• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variation of electron density in spectral broadening process in solid thin plates at 400 nm?

    2021-10-28 07:10:34SiYuanXu許思源YiTanGao高亦談XiaoXianZhu朱孝先KunZhao趙昆JiangFengZhu朱江峰andZhiYiWei魏志義
    Chinese Physics B 2021年10期
    關鍵詞:思源

    Si-Yuan Xu(許思源) Yi-Tan Gao(高亦談) Xiao-Xian Zhu(朱孝先)Kun Zhao(趙昆) Jiang-Feng Zhu(朱江峰) and Zhi-Yi Wei(魏志義)

    1School of Physics and Optoelectronic Engineering,Xidian University,Xi’an 710071,China

    2Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    3University of Chinese Academy of Sciences,Beijing 100049,China

    4Songshan Lake Material Laboratory,Dongguan 523808,China

    Keywords: nonlinear spectral broadening,time-dependent nonlinear Schr¨odinger equation,self-phase modulation,electron density

    1. Introduction

    Supercontinuum generation is a key to the production of ultrashort femtosecond (1 fs=10?15s) laser pulses.Nowadays, a state-of-the-art titanium-sapphire (Ti:sapphire)chirped-pulse amplifier delivers pulses as short as 13 fs at an 800-nm central wavelength, which still contains almost 5 cycles.[1]The mainstream technique of few-cycle pulse generation is to compress multi-cycle pulses from laser amplifiers with inert-gas-filled hollow-core fibers[2,3]or multiple solid thin plates,[4,5]which broaden the spectrum of the input pulses by self-phase modulation (SPM),[6]and self-steepening.[7]Spectra of more than one octave have been obtained experimentally using hollow-core fibers and multiple thin plates,and utilized to stabilize the carrier-envelope phase (CEP) of the pulses.[8]Few-cycle laser pulses with CEP stabilized are an ideal driver for producing isolated attosecond(1 as=10?18s)pulses through high-order harmonic generation(HHG)in the extreme ultraviolet (XUV) band,[9,10]which is an excellent tool for studying dynamics in atoms and molecules with attosecond time resolution.[11]In HHG, driving pulses with shorter wavelengths have the potential to improve the efficiency and obtain high-flux high-order harmonics and attosecond pulses.[12]

    Femtosecond pulses at 400 nm with a broad spectrum are usually generated by two methods. The first method is to directly double the frequency of a broadband 800-nm pulse,but the output beam in such a scheme carries angular dispersion and broadband frequency doubling is usually challenging and inefficient. The second method is to produce a relatively narrow-band 400-nm femtosecond pulse followed by spectral broadening to produce the desired broad spectrum at 400 nm.Supercontinuum generation by a hollow-core fiber is a very mature technic, while in recent years many groups have used multiple solid thin plates to broaden the spectrum at different wavelengths. Pulses shorter than 10 fs have been obtained at 400 nm,with a spectrum covering 365 nm to 425 nm at?20-dB intensity level.[13,14]To this end, we investigate the generation of continuous spectrum centered at 400 nm from solid thin plates experimentally and numerically. We calculate the change of electron density in the medium to confirm the occurrence of the self-focusing process,and prove our experimental process safely below the documented avalanche plasma density.

    2. Simulation model

    Here, we use the three-dimensional (3D) propagation equation to simulate femtosecond laser pulses at 400 nm to be spectrally broadened by multiple thin plates. The propagation equation is a generalized time-dependent Schr¨odinger equation(TDSE)[15–18]

    Here,zis the propagation variable,tis the retarded time,andUis the linearly-polarized electric field in the form of[15]

    withω0being the angular frequency of the carrier wave,k0the wave vector,andcthe speed of light in vacuum,I=|U|2is the intensity of the optical field,Tis an approximated differential time operator, as given in Eq. (3), which plays an important role in self-steepening and spatiotemporal coupling.The first term of Eq. (1) is for diffraction. The operator ?describes the spatial change of the pulse during propagation.The second term is for dispersion, andDis an operator accounting for dispersions as shown in Eq. (4), whereknis the corresponding dispersion coefficient. The third term refers to the Kerr focusing effect,containing self-phase modulation and self-steepening. Here we have omitted the Raman-delayed nonlinear response, because the pulse width in our simulation is shorter than the Raman-delayed nonlinear response time which is on the order of hundreds of femtoseconds.[15]The fourth term incarnates the nonlinearity caused by ionization, whereρis the ionized electron density in the medium,ρcthe critical plasma density, and the initial density of SiO2molecules in fused silicaρnt=2.1×1019mm?3.[16]The fifth term reflects the impact ionization, and the collision crosssectionσis corresponding to a central frequencyω0. The last term represents the multiphoton absorption.

