• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variation of electron density in spectral broadening process in solid thin plates at 400 nm?

    2021-10-28 07:10:34SiYuanXu許思源YiTanGao高亦談XiaoXianZhu朱孝先KunZhao趙昆JiangFengZhu朱江峰andZhiYiWei魏志義
    Chinese Physics B 2021年10期
    關鍵詞:思源

    Si-Yuan Xu(許思源) Yi-Tan Gao(高亦談) Xiao-Xian Zhu(朱孝先)Kun Zhao(趙昆) Jiang-Feng Zhu(朱江峰) and Zhi-Yi Wei(魏志義)

    1School of Physics and Optoelectronic Engineering,Xidian University,Xi’an 710071,China

    2Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    4Songshan Lake Material Laboratory,Dongguan 523808,China

    Keywords: nonlinear spectral broadening,time-dependent nonlinear Schr¨odinger equation,self-phase modulation,electron density

    1. Introduction

    Supercontinuum generation is a key to the production of ultrashort femtosecond (1 fs=10?15s) laser pulses.Nowadays, a state-of-the-art titanium-sapphire (Ti:sapphire)chirped-pulse amplifier delivers pulses as short as 13 fs at an 800-nm central wavelength, which still contains almost 5 cycles.[1]The mainstream technique of few-cycle pulse generation is to compress multi-cycle pulses from laser amplifiers with inert-gas-filled hollow-core fibers[2,3]or multiple solid thin plates,[4,5]which broaden the spectrum of the input pulses by self-phase modulation (SPM),[6]and self-steepening.[7]Spectra of more than one octave have been obtained experimentally using hollow-core fibers and multiple thin plates,and utilized to stabilize the carrier-envelope phase (CEP) of the pulses.[8]Few-cycle laser pulses with CEP stabilized are an ideal driver for producing isolated attosecond(1 as=10?18s)pulses through high-order harmonic generation(HHG)in the extreme ultraviolet (XUV) band,[9,10]which is an excellent tool for studying dynamics in atoms and molecules with attosecond time resolution.[11]In HHG, driving pulses with shorter wavelengths have the potential to improve the efficiency and obtain high-flux high-order harmonics and attosecond pulses.[12]

    Femtosecond pulses at 400 nm with a broad spectrum are usually generated by two methods. The first method is to directly double the frequency of a broadband 800-nm pulse,but the output beam in such a scheme carries angular dispersion and broadband frequency doubling is usually challenging and inefficient. The second method is to produce a relatively narrow-band 400-nm femtosecond pulse followed by spectral broadening to produce the desired broad spectrum at 400 nm.Supercontinuum generation by a hollow-core fiber is a very mature technic, while in recent years many groups have used multiple solid thin plates to broaden the spectrum at different wavelengths. Pulses shorter than 10 fs have been obtained at 400 nm,with a spectrum covering 365 nm to 425 nm at?20-dB intensity level.[13,14]To this end, we investigate the generation of continuous spectrum centered at 400 nm from solid thin plates experimentally and numerically. We calculate the change of electron density in the medium to confirm the occurrence of the self-focusing process,and prove our experimental process safely below the documented avalanche plasma density.

    2. Simulation model

    Here, we use the three-dimensional (3D) propagation equation to simulate femtosecond laser pulses at 400 nm to be spectrally broadened by multiple thin plates. The propagation equation is a generalized time-dependent Schr¨odinger equation(TDSE)[15–18]

    Here,zis the propagation variable,tis the retarded time,andUis the linearly-polarized electric field in the form of[15]

    withω0being the angular frequency of the carrier wave,k0the wave vector,andcthe speed of light in vacuum,I=|U|2is the intensity of the optical field,Tis an approximated differential time operator, as given in Eq. (3), which plays an important role in self-steepening and spatiotemporal coupling.The first term of Eq. (1) is for diffraction. The operator ?describes the spatial change of the pulse during propagation.The second term is for dispersion, andDis an operator accounting for dispersions as shown in Eq. (4), whereknis the corresponding dispersion coefficient. The third term refers to the Kerr focusing effect,containing self-phase modulation and self-steepening. Here we have omitted the Raman-delayed nonlinear response, because the pulse width in our simulation is shorter than the Raman-delayed nonlinear response time which is on the order of hundreds of femtoseconds.[15]The fourth term incarnates the nonlinearity caused by ionization, whereρis the ionized electron density in the medium,ρcthe critical plasma density, and the initial density of SiO2molecules in fused silicaρnt=2.1×1019mm?3.[16]The fifth term reflects the impact ionization, and the collision crosssectionσis corresponding to a central frequencyω0. The last term represents the multiphoton absorption.

