of the carrier wave,k0the wave vector,andcthe speed of light in vacuum,I=|U|2is the intensity of the optical field,Tis an approximated differential time operator, as given in Eq. (3), which plays an important role in self-steepening and spatiotemporal coupling.The first term of Eq. (1) is for diffraction. The operator ?describes the spatial change of the pulse during propagation.The second term is for dispersion, andDis an operator accounting for dispersions as shown in Eq. (4), whereknis the corresponding dispersion coefficient. The third term refers to the Kerr focusing effect,containing self-phase modulation and self-steepening. Here we have omitted the Raman-delayed nonlinear response, because the pulse width in our simulation is shorter than the Raman-delayed nonlinear response time which is on the order of hundreds of femtoseconds.[15]The fourth term incarnates the nonlinearity caused by ionization, whereρis the ionized electron density in the medium,ρcthe critical plasma density, and the initial density of SiO2molecules in fused silicaρnt=2.1×1019mm?3.[16]The fifth term reflects the impact ionization, and the collision crosssectionσis corresponding to a central frequencyω0. The last term represents the multiphoton absorption.

    Solving the generalized nonlinear Schr¨odinger equation is an effective analytical method of solving the problem of pulse propagation in the medium. However, the quantity of data and time for 3D calculation are extremely large when the spatial variation, dispersion, and nonlinear terms of the pulse are calculated at the same time.We employ the split-step Fourier algorithm and calculate the linear(diffraction and dispersion) and nonlinear (Kerr nonlinearity and plasma effect)terms separately.

    The basic principle of the application of the split-step Fourier transform method in nonlinear propagation equations is to convert high-order partial differential terms into frequency domain and momentum domain through Fourier transform to reduce the quantity of calculations. After the calculation is completed,the result is converted back into the spacetime domain by the inverse Fourier transform to perform operations on the remaining regular terms or low-order partial differential terms. The split-step Fourier algorithm calculates the propagation of the pulse in the medium in sections. In each segment, cyclically execution provides all the information about the final time domain of the pulse. In particular,in the calculation,we converted the terms containing high-order partial differentials such as the diffraction term and the dispersion term into the frequency domain and momentum domain for calculation, while other nonlinear terms are placed in the space-time term for calculation.

    Because the required nonlinear Schr¨odinger equation includes high-order partial differential calculations,and the nonlinear term is coupled with the parameters in pulse time domain,the propagation equation cannot be solved analytically,but it can do numerically. The split-step Fourier method has the advantages of fast calculation speed and high precision when solving this kind of problem. The disadvantage is that this method still requires significant computing power. If we consider higher-order nonlinear processes, we need to add more terms, which brings more difficulties to the calculation process.

    In this study, we ignore the response of the air, and only calculate the pulse propagation in the solid material,because outside the solid plates the spectral width is practically unchanged.[17]The ionization rateW(I) for silica is taken from Keldysh’s multiphoton rate[16]as described in Eq. (5). Fused silica, with which spectral broadening has been observed in experiment, is chosen as the medium in this study. The nonlinear refractive indexn2for fused silica is 2.52×10?16cm2/W at 800 nm and 2.49×10?16cm2/W at 400 nm.[19]The ionization potentialUiis 9 eV for fused silica,[16]the avalanche cross-sectionσis 6×10?18cm2,and the recombination timeτrecis 27 fs.[15]

    The input pulse is at a center wavelength of 400 nm,and we use 100-μm-thick fused silica plates. The initial pulse energy is taken to be 125 μJ. In the calculation, the initial pulse envelope is the envelope after second harmonic generation(SHG),measured by transient grating frequency-resolved optical gating[20](TG-FROG)setup in the experiment.