    Solving the generalized nonlinear Schr¨odinger equation is an effective analytical method of solving the problem of pulse propagation in the medium. However, the quantity of data and time for 3D calculation are extremely large when the spatial variation, dispersion, and nonlinear terms of the pulse are calculated at the same time.We employ the split-step Fourier algorithm and calculate the linear(diffraction and dispersion) and nonlinear (Kerr nonlinearity and plasma effect)terms separately.

    The basic principle of the application of the split-step Fourier transform method in nonlinear propagation equations is to convert high-order partial differential terms into frequency domain and momentum domain through Fourier transform to reduce the quantity of calculations. After the calculation is completed,the result is converted back into the spacetime domain by the inverse Fourier transform to perform operations on the remaining regular terms or low-order partial differential terms. The split-step Fourier algorithm calculates the propagation of the pulse in the medium in sections. In each segment, cyclically execution provides all the information about the final time domain of the pulse. In particular,in the calculation,we converted the terms containing high-order partial differentials such as the diffraction term and the dispersion term into the frequency domain and momentum domain for calculation, while other nonlinear terms are placed in the space-time term for calculation.

    Because the required nonlinear Schr¨odinger equation includes high-order partial differential calculations,and the nonlinear term is coupled with the parameters in pulse time domain,the propagation equation cannot be solved analytically,but it can do numerically. The split-step Fourier method has the advantages of fast calculation speed and high precision when solving this kind of problem. The disadvantage is that this method still requires significant computing power. If we consider higher-order nonlinear processes, we need to add more terms, which brings more difficulties to the calculation process.

    In this study, we ignore the response of the air, and only calculate the pulse propagation in the solid material,because outside the solid plates the spectral width is practically unchanged.[17]The ionization rateW(I) for silica is taken from Keldysh’s multiphoton rate[16]as described in Eq. (5). Fused silica, with which spectral broadening has been observed in experiment, is chosen as the medium in this study. The nonlinear refractive indexn2for fused silica is 2.52×10?16cm2/W at 800 nm and 2.49×10?16cm2/W at 400 nm.[19]The ionization potentialUiis 9 eV for fused silica,[16]the avalanche cross-sectionσis 6×10?18cm2,and the recombination timeτrecis 27 fs.[15]

    The input pulse is at a center wavelength of 400 nm,and we use 100-μm-thick fused silica plates. The initial pulse energy is taken to be 125 μJ. In the calculation, the initial pulse envelope is the envelope after second harmonic generation(SHG),measured by transient grating frequency-resolved optical gating[20](TG-FROG)setup in the experiment.

    3. Experiment

    In the experiment, pulses of 5 mJ at 1 kHz, 790 nm were emitted from a Ti:sapphire laser system. The transformlimited pulse width was 35 fs but the pulse was actually measured to be 53 fs,which is due to the residual high-order chirp out of the laser compressor. The experimental setup is illustrated in Fig.1.A portion of 600μJ of the output pulse was reflected into the experiment by a beam splitter.A telescope was employed to shrink the beam diameter, which was composed of two lenses, a plano-convex lens withf=300 mm and a plano-concave one withf=?100 mm. The distance between the two lenses was 200 mm. After the telescope, a 140-μmthick barium borate crystal (BBO) was used to generate the second harmonic. The BBO was cut for type-I (o+o→e)phase matching(θ=29.2°,?=0°). The polarization of second harmonic was changed by type-I phase matching in BBO,fromptos. The second harmonic pulses of 145μJ at a center wavelength of 395 nm were obtained after BBO, with a beam radius of 2.5 mm. A set of climbing mirrors were used to change the polarization back top. One of the climbing mirrors was dichroic with high reflectance at 400 nm and high transmission at 800 nm.One pair of chirped mirrors were used to compress the second harmonic pulses to 64 fs with 125μJ,characterized by a homemade TG-FROG setup,[21]and the results are shown in Fig.2.

    Fig.1. Experimental setup for 400-nm continuum generation.

    Fig. 2. TG-FROG measurements of the second harmonic pulses, showing (a) measured FROG trace, (b) retrieved FROG trace, (c) retrieved spectral intensity(solid)and phase(dashed),and(d)normalized temporal intensity(solid)and phase(dashed)of the pulse.

    Fig.3.Spectrum of input second harmonic generation(SHG)pulse(dashed)and continuum(solid)after spectral broadening.