    Solving the generalized nonlinear Schr¨odinger equation is an effective analytical method of solving the problem of pulse propagation in the medium. However, the quantity of data and time for 3D calculation are extremely large when the spatial variation, dispersion, and nonlinear terms of the pulse are calculated at the same time.We employ the split-step Fourier algorithm and calculate the linear(diffraction and dispersion) and nonlinear (Kerr nonlinearity and plasma effect)terms separately.

    The basic principle of the application of the split-step Fourier transform method in nonlinear propagation equations is to convert high-order partial differential terms into frequency domain and momentum domain through Fourier transform to reduce the quantity of calculations. After the calculation is completed,the result is converted back into the spacetime domain by the inverse Fourier transform to perform operations on the remaining regular terms or low-order partial differential terms. The split-step Fourier algorithm calculates the propagation of the pulse in the medium in sections. In each segment, cyclically execution provides all the information about the final time domain of the pulse. In particular,in the calculation,we converted the terms containing high-order partial differentials such as the diffraction term and the dispersion term into the frequency domain and momentum domain for calculation, while other nonlinear terms are placed in the space-time term for calculation.

    Because the required nonlinear Schr¨odinger equation includes high-order partial differential calculations,and the nonlinear term is coupled with the parameters in pulse time domain,the propagation equation cannot be solved analytically,but it can do numerically. The split-step Fourier method has the advantages of fast calculation speed and high precision when solving this kind of problem. The disadvantage is that this method still requires significant computing power. If we consider higher-order nonlinear processes, we need to add more terms, which brings more difficulties to the calculation process.

    In this study, we ignore the response of the air, and only calculate the pulse propagation in the solid material,because outside the solid plates the spectral width is practically unchanged.[17]The ionization rateW(I) for silica is taken from Keldysh’s multiphoton rate[16]as described in Eq. (5). Fused silica, with which spectral broadening has been observed in experiment, is chosen as the medium in this study. The nonlinear refractive indexn2for fused silica is 2.52×10?16cm2/W at 800 nm and 2.49×10?16cm2/W at 400 nm.[19]The ionization potentialUiis 9 eV for fused silica,[16]the avalanche cross-sectionσis 6×10?18cm2,and the recombination timeτrecis 27 fs.[15]

    The input pulse is at a center wavelength of 400 nm,and we use 100-μm-thick fused silica plates. The initial pulse energy is taken to be 125 μJ. In the calculation, the initial pulse envelope is the envelope after second harmonic generation(SHG),measured by transient grating frequency-resolved optical gating[20](TG-FROG)setup in the experiment.

    3. Experiment

    In the experiment, pulses of 5 mJ at 1 kHz, 790 nm were emitted from a Ti:sapphire laser system. The transformlimited pulse width was 35 fs but the pulse was actually measured to be 53 fs,which is due to the residual high-order chirp out of the laser compressor. The experimental setup is illustrated in Fig.1.A portion of 600μJ of the output pulse was reflected into the experiment by a beam splitter.A telescope was employed to shrink the beam diameter, which was composed of two lenses, a plano-convex lens withf=300 mm and a plano-concave one withf=?100 mm. The distance between the two lenses was 200 mm. After the telescope, a 140-μmthick barium borate crystal (BBO) was used to generate the second harmonic. The BBO was cut for type-I (o+o→e)phase matching(θ=29.2°,?=0°). The polarization of second harmonic was changed by type-I phase matching in BBO,fromptos. The second harmonic pulses of 145μJ at a center wavelength of 395 nm were obtained after BBO, with a beam radius of 2.5 mm. A set of climbing mirrors were used to change the polarization back top. One of the climbing mirrors was dichroic with high reflectance at 400 nm and high transmission at 800 nm.One pair of chirped mirrors were used to compress the second harmonic pulses to 64 fs with 125μJ,characterized by a homemade TG-FROG setup,[21]and the results are shown in Fig.2.

    Fig.1. Experimental setup for 400-nm continuum generation.

    Fig. 2. TG-FROG measurements of the second harmonic pulses, showing (a) measured FROG trace, (b) retrieved FROG trace, (c) retrieved spectral intensity(solid)and phase(dashed),and(d)normalized temporal intensity(solid)and phase(dashed)of the pulse.

    Fig.3.Spectrum of input second harmonic generation(SHG)pulse(dashed)and continuum(solid)after spectral broadening.