    3. Experiment

    In the experiment, pulses of 5 mJ at 1 kHz, 790 nm were emitted from a Ti:sapphire laser system. The transformlimited pulse width was 35 fs but the pulse was actually measured to be 53 fs,which is due to the residual high-order chirp out of the laser compressor. The experimental setup is illustrated in Fig.1.A portion of 600μJ of the output pulse was reflected into the experiment by a beam splitter.A telescope was employed to shrink the beam diameter, which was composed of two lenses, a plano-convex lens withf=300 mm and a plano-concave one withf=?100 mm. The distance between the two lenses was 200 mm. After the telescope, a 140-μmthick barium borate crystal (BBO) was used to generate the second harmonic. The BBO was cut for type-I (o+o→e)phase matching(θ=29.2°,?=0°). The polarization of second harmonic was changed by type-I phase matching in BBO,fromptos. The second harmonic pulses of 145μJ at a center wavelength of 395 nm were obtained after BBO, with a beam radius of 2.5 mm. A set of climbing mirrors were used to change the polarization back top. One of the climbing mirrors was dichroic with high reflectance at 400 nm and high transmission at 800 nm.One pair of chirped mirrors were used to compress the second harmonic pulses to 64 fs with 125μJ,characterized by a homemade TG-FROG setup,[21]and the results are shown in Fig.2.

    Fig.1. Experimental setup for 400-nm continuum generation.

    Fig. 2. TG-FROG measurements of the second harmonic pulses, showing (a) measured FROG trace, (b) retrieved FROG trace, (c) retrieved spectral intensity(solid)and phase(dashed),and(d)normalized temporal intensity(solid)and phase(dashed)of the pulse.

    Fig.3.Spectrum of input second harmonic generation(SHG)pulse(dashed)and continuum(solid)after spectral broadening.

    A 500-mm lens was used to focus the second harmonic beam into a 120-μm spot at the focus, where the peak intensity was 6.7×1012W/cm2. The beam propagated through six thin fused silica plates each with a thickness of 100 μm,placed near the focus. The first plate was 15 cm in front of the focus, the distances from the plate in front for the remaining five plates were 8 cm,2 cm,2 cm,2 cm,and 1.5 cm,respectively. The plates were placed at the Brewster’s angle(55.8°)to reduce loss. The beam out of the thin plates was collimated by anf=800 mm aluminium concave mirror. At this point,a 95-μJ continuum, covering 370 nm to 430 nm at?20-dB intensity level,was achieved and the results are shown in Fig.3.After two pairs of chirped mirrors,the pulse energy was 78μJ.The spectrally broadened and compressed pulse was measured with TG-FROG, and the width of the main peak in the pulse envelop was 40 fs,the results are show in Fig.4.

    4. Results and discussion

    It is clear from Fig. 4(c) that the spectrally broadened pulse has a complex high-order chirp, resulting in a threepeak envelope. The slope of the phase curve around 390 nm is positive and the slope around 415 nm is negative. In the time domain, two satellite pulses appear on both sides of the center peak. As shown in Fig. 2(c), the phase of the incident pulse also has the same shape, and there are two satellite pulses in front and in back of the main peak,respectively.The two satellite pulses of the incident pulse have low intensity much weaker than the central peak. Therefore, the highorder chirp of the spectrally broadened pulse as measured by TG-FROG(Fig.4),is most likely carried over from the input pulse(Fig.2).

    Fig. 4. TG-FROG measurements of spectrally broadened pulse: (a) measured FROG trace, (b) retrieved FROG trace, (c) retrieved spectral intensity(solid)and phase(dashed),(d)normalized temporal intensity(solid)and phase(dashed)of pulse.

    We use the 3D propagation equation (Eq. (1)) to simulate the broadening results of the 400-nm pulses. In the simulation, the initial envelope takes the form of the input SHG pulse envelope directly measured by TG-FROG in the experiment(Fig.2). The simulation parameters are also the same as those in the experiment. Figure 5 shows good agreement between simulated result and experimental measurement.As observed in experimental result and simulation result, the spectral broadening of 400-nm pulses is not so pronounced as in the 800-nm experiment under similar experimental conditions, which is maily due to the fact that self-steepening is weak when the pulse is long. When a pulse of several hundred femtoseconds is broadened in fiber[22]or multipass cells(MPC),[23]only pure SPM and Raman effect take place, and the spectral lines are broadened symmetrically on both sides of the central wavelength,as obtained in the experiment.

    Fig.5. Experimental(dashed)and simulated(solid)broadened spectra.

    In Eq. (1), the collision ionization and multiphoton ionization of the fifth and sixth terms reduce the pulse intensityI.Excessive ionization leads to pulse splitting and loss of spectral coherence. We place the fused silica away from the focus to avoid being excessively ionized,but not too far away from the focus to obtain as wide a spectrum as possible. In the experiment,when we move the fused silica along the optical axis close to the focus,the spectrum is broadened significantly but with a decrease of power. This shows that the ionization at the focus leads to strong broadening, resulting in a large loss of laser energy. At the same time, when we focus the laser directly in the air in the experiment,the spectrum broadening is negligible. This means that the spectrum broadening originates from the nonlinear effect in fused silica.