    A 500-mm lens was used to focus the second harmonic beam into a 120-μm spot at the focus, where the peak intensity was 6.7×1012W/cm2. The beam propagated through six thin fused silica plates each with a thickness of 100 μm,placed near the focus. The first plate was 15 cm in front of the focus, the distances from the plate in front for the remaining five plates were 8 cm,2 cm,2 cm,2 cm,and 1.5 cm,respectively. The plates were placed at the Brewster’s angle(55.8°)to reduce loss. The beam out of the thin plates was collimated by anf=800 mm aluminium concave mirror. At this point,a 95-μJ continuum, covering 370 nm to 430 nm at?20-dB intensity level,was achieved and the results are shown in Fig.3.After two pairs of chirped mirrors,the pulse energy was 78μJ.The spectrally broadened and compressed pulse was measured with TG-FROG, and the width of the main peak in the pulse envelop was 40 fs,the results are show in Fig.4.

    4. Results and discussion

    It is clear from Fig. 4(c) that the spectrally broadened pulse has a complex high-order chirp, resulting in a threepeak envelope. The slope of the phase curve around 390 nm is positive and the slope around 415 nm is negative. In the time domain, two satellite pulses appear on both sides of the center peak. As shown in Fig. 2(c), the phase of the incident pulse also has the same shape, and there are two satellite pulses in front and in back of the main peak,respectively.The two satellite pulses of the incident pulse have low intensity much weaker than the central peak. Therefore, the highorder chirp of the spectrally broadened pulse as measured by TG-FROG(Fig.4),is most likely carried over from the input pulse(Fig.2).

    Fig. 4. TG-FROG measurements of spectrally broadened pulse: (a) measured FROG trace, (b) retrieved FROG trace, (c) retrieved spectral intensity(solid)and phase(dashed),(d)normalized temporal intensity(solid)and phase(dashed)of pulse.

    We use the 3D propagation equation (Eq. (1)) to simulate the broadening results of the 400-nm pulses. In the simulation, the initial envelope takes the form of the input SHG pulse envelope directly measured by TG-FROG in the experiment(Fig.2). The simulation parameters are also the same as those in the experiment. Figure 5 shows good agreement between simulated result and experimental measurement.As observed in experimental result and simulation result, the spectral broadening of 400-nm pulses is not so pronounced as in the 800-nm experiment under similar experimental conditions, which is maily due to the fact that self-steepening is weak when the pulse is long. When a pulse of several hundred femtoseconds is broadened in fiber[22]or multipass cells(MPC),[23]only pure SPM and Raman effect take place, and the spectral lines are broadened symmetrically on both sides of the central wavelength,as obtained in the experiment.

    Fig.5. Experimental(dashed)and simulated(solid)broadened spectra.

    In Eq. (1), the collision ionization and multiphoton ionization of the fifth and sixth terms reduce the pulse intensityI.Excessive ionization leads to pulse splitting and loss of spectral coherence. We place the fused silica away from the focus to avoid being excessively ionized,but not too far away from the focus to obtain as wide a spectrum as possible. In the experiment,when we move the fused silica along the optical axis close to the focus,the spectrum is broadened significantly but with a decrease of power. This shows that the ionization at the focus leads to strong broadening, resulting in a large loss of laser energy. At the same time, when we focus the laser directly in the air in the experiment,the spectrum broadening is negligible. This means that the spectrum broadening originates from the nonlinear effect in fused silica.

    As indicated in Eq. (1), the SPM and self-steepening terms are proportional to intensityI,while the ionization termW(I) is proportional toI6. Therefore, the ionization process(thus free electron density in the medium)is more sensitive to the intensity variation than the SPM and self-steepening. The self-focusing threshold is 0.6 MW in fused silica at 400 nm.[24]Under our experimental condition,self-focusing takes place in each piece of silica. In the simulation,we calculate the change of electron density as the beam propagates through each piece of fused silica. Self-focusing leads the beam size to decrease and the beam intensity to increase in the fused silica plates so that the free electron density increases correspondingly.

    The simulation result shows that the electron density in the second to fifth pieces of silica increases significantly with the beam propagation, which is provoked by self-focusing as shown in Fig.6. As the 400-nm pulse propagates through the silica plates,self-focusing takes place whenever the beam enters into the plate,therefore the spectrum is broadened. However,the focus of the self-focusing is formed outside the fused silica, and as the beam propagates through the focus into the divergence mode,it enters the next fused silica plate,where the same process is repeated. Until the peak power density of the beam becomes insufficient to produce further spectral broadening,at this point the process is over. This phenomenon has been discussed from the experimental point of view in previous study,[17]and now we confirm it with numerical simulation.

    The result also show that the electron density reaches a maximum value in the fourth piece of fused silica(Fig.6),this is consistent with the fact that the fourth piece is placed closest to the beam focus and the laser intensity reaches the maximum value in the thin plates. The maximum electron density is calculated to be 5×1015mm?3,where the density of SiO2molecules in fused silica is 2.1×1019mm?3, and the electron density is safely below the documented avalanche plasma density of 2.1×1017mm?3.[17,25]In the experiments,ionization does not produce visible filaments in the thin plates in the broadening process.