    A 500-mm lens was used to focus the second harmonic beam into a 120-μm spot at the focus, where the peak intensity was 6.7×1012W/cm2. The beam propagated through six thin fused silica plates each with a thickness of 100 μm,placed near the focus. The first plate was 15 cm in front of the focus, the distances from the plate in front for the remaining five plates were 8 cm,2 cm,2 cm,2 cm,and 1.5 cm,respectively. The plates were placed at the Brewster’s angle(55.8°)to reduce loss. The beam out of the thin plates was collimated by anf=800 mm aluminium concave mirror. At this point,a 95-μJ continuum, covering 370 nm to 430 nm at?20-dB intensity level,was achieved and the results are shown in Fig.3.After two pairs of chirped mirrors,the pulse energy was 78μJ.The spectrally broadened and compressed pulse was measured with TG-FROG, and the width of the main peak in the pulse envelop was 40 fs,the results are show in Fig.4.

    4. Results and discussion

    It is clear from Fig. 4(c) that the spectrally broadened pulse has a complex high-order chirp, resulting in a threepeak envelope. The slope of the phase curve around 390 nm is positive and the slope around 415 nm is negative. In the time domain, two satellite pulses appear on both sides of the center peak. As shown in Fig. 2(c), the phase of the incident pulse also has the same shape, and there are two satellite pulses in front and in back of the main peak,respectively.The two satellite pulses of the incident pulse have low intensity much weaker than the central peak. Therefore, the highorder chirp of the spectrally broadened pulse as measured by TG-FROG(Fig.4),is most likely carried over from the input pulse(Fig.2).

    Fig. 4. TG-FROG measurements of spectrally broadened pulse: (a) measured FROG trace, (b) retrieved FROG trace, (c) retrieved spectral intensity(solid)and phase(dashed),(d)normalized temporal intensity(solid)and phase(dashed)of pulse.

    We use the 3D propagation equation (Eq. (1)) to simulate the broadening results of the 400-nm pulses. In the simulation, the initial envelope takes the form of the input SHG pulse envelope directly measured by TG-FROG in the experiment(Fig.2). The simulation parameters are also the same as those in the experiment. Figure 5 shows good agreement between simulated result and experimental measurement.As observed in experimental result and simulation result, the spectral broadening of 400-nm pulses is not so pronounced as in the 800-nm experiment under similar experimental conditions, which is maily due to the fact that self-steepening is weak when the pulse is long. When a pulse of several hundred femtoseconds is broadened in fiber[22]or multipass cells(MPC),[23]only pure SPM and Raman effect take place, and the spectral lines are broadened symmetrically on both sides of the central wavelength,as obtained in the experiment.

    Fig.5. Experimental(dashed)and simulated(solid)broadened spectra.

    In Eq. (1), the collision ionization and multiphoton ionization of the fifth and sixth terms reduce the pulse intensityI.Excessive ionization leads to pulse splitting and loss of spectral coherence. We place the fused silica away from the focus to avoid being excessively ionized,but not too far away from the focus to obtain as wide a spectrum as possible. In the experiment,when we move the fused silica along the optical axis close to the focus,the spectrum is broadened significantly but with a decrease of power. This shows that the ionization at the focus leads to strong broadening, resulting in a large loss of laser energy. At the same time, when we focus the laser directly in the air in the experiment,the spectrum broadening is negligible. This means that the spectrum broadening originates from the nonlinear effect in fused silica.

    As indicated in Eq. (1), the SPM and self-steepening terms are proportional to intensityI,while the ionization termW(I) is proportional toI6. Therefore, the ionization process(thus free electron density in the medium)is more sensitive to the intensity variation than the SPM and self-steepening. The self-focusing threshold is 0.6 MW in fused silica at 400 nm.[24]Under our experimental condition,self-focusing takes place in each piece of silica. In the simulation,we calculate the change of electron density as the beam propagates through each piece of fused silica. Self-focusing leads the beam size to decrease and the beam intensity to increase in the fused silica plates so that the free electron density increases correspondingly.

    The simulation result shows that the electron density in the second to fifth pieces of silica increases significantly with the beam propagation, which is provoked by self-focusing as shown in Fig.6. As the 400-nm pulse propagates through the silica plates,self-focusing takes place whenever the beam enters into the plate,therefore the spectrum is broadened. However,the focus of the self-focusing is formed outside the fused silica, and as the beam propagates through the focus into the divergence mode,it enters the next fused silica plate,where the same process is repeated. Until the peak power density of the beam becomes insufficient to produce further spectral broadening,at this point the process is over. This phenomenon has been discussed from the experimental point of view in previous study,[17]and now we confirm it with numerical simulation.

    The result also show that the electron density reaches a maximum value in the fourth piece of fused silica(Fig.6),this is consistent with the fact that the fourth piece is placed closest to the beam focus and the laser intensity reaches the maximum value in the thin plates. The maximum electron density is calculated to be 5×1015mm?3,where the density of SiO2molecules in fused silica is 2.1×1019mm?3, and the electron density is safely below the documented avalanche plasma density of 2.1×1017mm?3.[17,25]In the experiments,ionization does not produce visible filaments in the thin plates in the broadening process.