    As indicated in Eq. (1), the SPM and self-steepening terms are proportional to intensityI,while the ionization termW(I) is proportional toI6. Therefore, the ionization process(thus free electron density in the medium)is more sensitive to the intensity variation than the SPM and self-steepening. The self-focusing threshold is 0.6 MW in fused silica at 400 nm.[24]Under our experimental condition,self-focusing takes place in each piece of silica. In the simulation,we calculate the change of electron density as the beam propagates through each piece of fused silica. Self-focusing leads the beam size to decrease and the beam intensity to increase in the fused silica plates so that the free electron density increases correspondingly.

    The simulation result shows that the electron density in the second to fifth pieces of silica increases significantly with the beam propagation, which is provoked by self-focusing as shown in Fig.6. As the 400-nm pulse propagates through the silica plates,self-focusing takes place whenever the beam enters into the plate,therefore the spectrum is broadened. However,the focus of the self-focusing is formed outside the fused silica, and as the beam propagates through the focus into the divergence mode,it enters the next fused silica plate,where the same process is repeated. Until the peak power density of the beam becomes insufficient to produce further spectral broadening,at this point the process is over. This phenomenon has been discussed from the experimental point of view in previous study,[17]and now we confirm it with numerical simulation.

    The result also show that the electron density reaches a maximum value in the fourth piece of fused silica(Fig.6),this is consistent with the fact that the fourth piece is placed closest to the beam focus and the laser intensity reaches the maximum value in the thin plates. The maximum electron density is calculated to be 5×1015mm?3,where the density of SiO2molecules in fused silica is 2.1×1019mm?3, and the electron density is safely below the documented avalanche plasma density of 2.1×1017mm?3.[17,25]In the experiments,ionization does not produce visible filaments in the thin plates in the broadening process.

    Fig.6. Electron density changes in each fused silica.

    A large electron density and a large variation of the electron density during the propagation will affect the spectral phase and wavefront of the pulse significantly. In our simulation result,the electron density in the fused silica plates is at a low level, well below the avalanche plasma density, and its variation in each thin plate is also well within an order of magnitude or even less.At the same time,low electron density also results in the low loss of the laser energy and low modulation of the phase. This indicates that the spectral broadening observed after the beam has propagated through the fused silica plates is induced mostly by phase modulation caused by Kerr effect. It is important in spectral broadening experiments with multiple thin plates to minimize the ionization and plasma effect to avoid energy loss and unexpected phase variation.

    5. Conclusions and perspectives

    In summary, we achieve spectrum broadening of pulses with complex dispersion. We use 6 pieces of 100-μm-thick fused silica for spectrum broadening at 400-nm central wavelength,and obtain a spectrum covering a range from 365 nm to 445 nm.We employ a 3D propagation equation to simulate the spectrum broadening process in multiple solid thin plates.The numerical simulation results are in excellent agreement with the experimental observations. Our calculations reproduce the experimental process very well. We find experimentally that the strong self-focusing occurs in the silica plates in the spectrum broadening process, and we use the change of electron density to confirm this interesting process. The calculations conduce to clearly describing the whole spectrum broadening process in multiple thin plates. Finally,the calculation shows that the electron density in the broadening process is always safely below the documented avalanche plasma density, and confirms that the ionization or plasma effect does not play a major role in the spectral broadening process.

    Acknowledgment

    The authors are grateful to Prof. Chengyin Wu and Dr.Zhiming Miao for providing the laser beam and for their helpful discussion as well.