    Fig.6. Electron density changes in each fused silica.

    A large electron density and a large variation of the electron density during the propagation will affect the spectral phase and wavefront of the pulse significantly. In our simulation result,the electron density in the fused silica plates is at a low level, well below the avalanche plasma density, and its variation in each thin plate is also well within an order of magnitude or even less.At the same time,low electron density also results in the low loss of the laser energy and low modulation of the phase. This indicates that the spectral broadening observed after the beam has propagated through the fused silica plates is induced mostly by phase modulation caused by Kerr effect. It is important in spectral broadening experiments with multiple thin plates to minimize the ionization and plasma effect to avoid energy loss and unexpected phase variation.

    5. Conclusions and perspectives

    In summary, we achieve spectrum broadening of pulses with complex dispersion. We use 6 pieces of 100-μm-thick fused silica for spectrum broadening at 400-nm central wavelength,and obtain a spectrum covering a range from 365 nm to 445 nm.We employ a 3D propagation equation to simulate the spectrum broadening process in multiple solid thin plates.The numerical simulation results are in excellent agreement with the experimental observations. Our calculations reproduce the experimental process very well. We find experimentally that the strong self-focusing occurs in the silica plates in the spectrum broadening process, and we use the change of electron density to confirm this interesting process. The calculations conduce to clearly describing the whole spectrum broadening process in multiple thin plates. Finally,the calculation shows that the electron density in the broadening process is always safely below the documented avalanche plasma density, and confirms that the ionization or plasma effect does not play a major role in the spectral broadening process.

    Acknowledgment

    The authors are grateful to Prof. Chengyin Wu and Dr.Zhiming Miao for providing the laser beam and for their helpful discussion as well.