    Fig.6. Electron density changes in each fused silica.

    A large electron density and a large variation of the electron density during the propagation will affect the spectral phase and wavefront of the pulse significantly. In our simulation result,the electron density in the fused silica plates is at a low level, well below the avalanche plasma density, and its variation in each thin plate is also well within an order of magnitude or even less.At the same time,low electron density also results in the low loss of the laser energy and low modulation of the phase. This indicates that the spectral broadening observed after the beam has propagated through the fused silica plates is induced mostly by phase modulation caused by Kerr effect. It is important in spectral broadening experiments with multiple thin plates to minimize the ionization and plasma effect to avoid energy loss and unexpected phase variation.

    5. Conclusions and perspectives

    In summary, we achieve spectrum broadening of pulses with complex dispersion. We use 6 pieces of 100-μm-thick fused silica for spectrum broadening at 400-nm central wavelength,and obtain a spectrum covering a range from 365 nm to 445 nm.We employ a 3D propagation equation to simulate the spectrum broadening process in multiple solid thin plates.The numerical simulation results are in excellent agreement with the experimental observations. Our calculations reproduce the experimental process very well. We find experimentally that the strong self-focusing occurs in the silica plates in the spectrum broadening process, and we use the change of electron density to confirm this interesting process. The calculations conduce to clearly describing the whole spectrum broadening process in multiple thin plates. Finally,the calculation shows that the electron density in the broadening process is always safely below the documented avalanche plasma density, and confirms that the ionization or plasma effect does not play a major role in the spectral broadening process.

    Acknowledgment

    The authors are grateful to Prof. Chengyin Wu and Dr.Zhiming Miao for providing the laser beam and for their helpful discussion as well.