    猜你喜歡
    思源
    《山間》
    青年文學家(2023年8期)2023-06-14 07:56:30
    “筷子翻書”挑戰(zhàn)賽
    My Dreams
    磨刀不誤砍柴工
    定積分及其應用
    可怕的霧霾
    注意!頭痛可能預示著甲狀腺問題
    健康女性(2016年11期)2017-02-14 13:22:31
    Hippie
    思源致遠 繼往開來
    ——記4808工廠威海修船廠
    中國修船(2016年6期)2016-06-23 10:04:05
    陳永龍:思源致遠
    亚洲精品在线美女| 真人一进一出gif抽搐免费| 首页视频小说图片口味搜索| 国产成+人综合+亚洲专区| 少妇粗大呻吟视频| 99精品欧美一区二区三区四区| 国产精品 国内视频| 最新在线观看一区二区三区| 日日爽夜夜爽网站| 神马国产精品三级电影在线观看 | 又黄又粗又硬又大视频| 男女午夜视频在线观看| 国产伦人伦偷精品视频| 精品日产1卡2卡| 香蕉久久夜色| 亚洲欧美日韩无卡精品| 亚洲av熟女| 亚洲成国产人片在线观看| 丝袜美足系列| 亚洲成人精品中文字幕电影 | 91大片在线观看| 精品福利观看| a级片在线免费高清观看视频| 老鸭窝网址在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲午夜精品一区,二区,三区| 久久国产乱子伦精品免费另类| 日韩视频一区二区在线观看| 欧美黄色淫秽网站| 色老头精品视频在线观看| 亚洲欧美日韩无卡精品| 老鸭窝网址在线观看| 美女扒开内裤让男人捅视频| 少妇被粗大的猛进出69影院| 久久久久国内视频| 午夜免费鲁丝| 999久久久国产精品视频| 一二三四社区在线视频社区8| 欧美精品一区二区免费开放| 久久国产精品人妻蜜桃| 午夜视频精品福利| 色综合站精品国产| 欧美中文日本在线观看视频| 老司机在亚洲福利影院| 日韩欧美三级三区| 中文字幕人妻熟女乱码| 在线观看舔阴道视频| 每晚都被弄得嗷嗷叫到高潮| 亚洲人成77777在线视频| 亚洲人成伊人成综合网2020| 欧美 亚洲 国产 日韩一| 久久人人精品亚洲av| 成在线人永久免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 又黄又粗又硬又大视频| 日韩欧美一区视频在线观看| 黄网站色视频无遮挡免费观看| 欧美黑人精品巨大| 欧美精品一区二区免费开放| 看黄色毛片网站| 日本免费一区二区三区高清不卡 | bbb黄色大片| 看片在线看免费视频| 国产无遮挡羞羞视频在线观看| 亚洲精品一二三| 十八禁人妻一区二区| 午夜成年电影在线免费观看| 丰满饥渴人妻一区二区三| 欧美黄色片欧美黄色片| 久99久视频精品免费| 真人做人爱边吃奶动态| 精品久久久久久,| 精品免费久久久久久久清纯| 精品久久久久久成人av| 国产99白浆流出| 亚洲熟妇熟女久久| 十分钟在线观看高清视频www| 国产伦一二天堂av在线观看| 在线永久观看黄色视频| 后天国语完整版免费观看| 精品国产乱子伦一区二区三区| 999久久久精品免费观看国产| www.999成人在线观看| av福利片在线| 久久精品亚洲熟妇少妇任你| 精品国产美女av久久久久小说| 国产黄色免费在线视频| 真人做人爱边吃奶动态| 在线观看一区二区三区激情| 免费搜索国产男女视频| 看免费av毛片| 国产成人系列免费观看| 在线观看午夜福利视频| 成人精品一区二区免费| 午夜福利欧美成人| 后天国语完整版免费观看| 中文字幕av电影在线播放| 亚洲av成人不卡在线观看播放网| 久久精品国产亚洲av高清一级| 精品久久久久久成人av| 麻豆久久精品国产亚洲av | 久久精品亚洲精品国产色婷小说| 亚洲一区二区三区色噜噜 | 高潮久久久久久久久久久不卡| av天堂久久9| 怎么达到女性高潮| 亚洲专区国产一区二区| 动漫黄色视频在线观看| 成人三级黄色视频| 极品教师在线免费播放| 欧美日韩一级在线毛片| 国产aⅴ精品一区二区三区波| 欧美性长视频在线观看| 久久国产乱子伦精品免费另类| 亚洲激情在线av| av在线天堂中文字幕 | 最近最新中文字幕大全电影3 | 露出奶头的视频| 午夜免费激情av| 欧美另类亚洲清纯唯美| 好看av亚洲va欧美ⅴa在| 99久久久亚洲精品蜜臀av| 另类亚洲欧美激情| 51午夜福利影视在线观看| 国产精品美女特级片免费视频播放器 | 国产一卡二卡三卡精品| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品国产综合久久久| 欧美av亚洲av综合av国产av| 超色免费av| 国产精品野战在线观看 | 国产av一区在线观看免费| 超碰97精品在线观看| 亚洲av日韩精品久久久久久密| x7x7x7水蜜桃| 侵犯人妻中文字幕一二三四区| 亚洲男人天堂网一区| 18禁黄网站禁片午夜丰满| 国产伦一二天堂av在线观看| 日本精品一区二区三区蜜桃| www国产在线视频色| 亚洲五月色婷婷综合| 国产精品一区二区三区四区久久 | 久久中文字幕一级| 国产aⅴ精品一区二区三区波| 悠悠久久av| 国产av精品麻豆| 亚洲avbb在线观看| 国产欧美日韩一区二区三区在线| av网站免费在线观看视频| 国产在线精品亚洲第一网站| 国产精品久久久av美女十八| 后天国语完整版免费观看| 黑人操中国人逼视频| 久久人人精品亚洲av| 久久中文字幕一级| 精品久久久久久久久久免费视频 | 日韩人妻精品一区2区三区| 午夜免费鲁丝| 亚洲精品一区av在线观看| 日本精品一区二区三区蜜桃| 亚洲欧美精品综合久久99| 99久久99久久久精品蜜桃| 18禁观看日本| www.www免费av| 黄色毛片三级朝国网站| av视频免费观看在线观看| 久久久国产成人免费| 一级毛片精品| 久久亚洲精品不卡| 国产国语露脸激情在线看| 热99国产精品久久久久久7| 欧美午夜高清在线| 老司机午夜十八禁免费视频| 久久国产精品影院| 欧美日韩亚洲综合一区二区三区_| 国产精品久久电影中文字幕| 国产成人欧美| 免费搜索国产男女视频| 精品国产国语对白av| 精品人妻在线不人妻| 男人操女人黄网站| 老司机在亚洲福利影院| 国产精品九九99| 欧美一级毛片孕妇| 欧美日韩黄片免| 国产有黄有色有爽视频| 欧美最黄视频在线播放免费 | 无人区码免费观看不卡| 欧美成人午夜精品| 久久久精品欧美日韩精品| 夫妻午夜视频| 亚洲欧美日韩无卡精品| 亚洲人成电影免费在线| 亚洲成人免费电影在线观看| 国产成人精品久久二区二区91| 精品一区二区三区av网在线观看| 男女下面进入的视频免费午夜 | 美女高潮到喷水免费观看| 久久草成人影院| 精品国产超薄肉色丝袜足j| 久久人妻福利社区极品人妻图片| 午夜免费鲁丝| 男女做爰动态图高潮gif福利片 | 国产aⅴ精品一区二区三区波| 婷婷精品国产亚洲av在线| 1024视频免费在线观看| 在线观看舔阴道视频| 亚洲精品一二三| 亚洲成a人片在线一区二区| 又紧又爽又黄一区二区| 最近最新中文字幕大全免费视频| 精品高清国产在线一区| 91麻豆精品激情在线观看国产 | 日韩欧美一区视频在线观看| 一进一出抽搐动态| 亚洲 欧美 日韩 在线 免费| 69av精品久久久久久| 一级毛片精品| 欧美黄色片欧美黄色片| 亚洲成国产人片在线观看| 亚洲精品国产区一区二| 在线看a的网站| 免费观看精品视频网站| 午夜免费观看网址| 成人三级做爰电影| 久久久久久人人人人人| 