    猜你喜歡
    思源
    《山間》
    青年文學家(2023年8期)2023-06-14 07:56:30
    “筷子翻書”挑戰(zhàn)賽
    My Dreams
    磨刀不誤砍柴工
    定積分及其應用
    可怕的霧霾
    注意!頭痛可能預示著甲狀腺問題
    健康女性(2016年11期)2017-02-14 13:22:31
    Hippie
    思源致遠 繼往開來
    ——記4808工廠威海修船廠
    中國修船(2016年6期)2016-06-23 10:04:05
    陳永龍:思源致遠
    国产乱人偷精品视频| 国产一卡二卡三卡精品 | 成人毛片60女人毛片免费| 久久精品国产亚洲av高清一级| 制服丝袜香蕉在线| 最近最新中文字幕大全免费视频 | 大片免费播放器 马上看| 丝袜美足系列| 国产精品熟女久久久久浪| www日本在线高清视频| 男人爽女人下面视频在线观看| 99热全是精品| 纯流量卡能插随身wifi吗| 极品少妇高潮喷水抽搐| 久久精品熟女亚洲av麻豆精品| 久久精品aⅴ一区二区三区四区| 日韩视频在线欧美| 亚洲国产毛片av蜜桃av| 国产av一区二区精品久久| 免费少妇av软件| 涩涩av久久男人的天堂| 纯流量卡能插随身wifi吗| 97在线人人人人妻| 国产免费又黄又爽又色| 国产色婷婷99| 久久久欧美国产精品| 久久鲁丝午夜福利片| 亚洲,欧美,日韩| 波野结衣二区三区在线| 日韩人妻精品一区2区三区| 亚洲人成电影观看| 别揉我奶头~嗯~啊~动态视频 | 国产午夜精品一二区理论片| 日韩电影二区| 国产午夜精品一二区理论片| 在线天堂中文资源库| 国产有黄有色有爽视频| 汤姆久久久久久久影院中文字幕| av福利片在线| 中国三级夫妇交换| av一本久久久久| 美女福利国产在线| 国产精品嫩草影院av在线观看| 国产成人欧美| 91成人精品电影| 日韩电影二区| 国产男女超爽视频在线观看| 亚洲国产欧美一区二区综合| 人人妻人人澡人人看| av一本久久久久| 热99国产精品久久久久久7| 丁香六月天网| 国产女主播在线喷水免费视频网站| 自拍欧美九色日韩亚洲蝌蚪91| 女人爽到高潮嗷嗷叫在线视频| 亚洲av成人不卡在线观看播放网 | 黄片小视频在线播放| 亚洲一区二区三区欧美精品| 国产视频首页在线观看| 亚洲欧美日韩另类电影网站| 久久精品aⅴ一区二区三区四区| 人人妻人人爽人人添夜夜欢视频| 狠狠婷婷综合久久久久久88av| 精品一区二区三区四区五区乱码 | 一级a爱视频在线免费观看| 久久精品熟女亚洲av麻豆精品| 亚洲一码二码三码区别大吗| 成人影院久久| 青春草国产在线视频| 免费看不卡的av| 国产精品 国内视频| 亚洲国产欧美在线一区| 日韩中文字幕欧美一区二区 | 1024视频免费在线观看| 久久久久视频综合| 可以免费在线观看a视频的电影网站 | 免费不卡黄色视频| 制服诱惑二区| 欧美日韩视频精品一区| 亚洲美女黄色视频免费看| 亚洲欧美成人综合另类久久久| 免费观看a级毛片全部| 免费在线观看黄色视频的| 熟女少妇亚洲综合色aaa.| 日日爽夜夜爽网站| 美女国产高潮福利片在线看| 激情视频va一区二区三区| videos熟女内射| 热99久久久久精品小说推荐| 99精国产麻豆久久婷婷| 欧美日韩成人在线一区二区| av片东京热男人的天堂| 黑人欧美特级aaaaaa片| 女人爽到高潮嗷嗷叫在线视频| 国产乱来视频区| 波多野结衣av一区二区av| 人妻一区二区av| 欧美激情高清一区二区三区 | 麻豆精品久久久久久蜜桃| 高清在线视频一区二区三区| 国产成人午夜福利电影在线观看| 99国产综合亚洲精品| 日韩大码丰满熟妇| 成年女人毛片免费观看观看9 | 国产成人精品久久久久久| 成人手机av| av又黄又爽大尺度在线免费看| 9色porny在线观看| 又黄又粗又硬又大视频| 一边摸一边做爽爽视频免费| 中文字幕人妻丝袜制服| 欧美日韩综合久久久久久| 久久99精品国语久久久| 视频区图区小说| 人人澡人人妻人| 午夜福利影视在线免费观看| 男人舔女人的私密视频| 国产色婷婷99| 国产成人精品福利久久| 母亲3免费完整高清在线观看| 99精品久久久久人妻精品| 2018国产大陆天天弄谢| 丁香六月欧美| 少妇 在线观看| 国产野战对白在线观看| 十八禁网站网址无遮挡| 最近最新中文字幕大全免费视频 | 精品一区二区三区四区五区乱码 | 亚洲国产av新网站| 国产激情久久老熟女| 精品一区二区三区av网在线观看 | 老司机深夜福利视频在线观看 | 久久ye,这里只有精品| 亚洲欧美清纯卡通| 