    猜你喜歡
    思源
    《山間》
    青年文學家(2023年8期)2023-06-14 07:56:30
    “筷子翻書”挑戰(zhàn)賽
    My Dreams
    磨刀不誤砍柴工
    定積分及其應用
    可怕的霧霾
    注意!頭痛可能預示著甲狀腺問題
    健康女性(2016年11期)2017-02-14 13:22:31
    Hippie
    思源致遠 繼往開來
    ——記4808工廠威海修船廠
    中國修船(2016年6期)2016-06-23 10:04:05
    陳永龍:思源致遠
    国产精品久久电影中文字幕| 久久人人爽av亚洲精品天堂| 国产精品电影一区二区三区| 亚洲五月色婷婷综合| 最好的美女福利视频网| 亚洲精品粉嫩美女一区| 久久午夜亚洲精品久久| 成人影院久久| 久久香蕉精品热| 无遮挡黄片免费观看| 国产精品日韩av在线免费观看 | 在线av久久热| 在线看a的网站| 两性夫妻黄色片| 国产成人啪精品午夜网站| 怎么达到女性高潮| 久久婷婷成人综合色麻豆| 久久精品aⅴ一区二区三区四区| 成人免费观看视频高清| 国产国语露脸激情在线看| 最近最新中文字幕大全电影3 | 亚洲精品国产一区二区精华液| 久久精品国产综合久久久| 亚洲人成网站在线播放欧美日韩| 欧美午夜高清在线| 满18在线观看网站| 午夜久久久在线观看| 亚洲自偷自拍图片 自拍| 97碰自拍视频| 国产精品九九99| 久久午夜亚洲精品久久| 亚洲 欧美一区二区三区| 在线观看www视频免费| 两个人免费观看高清视频| 国产伦人伦偷精品视频| 大码成人一级视频| a级毛片黄视频| 国产在线观看jvid| 亚洲一码二码三码区别大吗| 色尼玛亚洲综合影院| av电影中文网址| www.自偷自拍.com| 午夜福利在线免费观看网站| 色婷婷av一区二区三区视频| 午夜福利影视在线免费观看| 亚洲成人精品中文字幕电影 | 欧美久久黑人一区二区| 久久香蕉精品热| 亚洲精品一二三| 母亲3免费完整高清在线观看| 女警被强在线播放| 色综合欧美亚洲国产小说| 亚洲精品国产色婷婷电影| 久久国产精品人妻蜜桃| 国产成人av激情在线播放| 日韩大尺度精品在线看网址 | 亚洲欧美日韩高清在线视频| 99热国产这里只有精品6| av福利片在线| 精品免费久久久久久久清纯| 色精品久久人妻99蜜桃| 亚洲五月婷婷丁香| 成年女人毛片免费观看观看9| 美国免费a级毛片| 国产男靠女视频免费网站| 久久久国产精品麻豆| a在线观看视频网站| 国产人伦9x9x在线观看| 一区二区三区激情视频| 国产精品九九99| 国产精品美女特级片免费视频播放器 | x7x7x7水蜜桃| 老司机深夜福利视频在线观看| 久久人人精品亚洲av| 亚洲性夜色夜夜综合| 久久久精品国产亚洲av高清涩受| 搡老熟女国产l中国老女人| 国产深夜福利视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产激情久久老熟女| 女性被躁到高潮视频| 亚洲国产精品999在线| 丝袜美腿诱惑在线| 欧美另类亚洲清纯唯美| 麻豆成人av在线观看| 国产又色又爽无遮挡免费看| 一个人观看的视频www高清免费观看 | 亚洲成a人片在线一区二区| 99久久99久久久精品蜜桃| 乱人伦中国视频| 大陆偷拍与自拍| 老司机午夜十八禁免费视频| 色婷婷久久久亚洲欧美| 国产不卡一卡二| 国产精品久久久久久人妻精品电影| 人妻久久中文字幕网| 国产精品国产高清国产av| 国产不卡一卡二| 国产精品 国内视频| 日韩欧美在线二视频| 侵犯人妻中文字幕一二三四区| 亚洲视频免费观看视频| 香蕉丝袜av| 精品免费久久久久久久清纯| 搡老岳熟女国产| 女人高潮潮喷娇喘18禁视频| 亚洲美女黄片视频| 精品国产一区二区三区四区第35| 黄片小视频在线播放| 91成年电影在线观看| a在线观看视频网站| 99香蕉大伊视频| 亚洲免费av在线视频| 级片在线观看| 在线国产一区二区在线| www日本在线高清视频| 精品一区二区三区视频在线观看免费 | 欧美日韩黄片免| 黄色视频不卡| 老司机午夜福利在线观看视频| 国产精品国产高清国产av| 男女做爰动态图高潮gif福利片 | 美女高潮到喷水免费观看| 精品高清国产在线一区| 在线观看66精品国产| 日本五十路高清| 国产亚洲欧美在线一区二区| 两性夫妻黄色片| 亚洲免费av在线视频| 亚洲欧洲精品一区二区精品久久久| 曰老女人黄片| 亚洲国产精品sss在线观看 | 一级,二级,三级黄色视频| 最新在线观看一区二区三区| 一级毛片精品| 成人av一区二区三区在线看| 