久久久久九九精品影院| 曰老女人黄片| 亚洲av日韩精品久久久久久密| 国产精品永久免费网站| 国产精品久久久av美女十八| 日本一区二区免费在线视频| 国产精品99久久99久久久不卡| 90打野战视频偷拍视频| 中文字幕最新亚洲高清| 亚洲精品久久成人aⅴ小说| 美女 人体艺术 gogo| 国产精品亚洲一级av第二区| 中文字幕另类日韩欧美亚洲嫩草| 成人精品一区二区免费| 长腿黑丝高跟| 最新美女视频免费是黄的| 亚洲欧美日韩无卡精品| 亚洲欧美激情综合另类| 12—13女人毛片做爰片一| 免费人成视频x8x8入口观看| 亚洲一区二区三区不卡视频| 久久精品影院6| 午夜久久久在线观看| 久久欧美精品欧美久久欧美| 中文字幕人妻熟女乱码| 久久精品91蜜桃| 天堂中文最新版在线下载| 啦啦啦在线免费观看视频4| 一区二区日韩欧美中文字幕| 欧美成人免费av一区二区三区| 欧美一区二区精品小视频在线| 亚洲精华国产精华精| 欧美日韩国产mv在线观看视频| 深夜精品福利| 久久午夜综合久久蜜桃| 两个人免费观看高清视频| 精品一区二区三区四区五区乱码| 精品国产超薄肉色丝袜足j| 69av精品久久久久久| 黑人操中国人逼视频| 亚洲熟妇中文字幕五十中出 | 欧美日本中文国产一区发布| 久久热在线av| 亚洲视频免费观看视频| 色尼玛亚洲综合影院| 亚洲国产毛片av蜜桃av| 精品久久久久久电影网| 嫩草影视91久久| 欧美乱妇无乱码| 曰老女人黄片| 国产成人精品久久二区二区91| 亚洲av片天天在线观看| 免费高清视频大片| av天堂久久9| 日韩 欧美 亚洲 中文字幕| 国产成人av教育| 妹子高潮喷水视频| 嫁个100分男人电影在线观看| 欧美日韩瑟瑟在线播放| 久久精品国产亚洲av高清一级| 色综合婷婷激情| 亚洲久久久国产精品| 日本三级黄在线观看| 亚洲成人免费av在线播放| 女警被强在线播放| 国产精品综合久久久久久久免费 | aaaaa片日本免费| 女人被躁到高潮嗷嗷叫费观| 午夜精品在线福利| 亚洲熟女毛片儿| 一个人观看的视频www高清免费观看 | 成人精品一区二区免费| 国产精品日韩av在线免费观看 | 12—13女人毛片做爰片一| 18禁裸乳无遮挡免费网站照片 | 成人影院久久| 在线永久观看黄色视频| 国产片内射在线| 美女午夜性视频免费| 在线av久久热| 亚洲成人精品中文字幕电影 | 丁香欧美五月| 欧美中文日本在线观看视频| 午夜影院日韩av| 久久久精品国产亚洲av高清涩受| 欧美一区二区精品小视频在线| 久久精品亚洲av国产电影网| 日本黄色视频三级网站网址| 一区二区三区精品91| 九色亚洲精品在线播放| 亚洲aⅴ乱码一区二区在线播放 | 欧美人与性动交α欧美精品济南到| 国产成+人综合+亚洲专区| 色综合站精品国产| 黑人欧美特级aaaaaa片| av视频免费观看在线观看| 国产成人av教育| 亚洲熟女毛片儿| 中文字幕人妻丝袜制服| 亚洲精品av麻豆狂野| 久热这里只有精品99| 久久久久久亚洲精品国产蜜桃av| 一进一出抽搐gif免费好疼 | 国产成人av激情在线播放| 精品福利观看| 黄色a级毛片大全视频| 欧美色视频一区免费| 亚洲三区欧美一区| 美女高潮到喷水免费观看| 老司机福利观看| 少妇粗大呻吟视频| 国产精品久久视频播放| 看黄色毛片网站| 搡老岳熟女国产| tocl精华| 欧美日韩国产mv在线观看视频| 男女下面进入的视频免费午夜 | 啦啦啦在线免费观看视频4| 久久狼人影院| 亚洲一区二区三区欧美精品| 看黄色毛片网站| 88av欧美| 日韩欧美在线二视频| 好男人电影高清在线观看| 久久性视频一级片| 国产伦一二天堂av在线观看| 久久香蕉国产精品| xxx96com| 两个人免费观看高清视频| 精品国产一区二区久久| 