欧美日韩亚洲高清精品| 人妻 亚洲 视频| 美女脱内裤让男人舔精品视频| 国产精品成人在线| 一级毛片 在线播放| 制服人妻中文乱码| 美女国产高潮福利片在线看| 国产色婷婷99| 夫妻性生交免费视频一级片| 婷婷色麻豆天堂久久| 国产成人免费观看mmmm| 免费观看性生交大片5| 老司机在亚洲福利影院| 国产深夜福利视频在线观看| 国产又色又爽无遮挡免| 亚洲国产精品一区二区三区在线| 少妇人妻久久综合中文| 精品一区二区三区av网在线观看 | 亚洲精品中文字幕在线视频| 男人添女人高潮全过程视频| 99国产综合亚洲精品| 亚洲国产毛片av蜜桃av| 国产乱人偷精品视频| 国产精品国产三级国产专区5o| 老熟女久久久| 欧美人与善性xxx| av.在线天堂| 99精品久久久久人妻精品| 人人澡人人妻人| 久久人人爽人人片av| 国产xxxxx性猛交| 亚洲av电影在线进入| 别揉我奶头~嗯~啊~动态视频 | 国产不卡av网站在线观看| 高清黄色对白视频在线免费看| 99久久精品国产亚洲精品| 国产1区2区3区精品| 黄色 视频免费看| kizo精华| 日韩大码丰满熟妇| 久久久久精品国产欧美久久久 | 精品国产乱码久久久久久男人| 精品国产一区二区久久| 校园人妻丝袜中文字幕| 欧美亚洲日本最大视频资源| 人妻一区二区av| 汤姆久久久久久久影院中文字幕| 国精品久久久久久国模美| 免费黄网站久久成人精品| 51午夜福利影视在线观看| www.精华液| 亚洲精品中文字幕在线视频| 交换朋友夫妻互换小说| 色播在线永久视频| 国产精品二区激情视频| 欧美日韩亚洲国产一区二区在线观看 | 9191精品国产免费久久| 国产午夜精品一二区理论片| 亚洲成国产人片在线观看| 亚洲五月色婷婷综合| 伦理电影大哥的女人| 久久久久国产一级毛片高清牌| 精品国产超薄肉色丝袜足j| 美女脱内裤让男人舔精品视频| 伦理电影免费视频| 在线观看一区二区三区激情| 欧美日韩一级在线毛片| 亚洲国产精品成人久久小说| 日韩,欧美,国产一区二区三区| 一本—道久久a久久精品蜜桃钙片| 少妇人妻精品综合一区二区| 在线天堂最新版资源| 欧美精品av麻豆av| 国产xxxxx性猛交| 男人操女人黄网站| 一级黄片播放器| 色94色欧美一区二区| 夫妻午夜视频| 搡老岳熟女国产| 波多野结衣一区麻豆| 中文字幕精品免费在线观看视频| 日韩,欧美,国产一区二区三区| 中文精品一卡2卡3卡4更新| 在线观看www视频免费| 免费观看av网站的网址| 啦啦啦在线免费观看视频4| 日韩电影二区| 成人国产av品久久久| 在线天堂最新版资源| 久久久久久免费高清国产稀缺| 亚洲欧美成人精品一区二区| 国产一区亚洲一区在线观看| 久久久久久免费高清国产稀缺| 女性生殖器流出的白浆| 欧美少妇被猛烈插入视频| 久久久久久久大尺度免费视频| 男女免费视频国产| 啦啦啦视频在线资源免费观看| 一区福利在线观看| 七月丁香在线播放| 91精品伊人久久大香线蕉| 久久精品aⅴ一区二区三区四区| 人人妻人人澡人人看| 少妇人妻精品综合一区二区| 精品国产乱码久久久久久男人| 日韩av免费高清视频| 少妇人妻精品综合一区二区| 久久久欧美国产精品| 亚洲精品aⅴ在线观看| 亚洲综合色网址| 国产精品久久久久久精品电影小说| 成人午夜精彩视频在线观看| 母亲3免费完整高清在线观看| 黑人猛操日本美女一级片| 丝袜脚勾引网站| 国产淫语在线视频| 母亲3免费完整高清在线观看| 欧美另类一区| 少妇 在线观看| 亚洲第一青青草原| 国产精品一国产av| 看免费av毛片| 日韩制服丝袜自拍偷拍| 欧美激情 高清一区二区三区| 超色免费av| 热re99久久国产66热| 国产亚洲av片在线观看秒播厂| 你懂的网址亚洲精品在线观看| 亚洲av中文av极速乱| 欧美xxⅹ黑人| 久久久久久久久免费视频了| 91成人精品电影| 精品国产露脸久久av麻豆| 免费av中文字幕在线| a级毛片黄视频| 1024香蕉在线观看| 超色免费av| 99久久99久久久精品蜜桃| 亚洲少妇的诱惑av| 人成视频在线观看免费观看| 天美传媒精品一区二区| 国产一级毛片在线| 午夜福利网站1000一区二区三区| 国产人伦9x9x在线观看| 亚洲国产欧美日韩在线播放| 精品国产露脸久久av麻豆| 亚洲精品国产一区二区精华液| 一区二区三区乱码不卡18| 亚洲国产欧美日韩在线播放| 最近中文字幕2019免费版| 日韩av不卡免费在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久精品性色| 亚洲国产精品国产精品| 精品国产乱码久久久久久男人| 一级毛片电影观看| 天堂俺去俺来也www色官网| 午夜免费男女啪啪视频观看| 男女下面插进去视频免费观看| 免费久久久久久久精品成人欧美视频| 婷婷色av中文字幕| 久久毛片免费看一区二区三区| 免费观看a级毛片全部| 99九九在线精品视频| 热99久久久久精品小说推荐| 美女大奶头黄色视频| 精品午夜福利在线看| 五月天丁香电影| 亚洲,欧美精品.