久久天堂一区二区三区四区| 中文字幕另类日韩欧美亚洲嫩草| 人人妻人人澡人人看| svipshipincom国产片| 窝窝影院91人妻| 亚洲一区二区三区不卡视频| 一边摸一边做爽爽视频免费| 国产一区二区三区视频了| 99国产极品粉嫩在线观看| 在线永久观看黄色视频| 久久久精品欧美日韩精品| 色精品久久人妻99蜜桃| 精品日产1卡2卡| 怎么达到女性高潮| 欧美国产精品va在线观看不卡| 色哟哟哟哟哟哟| 午夜a级毛片| 淫秽高清视频在线观看| 两性夫妻黄色片| 国产av一区在线观看免费| 午夜91福利影院| 国产亚洲精品久久久久久毛片| 午夜福利欧美成人| 久久久久久久午夜电影 | 一边摸一边抽搐一进一出视频| 嫩草影视91久久| 国产又爽黄色视频| 国产成年人精品一区二区 | 久久香蕉精品热| 婷婷六月久久综合丁香| 亚洲欧美一区二区三区黑人| 别揉我奶头~嗯~啊~动态视频| 人人澡人人妻人| 好看av亚洲va欧美ⅴa在| 在线观看66精品国产| 亚洲精品一区av在线观看| 免费av毛片视频| 免费观看人在逋| 久久久国产成人免费| 久久久久久久久免费视频了| 国产伦一二天堂av在线观看| 欧美日韩黄片免| 黄色女人牲交| 国产伦人伦偷精品视频| 国产极品粉嫩免费观看在线| 免费av中文字幕在线| 美女福利国产在线| 妹子高潮喷水视频| 午夜福利免费观看在线| 亚洲精品国产色婷婷电影| 欧美一区二区精品小视频在线| 99国产综合亚洲精品| 国产精品 欧美亚洲| 每晚都被弄得嗷嗷叫到高潮| 亚洲aⅴ乱码一区二区在线播放 | 一夜夜www| 人妻久久中文字幕网| 女人爽到高潮嗷嗷叫在线视频| 久久精品91蜜桃| 欧美激情极品国产一区二区三区| 夫妻午夜视频| 精品人妻1区二区| 久久久久久久久久久久大奶| 久久久久久久久中文| 美女午夜性视频免费| 国产色视频综合| 亚洲国产欧美网| 欧美黑人精品巨大| 国产麻豆69| 国产精品98久久久久久宅男小说| 国产午夜精品久久久久久| 老司机午夜福利在线观看视频| 亚洲成人免费电影在线观看| 狠狠狠狠99中文字幕| 精品一区二区三区av网在线观看| 男女下面进入的视频免费午夜 | 长腿黑丝高跟| 人妻久久中文字幕网| 国产一区二区三区视频了| 日韩欧美免费精品| 久久影院123| 99久久人妻综合| 一个人观看的视频www高清免费观看 | 欧美另类亚洲清纯唯美| 国产精品影院久久| 国产精品偷伦视频观看了| 看黄色毛片网站| 国产主播在线观看一区二区| 老司机午夜十八禁免费视频| 国产一区二区三区视频了| 亚洲精品中文字幕一二三四区| 我的亚洲天堂| 日韩欧美一区视频在线观看| 久久久久久亚洲精品国产蜜桃av| 麻豆久久精品国产亚洲av | 黄网站色视频无遮挡免费观看| 一个人免费在线观看的高清视频| 淫妇啪啪啪对白视频| 亚洲成人精品中文字幕电影 | av免费在线观看网站| 亚洲中文av在线| 老司机福利观看| 999精品在线视频| 亚洲欧美一区二区三区黑人| 在线国产一区二区在线| www.999成人在线观看| 久久久国产成人精品二区 | 性欧美人与动物交配| 999久久久精品免费观看国产| 精品福利永久在线观看| 亚洲色图综合在线观看| 黄片小视频在线播放| 两人在一起打扑克的视频| 色老头精品视频在线观看| 成年人免费黄色播放视频| 国产激情久久老熟女| 日韩欧美国产一区二区入口| 色精品久久人妻99蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品美女久久久久99蜜臀| 少妇的丰满在线观看| 色哟哟哟哟哟哟| 叶爱在线成人免费视频播放| 久久国产亚洲av麻豆专区| 黄色女人牲交| 性欧美人与动物交配| 纯流量卡能插随身wifi吗| 亚洲精华国产精华精| 中文字幕高清在线视频| 欧美黑人欧美精品刺激| 成熟少妇高潮喷水视频| 最好的美女福利视频网| 18禁黄网站禁片午夜丰满| 九色亚洲精品在线播放| 亚洲国产精品一区二区三区在线| 女人爽到高潮嗷嗷叫在线视频| 99国产精品免费福利视频| 欧美一级毛片孕妇| 乱人伦中国视频| 大香蕉久久成人网| 老司机在亚洲福利影院| 香蕉丝袜av| 亚洲 欧美一区二区三区| 国产av一区二区精品久久| aaaaa片日本免费| 久久久久久免费高清国产稀缺| 国产成人精品久久二区二区91| 久久 成人 亚洲| 国产欧美日韩一区二区三| 女人精品久久久久毛片| 欧美+亚洲+日韩+国产| 久久久久国内视频| 国产精品国产高清国产av| 午夜福利在线免费观看网站| 免费一级毛片在线播放高清视频 | 欧美乱妇无乱码| 色老头精品视频在线观看| 91成年电影在线观看| 久久久久久久久免费视频了| 亚洲成人国产一区在线观看| www.