黑人巨大精品欧美一区二区mp4| 嫩草影院精品99| 一级毛片女人18水好多| 80岁老熟妇乱子伦牲交| 可以免费在线观看a视频的电影网站| 国产深夜福利视频在线观看| 亚洲一区二区三区欧美精品| 欧美 亚洲 国产 日韩一| 成年人免费黄色播放视频| 国产高清国产精品国产三级| 一a级毛片在线观看| 97超级碰碰碰精品色视频在线观看| 黄色 视频免费看| 亚洲五月婷婷丁香| 国产成人精品久久二区二区免费| 99国产精品免费福利视频| 精品日产1卡2卡| 国产野战对白在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲中文字幕日韩| 国产精品 国内视频| 日韩精品中文字幕看吧| 大陆偷拍与自拍| 日日爽夜夜爽网站| 岛国视频午夜一区免费看| 校园春色视频在线观看| 99久久人妻综合| 别揉我奶头~嗯~啊~动态视频| 手机成人av网站| 91av网站免费观看| 亚洲 欧美一区二区三区| 一区二区日韩欧美中文字幕| 桃色一区二区三区在线观看| 老熟妇仑乱视频hdxx| 久久九九热精品免费| 亚洲成人免费电影在线观看| 啪啪无遮挡十八禁网站| 亚洲av片天天在线观看| 国产精品一区二区三区四区久久 | 黄色女人牲交| 亚洲免费av在线视频| 亚洲av成人不卡在线观看播放网| 久久久国产成人免费| 妹子高潮喷水视频| av超薄肉色丝袜交足视频| 人妻丰满熟妇av一区二区三区| 精品乱码久久久久久99久播| 精品欧美一区二区三区在线| 欧美一区二区精品小视频在线| 国产成人精品久久二区二区91| 热re99久久国产66热| 中文字幕人妻丝袜一区二区| 国产成人欧美在线观看| 黄色 视频免费看| 久久性视频一级片| 亚洲欧美日韩另类电影网站| a级毛片在线看网站| 亚洲av五月六月丁香网| 中文字幕另类日韩欧美亚洲嫩草| 久久青草综合色| 亚洲成人国产一区在线观看| 国产av一区在线观看免费| 国产av一区二区精品久久| 亚洲一区高清亚洲精品| 亚洲精品国产区一区二| 后天国语完整版免费观看| 777久久人妻少妇嫩草av网站| 久久精品国产亚洲av高清一级| 欧美 亚洲 国产 日韩一| 日韩欧美免费精品| 91九色精品人成在线观看| 免费高清在线观看日韩| 亚洲av片天天在线观看| 国产成年人精品一区二区 | 亚洲视频免费观看视频| 国产亚洲精品第一综合不卡| 午夜免费激情av| 在线十欧美十亚洲十日本专区| 俄罗斯特黄特色一大片| 欧美乱码精品一区二区三区| 久久久精品欧美日韩精品| 9191精品国产免费久久| 亚洲激情在线av| 免费不卡黄色视频| 动漫黄色视频在线观看| 亚洲中文av在线| 久久久久久亚洲精品国产蜜桃av| 天堂俺去俺来也www色官网| 91成年电影在线观看| www.熟女人妻精品国产| 国产精品98久久久久久宅男小说| 久久久久久久久免费视频了| 999精品在线视频| 天天添夜夜摸| 欧美日韩亚洲国产一区二区在线观看| 老司机在亚洲福利影院| 久久久国产精品麻豆| 亚洲情色 制服丝袜| 日韩精品免费视频一区二区三区| 黄色片一级片一级黄色片| 亚洲熟女毛片儿| 成年人免费黄色播放视频| 久久久国产成人精品二区 | 日日干狠狠操夜夜爽| 久久人人爽av亚洲精品天堂| 在线观看一区二区三区| 国产精品偷伦视频观看了| 一级毛片精品| 久久久久亚洲av毛片大全| 香蕉丝袜av| 男女高潮啪啪啪动态图| 人人妻,人人澡人人爽秒播| 国产成人影院久久av| 亚洲欧美一区二区三区久久| 国产成人系列免费观看| 精品久久久久久电影网| 九色亚洲精品在线播放| 亚洲七黄色美女视频| 怎么达到女性高潮| 日本欧美视频一区| 性少妇av在线| 亚洲国产欧美日韩在线播放| 久久久精品欧美日韩精品| 国产精品电影一区二区三区| 