| 在线观看免费午夜福利视频| 亚洲四区av| 热99久久久久精品小说推荐| 国产黄色免费在线视频| av.在线天堂| 欧美国产精品一级二级三级| 亚洲精品中文字幕在线视频| 在线天堂最新版资源| 亚洲欧洲精品一区二区精品久久久 | 色视频在线一区二区三区| 丝瓜视频免费看黄片| 制服丝袜香蕉在线| 久久热在线av| 韩国精品一区二区三区| 51午夜福利影视在线观看| 久久热在线av| 亚洲av在线观看美女高潮| 久久精品国产亚洲av高清一级| 在线观看国产h片| 熟妇人妻不卡中文字幕| 在线看a的网站| 制服人妻中文乱码| 韩国精品一区二区三区| 欧美精品一区二区大全| av国产精品久久久久影院| 久久久国产欧美日韩av| 色精品久久人妻99蜜桃| 最近中文字幕高清免费大全6| 国产爽快片一区二区三区| 在线看a的网站| 天堂8中文在线网| 亚洲成人免费av在线播放| 色精品久久人妻99蜜桃| 久久国产亚洲av麻豆专区| 国产免费又黄又爽又色| 91国产中文字幕| 亚洲精品国产av成人精品| kizo精华| 亚洲一级一片aⅴ在线观看| 国产精品一二三区在线看| 另类亚洲欧美激情| 99香蕉大伊视频| 久久精品亚洲熟妇少妇任你| 久久精品国产亚洲av涩爱| 桃花免费在线播放| 麻豆精品久久久久久蜜桃| 夫妻性生交免费视频一级片| 男女边吃奶边做爰视频| 男人舔女人的私密视频| 精品福利永久在线观看| 亚洲精品久久午夜乱码| 免费黄频网站在线观看国产| 国产黄色免费在线视频| av国产久精品久网站免费入址| 日韩一区二区视频免费看| 国产极品粉嫩免费观看在线| 五月天丁香电影| 黄色视频不卡| av网站在线播放免费| 丝袜在线中文字幕| 狠狠婷婷综合久久久久久88av| 国产成人啪精品午夜网站| 国产无遮挡羞羞视频在线观看| 国产日韩欧美亚洲二区| 天天躁夜夜躁狠狠久久av| 热re99久久国产66热| 国产不卡av网站在线观看| 亚洲av成人精品一二三区| 高清欧美精品videossex| 国产成人一区二区在线| e午夜精品久久久久久久| 在线免费观看不下载黄p国产| 看十八女毛片水多多多| 一级毛片电影观看| 97在线人人人人妻| 91国产中文字幕| 日本欧美国产在线视频| 不卡视频在线观看欧美| 大码成人一级视频| 女人被躁到高潮嗷嗷叫费观| 亚洲精品视频女| 咕卡用的链子| 国产成人一区二区在线| 午夜久久久在线观看| 新久久久久国产一级毛片| 大香蕉久久成人网| 老司机深夜福利视频在线观看 | 国产黄色视频一区二区在线观看| 成人免费观看视频高清| 久久午夜综合久久蜜桃| 国产日韩欧美在线精品| 午夜老司机福利片| 一级a爱视频在线免费观看| 天天添夜夜摸| 免费av中文字幕在线| 亚洲精品一区蜜桃| 亚洲一区二区三区欧美精品| 夜夜骑夜夜射夜夜干| 在线天堂中文资源库| 男女边吃奶边做爰视频| 丁香六月天网| 日本色播在线视频| 国产精品一区二区精品视频观看| 99精国产麻豆久久婷婷| 久久久久久久精品精品| 久久婷婷青草| 久久久精品国产亚洲av高清涩受| 日韩中文字幕欧美一区二区 | 久久99精品国语久久久| www日本在线高清视频| 久久精品人人爽人人爽视色| 国产亚洲最大av| 国产亚洲av片在线观看秒播厂| 大话2 男鬼变身卡| 大片免费播放器 马上看| 99re6热这里在线精品视频| 国产视频首页在线观看| 老汉色av国产亚洲站长工具| 美女福利国产在线| av.在线天堂| 曰老女人黄片| 久久天躁狠狠躁夜夜2o2o | 一本一本久久a久久精品综合妖精| 精品少妇久久久久久888优播| 伦理电影大哥的女人| 国语对白做爰xxxⅹ性视频网站| 最近中文字幕2019免费版| av在线播放精品| a级片在线免费高清观看视频| 啦啦啦在线观看免费高清www| 午夜精品国产一区二区电影| 国产极品天堂在线| 亚洲成人国产一区在线观看 | 只有这里有精品99| 日本欧美国产在线视频| 波野结衣二区三区在线| 校园人妻丝袜中文字幕| 午夜免费男女啪啪视频观看| 大码成人一级视频| 久久久久国产精品人妻一区二区| 亚洲av日韩在线播放| 精品少妇内射三级| 黄色一级大片看看| 搡老乐熟女国产| 国产色婷婷99| 色吧在线观看| 国产在线一区二区三区精| 国产一区二区三区av在线| 丝袜脚勾引网站| 