熟女人妻精品国产| 久久狼人影院| 精品日产1卡2卡| 91成人精品电影| 久9热在线精品视频| 黄色成人免费大全| 国产成人精品无人区| 久久精品国产综合久久久| 十八禁网站免费在线| www.精华液| 村上凉子中文字幕在线| 午夜老司机福利片| 亚洲成人久久性| 久久精品成人免费网站| 9热在线视频观看99| 日韩欧美免费精品| 国产亚洲精品一区二区www| 国产一区二区激情短视频| 久久国产精品人妻蜜桃| 18禁国产床啪视频网站| 成人18禁在线播放| 久久精品国产亚洲av香蕉五月| e午夜精品久久久久久久| 丝袜在线中文字幕| 欧美日韩视频精品一区| 超碰97精品在线观看| 中国美女看黄片| 欧美 亚洲 国产 日韩一| 成在线人永久免费视频| av电影中文网址| 久久久久久久午夜电影 | 免费观看人在逋| 一区二区三区国产精品乱码| 国产一区二区在线av高清观看| 欧美大码av| 亚洲国产看品久久| 中出人妻视频一区二区| 国产在线观看jvid| 中文字幕色久视频| 一级a爱片免费观看的视频| 精品无人区乱码1区二区| 丝袜在线中文字幕| 亚洲五月婷婷丁香| 亚洲精品在线美女| 亚洲人成电影观看| 一区二区三区激情视频| 成人手机av| 老司机在亚洲福利影院| 久久久久久久久久久久大奶| 97人妻天天添夜夜摸| 性色av乱码一区二区三区2| 中文字幕高清在线视频| 国产精品爽爽va在线观看网站 | 黄色片一级片一级黄色片| 国产99白浆流出| 日韩高清综合在线| 黑人巨大精品欧美一区二区mp4| 高清黄色对白视频在线免费看| 欧美乱色亚洲激情| 18禁美女被吸乳视频| 国产亚洲精品一区二区www| 国产成人精品在线电影| 欧美日韩国产mv在线观看视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲第一欧美日韩一区二区三区| 村上凉子中文字幕在线| 国产单亲对白刺激| 99re在线观看精品视频| 国产激情久久老熟女| 精品一区二区三卡| 久久久国产一区二区| 美女大奶头视频| 国产单亲对白刺激| 日韩 欧美 亚洲 中文字幕| 国产亚洲欧美98| 人人妻,人人澡人人爽秒播| 国产成人一区二区三区免费视频网站| 亚洲专区中文字幕在线| 视频区图区小说| 日韩免费av在线播放| 波多野结衣一区麻豆| 日本黄色视频三级网站网址| 亚洲色图 男人天堂 中文字幕| 少妇 在线观看| 一级,二级,三级黄色视频| 国产精品98久久久久久宅男小说| 视频在线观看一区二区三区| 国产亚洲av高清不卡| 日韩大码丰满熟妇| 中文亚洲av片在线观看爽| 18禁裸乳无遮挡免费网站照片 | 最新美女视频免费是黄的| 久久精品国产清高在天天线| 久久热在线av| 亚洲精品美女久久久久99蜜臀| 黄色a级毛片大全视频| 免费在线观看完整版高清| 国产精品一区二区免费欧美| 欧美日本中文国产一区发布| 日日爽夜夜爽网站| 免费高清在线观看日韩| 丝袜美足系列| 国产亚洲精品久久久久5区| 日韩免费高清中文字幕av| 免费观看人在逋| 亚洲色图综合在线观看| 两个人免费观看高清视频| 中出人妻视频一区二区| 巨乳人妻的诱惑在线观看| 亚洲色图 男人天堂 中文字幕| 9热在线视频观看99| 亚洲国产欧美一区二区综合| 少妇 在线观看| 国产成人影院久久av| 在线观看www视频免费| 如日韩欧美国产精品一区二区三区| 亚洲精品在线美女| 免费在线观看黄色视频的| ponron亚洲| 日本wwww免费看| 波多野结衣高清无吗| 色婷婷av一区二区三区视频| 免费少妇av软件| 久久伊人香网站| 1024香蕉在线观看| 免费观看精品视频网站| 久久久久久久午夜电影 | 一进一出抽搐动态| 人人妻,人人澡人人爽秒播| 亚洲成国产人片在线观看| av在线播放免费不卡| 亚洲男人的天堂狠狠| 黄色女人牲交| 高潮久久久久久久久久久不卡| 成年人免费黄色播放视频| 国产成人av激情在线播放| 19禁男女啪啪无遮挡网站| 久久久久久久久中文| 嫩草影院精品99| 欧美人与性动交α欧美软件| 最近最新免费中文字幕在线| 热re99久久精品国产66热6| 欧美日韩一级在线毛片| 日本五十路高清| 国产成人欧美在线观看| 精品一区二区三卡| 久久热在线av| 露出奶头的视频| 一区二区三区国产精品乱码| 51午夜福利影视在线观看| 曰老女人黄片| 久久午夜亚洲精品久久| 国产av在哪里看| av网站在线播放免费| 一进一出好大好爽视频| 国产成人免费无遮挡视频| 精品国产乱码久久久久久男人| 欧美日韩av久久| 久久性视频一级片| 亚洲伊人色综图| 老司机午夜福利在线观看视频| 午夜福利一区二区在线看| 人人妻人人添人人爽欧美一区卜| 99精国产麻豆久久婷婷| 亚洲一区中文字幕在线| 久久九九热精品免费| 淫秽高清视频在线观看| 色播在线永久视频| 免费人成视频x8x8入口观看| 超碰97精品在线观看| 国产成人一区二区三区免费视频网站| 99re在线观看精品视频| 黄色a级毛片大全视频| 久久久精品欧美日韩精品| 色老头精品视频在线观看| 一区二区三区精品91| www.