亚洲国产精品999在线| 成年人黄色毛片网站| 一级a爱视频在线免费观看| 免费高清视频大片| 丰满迷人的少妇在线观看| 日本 av在线| 性少妇av在线| 97碰自拍视频| 后天国语完整版免费观看| 999久久久精品免费观看国产| 欧美乱妇无乱码| 麻豆久久精品国产亚洲av | 国产精品98久久久久久宅男小说| 男女下面插进去视频免费观看| 日韩免费高清中文字幕av| 国产有黄有色有爽视频| 日韩国内少妇激情av| 成人免费观看视频高清| 啦啦啦在线免费观看视频4| 黄色视频不卡| 国产成人av激情在线播放| 亚洲熟妇中文字幕五十中出 | www.999成人在线观看| 久久伊人香网站| 啦啦啦免费观看视频1| 可以免费在线观看a视频的电影网站| 色在线成人网| 欧美中文日本在线观看视频| 亚洲专区中文字幕在线| 女警被强在线播放| 亚洲精品国产区一区二| 久久九九热精品免费| 亚洲精品国产区一区二| 视频区图区小说| 欧美亚洲日本最大视频资源| 成年人黄色毛片网站| 一级黄色大片毛片| 1024视频免费在线观看| 午夜激情av网站| 久久中文字幕一级| 韩国av一区二区三区四区| 久久精品91蜜桃| 一级片免费观看大全| 中文亚洲av片在线观看爽| 一边摸一边抽搐一进一小说| 欧美精品亚洲一区二区| 亚洲精华国产精华精| 欧美性长视频在线观看| 老鸭窝网址在线观看| 侵犯人妻中文字幕一二三四区| 亚洲七黄色美女视频| 黑人操中国人逼视频| 亚洲精品粉嫩美女一区| 天堂影院成人在线观看| 精品一品国产午夜福利视频| 日韩欧美在线二视频| 午夜影院日韩av| 国产精品久久电影中文字幕| 午夜福利一区二区在线看| 可以免费在线观看a视频的电影网站| 精品一区二区三卡| 最新在线观看一区二区三区| 天天躁夜夜躁狠狠躁躁| 视频区图区小说| 国产野战对白在线观看| 国产成人欧美在线观看| 国产一区在线观看成人免费| 成熟少妇高潮喷水视频| 国产高清激情床上av| 亚洲精品国产色婷婷电影| 99热只有精品国产| 国产精品电影一区二区三区| 成人免费观看视频高清| 在线观看舔阴道视频| 狠狠狠狠99中文字幕| 九色亚洲精品在线播放| 高清毛片免费观看视频网站 | 久久亚洲精品不卡| 国产人伦9x9x在线观看| 国产精品二区激情视频| 免费一级毛片在线播放高清视频 | 电影成人av| 亚洲三区欧美一区| 午夜精品久久久久久毛片777| 999精品在线视频| 国产精品秋霞免费鲁丝片| 国产真人三级小视频在线观看| 日日夜夜操网爽| 电影成人av| av中文乱码字幕在线| 黄片播放在线免费| 久久精品国产亚洲av高清一级| ponron亚洲| 国产高清videossex| 叶爱在线成人免费视频播放| 亚洲精品中文字幕在线视频| 亚洲avbb在线观看| 一个人免费在线观看的高清视频| 中文亚洲av片在线观看爽| 中文字幕色久视频| 女生性感内裤真人,穿戴方法视频| 久热爱精品视频在线9| 国产97色在线日韩免费| 亚洲成av片中文字幕在线观看| 国产熟女xx| 制服诱惑二区| 久热这里只有精品99| 国产熟女xx| 一区在线观看完整版| 国产高清激情床上av| 国产熟女xx| 久久香蕉激情| 欧美黑人精品巨大| 香蕉久久夜色| 亚洲一卡2卡3卡4卡5卡精品中文| 色尼玛亚洲综合影院| 国产有黄有色有爽视频| 一进一出抽搐gif免费好疼 | 成人亚洲精品一区在线观看| 夜夜看夜夜爽夜夜摸 | 午夜影院日韩av| 国产精品电影一区二区三区| 视频在线观看一区二区三区| 美女大奶头视频| 一级毛片精品| a在线观看视频网站| 精品久久久久久,| 亚洲精品av麻豆狂野| a在线观看视频网站| 亚洲国产看品久久| 精品卡一卡二卡四卡免费| 一级片免费观看大全| 老熟妇仑乱视频hdxx| 99久久综合精品五月天人人|