精品国产乱码久久久久久男人| 人人妻人人添人人爽欧美一区卜| 丰满饥渴人妻一区二区三| 美女大奶头黄色视频| 亚洲自偷自拍图片 自拍| 亚洲中文av在线| 久久综合国产亚洲精品| 少妇被粗大的猛进出69影院| 女人精品久久久久毛片| 自线自在国产av| 人体艺术视频欧美日本| 男男h啪啪无遮挡| 深夜精品福利| av一本久久久久| 秋霞伦理黄片| 国产精品人妻久久久影院| 伊人久久大香线蕉亚洲五| 哪个播放器可以免费观看大片| 97精品久久久久久久久久精品| 亚洲成人av在线免费| 久久韩国三级中文字幕| 在线天堂中文资源库| 观看美女的网站| 久热这里只有精品99| av网站在线播放免费| 久久久久久久国产电影| 亚洲熟女精品中文字幕| 久久久精品区二区三区| 国产极品天堂在线| 少妇人妻精品综合一区二区| 伊人亚洲综合成人网| 亚洲国产精品成人久久小说| 51午夜福利影视在线观看| 婷婷色综合www| 国产av码专区亚洲av| 王馨瑶露胸无遮挡在线观看| 国产精品一区二区在线观看99| 丁香六月欧美| www.av在线官网国产| 精品一区二区三区av网在线观看 | 国产在线免费精品| 久久精品久久精品一区二区三区| 欧美黑人精品巨大| 久久久久视频综合| 一个人免费看片子| 国产一区亚洲一区在线观看| 国产乱人偷精品视频| 国产精品秋霞免费鲁丝片| 乱人伦中国视频| 国产一区二区三区av在线| 啦啦啦啦在线视频资源| 青草久久国产| 亚洲av综合色区一区| 久久久久久久久久久久大奶| 在现免费观看毛片| 在线看a的网站| 国产精品嫩草影院av在线观看| av电影中文网址| 精品国产露脸久久av麻豆| 99久久综合免费| 久久国产精品大桥未久av| 一区二区三区四区激情视频| 国产精品香港三级国产av潘金莲 | 男女国产视频网站| 亚洲人成网站在线观看播放| www.精华液| 秋霞伦理黄片| 丰满乱子伦码专区| 免费看不卡的av| 精品一区在线观看国产| 国产成人午夜福利电影在线观看| 亚洲欧洲精品一区二区精品久久久 | 免费少妇av软件| 国产精品亚洲av一区麻豆 | 国产精品秋霞免费鲁丝片| 老熟女久久久| e午夜精品久久久久久久| 国产一区有黄有色的免费视频| 大码成人一级视频| h视频一区二区三区| 欧美国产精品一级二级三级| 午夜免费男女啪啪视频观看| 亚洲情色 制服丝袜| 亚洲男人天堂网一区| 亚洲av电影在线观看一区二区三区| 亚洲,欧美精品.| 国产激情久久老熟女| 国产精品麻豆人妻色哟哟久久| 亚洲成国产人片在线观看| 国产xxxxx性猛交| 亚洲国产中文字幕在线视频| 亚洲精品久久成人aⅴ小说| 欧美少妇被猛烈插入视频| 欧美激情 高清一区二区三区| 综合色丁香网| 欧美老熟妇乱子伦牲交| xxx大片免费视频| 丝瓜视频免费看黄片| 亚洲国产av新网站| 99久久人妻综合| 国产一区二区在线观看av| 亚洲精品一区蜜桃| 一本—道久久a久久精品蜜桃钙片| 午夜福利视频在线观看免费| 日韩大片免费观看网站| 日韩视频在线欧美| 欧美中文综合在线视频| 国产不卡av网站在线观看| 欧美日韩视频高清一区二区三区二| 亚洲国产日韩一区二区| 亚洲婷婷狠狠爱综合网| 欧美日韩一区二区视频在线观看视频在线| 亚洲综合精品二区| 国产福利在线免费观看视频| 久久久久国产精品人妻一区二区| 大香蕉久久成人网| 国产成人欧美| 99久久精品国产亚洲精品| 国产日韩欧美在线精品| 国产精品免费大片| 精品人妻在线不人妻| 欧美久久黑人一区二区| 日韩,欧美,国产一区二区三区| 国产免费一区二区三区四区乱码| 亚洲欧美一区二区三区黑人| 99久久综合免费| 国产在线视频一区二区| 高清不卡的av网站| 最近中文字幕2019免费版| 午夜福利视频精品| 在线精品无人区一区二区三| 亚洲色图综合在线观看| 久久鲁丝午夜福利片| 人妻人人澡人人爽人人| 国产精品久久久久久人妻精品电影 | 满18在线观看网站| 999久久久国产精品视频| 欧美精品av麻豆av| 51午夜福利影视在线观看| 免费黄网站久久成人精品| 日韩av免费高清视频| 高清视频免费观看一区二区| 黄色毛片三级朝国网站| 中文字幕另类日韩欧美亚洲嫩草| 在现免费观看毛片| 国产黄色免费在线视频| 国产一级毛片在线| 日韩一卡2卡3卡4卡2021年| 国产色婷婷99| 国产人伦9x9x在线观看| 黄色一级大片看看| 亚洲四区av| 只有这里有精品99| 老熟女久久久| 国产男女内射视频| 免费在线观看完整版高清| 中文字幕高清在线视频| 男女免费视频国产| 亚洲精品中文字幕在线视频| 国产精品三级大全| 肉色欧美久久久久久久蜜桃| 狠狠精品人妻久久久久久综合| 搡老乐熟女国产|