自偷自拍.com| 国产精品久久电影中文字幕| 亚洲精品美女久久av网站| 91在线观看av| 国产成人精品无人区| 久久精品91蜜桃| x7x7x7水蜜桃| 久久精品国产亚洲av香蕉五月| 亚洲精品久久午夜乱码| 少妇裸体淫交视频免费看高清 | 少妇裸体淫交视频免费看高清 | 久久精品aⅴ一区二区三区四区| xxx96com| 90打野战视频偷拍视频| 丝袜美足系列| 俄罗斯特黄特色一大片| 欧美日韩av久久| 真人一进一出gif抽搐免费| 涩涩av久久男人的天堂| 国产精品永久免费网站| 久久久久久久午夜电影 | 国产欧美日韩一区二区精品| 亚洲精品一区av在线观看| 黑人猛操日本美女一级片| 国产午夜精品久久久久久| 欧美性长视频在线观看| 成人手机av| 免费看a级黄色片| 亚洲国产中文字幕在线视频| 亚洲精品粉嫩美女一区| 色老头精品视频在线观看| 在线观看免费日韩欧美大片| 日本五十路高清| 男女高潮啪啪啪动态图| 久久久久久久午夜电影 | 亚洲色图 男人天堂 中文字幕| 国产亚洲精品第一综合不卡| 高清在线国产一区| 一个人免费在线观看的高清视频| 国产精品免费视频内射| 精品无人区乱码1区二区| 久久国产精品男人的天堂亚洲| 成人18禁在线播放| 成年人免费黄色播放视频| 亚洲欧美一区二区三区久久| 十八禁人妻一区二区| 亚洲精品中文字幕在线视频| 桃红色精品国产亚洲av| 欧美日韩亚洲高清精品| 亚洲欧美精品综合久久99| 午夜福利,免费看| 午夜91福利影院| 在线看a的网站| 免费在线观看影片大全网站| 国产单亲对白刺激| 久久亚洲精品不卡| 国产精品野战在线观看 | 久久人人爽av亚洲精品天堂| 叶爱在线成人免费视频播放| 成人特级黄色片久久久久久久| 91国产中文字幕| 最好的美女福利视频网| 最近最新中文字幕大全电影3 | 水蜜桃什么品种好| 国产精品美女特级片免费视频播放器 | 国产亚洲av高清不卡| 热99re8久久精品国产| 精品一品国产午夜福利视频| 免费一级毛片在线播放高清视频 | 亚洲人成伊人成综合网2020| 老司机亚洲免费影院| 中文字幕另类日韩欧美亚洲嫩草| 不卡一级毛片| 欧美乱妇无乱码| 18禁观看日本| 国产成人啪精品午夜网站| 亚洲视频免费观看视频| 丝袜美足系列| 嫁个100分男人电影在线观看| 999久久久精品免费观看国产| 色婷婷av一区二区三区视频| av视频免费观看在线观看| 多毛熟女@视频| 久久精品影院6| 欧美不卡视频在线免费观看 | 精品久久久久久久久久免费视频 | 成人手机av| 国产欧美日韩一区二区三区在线| 男人的好看免费观看在线视频 | 看片在线看免费视频| 国产又色又爽无遮挡免费看| 亚洲一卡2卡3卡4卡5卡精品中文| 三上悠亚av全集在线观看| 成人黄色视频免费在线看| 国产深夜福利视频在线观看| 国产精品永久免费网站| 精品乱码久久久久久99久播| 91老司机精品| 久久人妻熟女aⅴ| 又黄又爽又免费观看的视频| 国产成人av教育| 在线永久观看黄色视频| 怎么达到女性高潮| 交换朋友夫妻互换小说| 亚洲精品在线观看二区| 色综合欧美亚洲国产小说| 琪琪午夜伦伦电影理论片6080| 麻豆成人av在线观看| 国产av又大| 午夜a级毛片| 9191精品国产免费久久| 亚洲九九香蕉| 999精品在线视频| 日韩欧美在线二视频| 国产精品久久久av美女十八| 久久 成人 亚洲| 十八禁人妻一区二区| 91字幕亚洲| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美一区二区三区黑人| 亚洲三区欧美一区| 久久草成人影院| 女性生殖器流出的白浆| 欧美人与性动交α欧美软件| 国产极品粉嫩免费观看在线| 国产91精品成人一区二区三区| 亚洲 欧美一区二区三区| 国产成人精品久久二区二区91| 97碰自拍视频| 高清av免费在线| 成人免费观看视频高清| 亚洲 欧美 日韩 在线 免费| 99久久综合精品五月天人人| 欧美激情 高清一区二区三区| 欧美性长视频在线观看| 在线看a的网站| 亚洲一区二区三区色噜噜 | netflix在线观看网站| 久久精品亚洲av国产电影网| www日本在线高清视频| 丝袜人妻中文字幕| 成人三级黄色视频| 看黄色毛片网站|