• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    LnCu3(OH)6Cl3(Ln=Gd,Tb,Dy): Heavy lanthanides on spin-1/2 kagome magnets?

    2021-10-28 07:08:44YingFu付盈LianglongHuang黃良龍XuefengZhou周雪峰JianChen陳見XinyuanZhang張馨元PengyunChen陳鵬允ShanminWang王善民CaiLiu劉才DapengYu俞大鵬HaiFengLi李海峰LeWang王樂andJiaWeiMei梅佳偉
    Chinese Physics B 2021年10期
    關(guān)鍵詞:李海峰張馨陳鵬

    Ying Fu(付盈) Lianglong Huang(黃良龍) Xuefeng Zhou(周雪峰) Jian Chen(陳見) Xinyuan Zhang(張馨元)Pengyun Chen(陳鵬允) Shanmin Wang(王善民) Cai Liu(劉才) Dapeng Yu(俞大鵬)Hai-Feng Li(李海峰) Le Wang(王樂) and Jia-Wei Mei(梅佳偉)

    1Joint Key Laboratory of the Ministry of Education,Institute of Applied Physics and Materials Engineering,University of Macau,Avenida da Universidade,Taipa,Macao SAR 999078,China

    2Shenzhen Institute for Quantum Science and Engineering,and Department of Physics,Southern University of Science and Technology,Shenzhen 518055,China

    3Department of Physics,Southern University of Science and Technology,Shenzhen 518055,China

    4Institute of Functional Crystals,Tianjin University of Technology,Tianjin 300384,China

    5Institute of Resources Utilization and Rare-earth Development,Guangdong Academy of Sciences,Guangzhou 51065,China

    6Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices,Southern University of Science and Technology,Shenzhen 518055,China

    Keywords: kagome lattice,hydrothermal method,frustrated magnetism,spin-1/2

    1. Introduction

    The kagome antiferromagnet (KAFM) has been intensively investigated both theoretically and experimentally as a long-standing platform to search for quantum spin liquid (QSL),[1–5]which is highly entangled quantum matter and features fractional excitations and no symmetrybreaking down to absolute zero temperature. Two famous KAFMs,herbertsmithite(Cu3Zn(OH)6Cl2)[6,7]and Znbarlowite (Cu3Zn(OH)6FBr),[8,9]have been regarded as the prototype for QSL. Both of them show no phase transition down to low temperatures and exhibit fractional spinon excitations revealed by inelastic neutron scattering (INS) and nuclear magnetic resonance(NMR).Beyond QSL,additional interactions like Dzyaloshinskii–Moriya (DM) interactions and single-ion anisotropies may lead KAFM into other exotic ground states. For example, V3+(S= 1) ions in NaV6O11[10,11]build a kagome lattice and form spin-singlets.KFe3(OH)6(SO4)2(S=5/2)[12]presents a long-range order with positive chirality, while CdCu3(OH)6(NO3)2(S=1/2)forms 120°spin structure with negative chirality.[13,14]Theoretically, a suitable combination of geometric frustration,ferromagnetism, and spin–orbit interactions in kagome magnets would realize high-temperature fractional quantum hall states and superconducting state.[15–18]Experimentally, the Kondo physics scenario of non-magnetic impurities screened by spinons in QSL has been proposed according to the muon spin relaxation (μSR) study on ZnCu3(OH)6SO4,[19]analogous to the Kondo effect usually observed in 3d–4f heavy fermion metals, where local spins are screened by itinerant electrons.

    Recently,YCu3(OH)6Cl3with perfect Cu-kagome layers and free of the Y–Cu anti-site disorder has been proposed as an ideal quantum KAFM,[20]which has a“q=0”type(i.e.,the magnetic unit cell is identical to the structural unit cell with uniform chirality) antiferromagnetic (AFM) order with negative chirality due to a large DM interaction.[21,22]Replacing yttrium with light lanthanides,RCu3(OH)6Cl3(R=Nd,Sm,Eu)compounds still show strongly frustrated behaviors in despite of forming the canted AFM order with Neel temperatures(TN)ranging from 15 K to 20 K.[23,24]With expecting that the heavy rare earths may further affect the magnetic frustration,we synthesized the polycrystalline samples of LnCu3(OH)6Cl3(Ln= Gd, Tb, Dy) by a universal way. The magnetic susceptibilities and heat capacity were measured. We discussed the magnetic contributions of Cu-kagome lattice and heavy lanthanides. With these results, we conclude that the heavy lanthanides ions in LnCu3(OH)6Cl3have little impact on the intrinsic magnetism of kagome-Cu2+.

    2. Experimental details

    Although the structure of GdCu3(OH)6Cl3was reported by Sunet al.[23]with tiny crystals, the high-purity sample was not obtained for further investigation of magnetic properties. In this work,we efficiently synthesized LnCu3(OH)6Cl3(Ln = Gd, Tb, Dy) samples with high purity by a hydrothermal method. The starting reagents were GdCl3·6H2O(99.9%, Alfa Aesar), TbCl3·6H2O (99.99%, Energy Chemical), DyCl3·6H2O (99.99%, Energy Chemical), and CuO(99.9%, Alfa Aesar). LnCl3·6H2O was ground thoroughly with CuO in a ratio of 1:3, and the mixture was transferred into an autoclave and heated at 200°C for about 10 h. Finally, the blue polycrystallined powder of LnCu3(OH)6Cl3was obtained after washed repeatedly by alcohol.This method avoids impurities and is also suitable for the preparation of YCu3(OH)6Cl3,SmCu3(OH)6Cl3,and EuCu3(OH)6Cl3.

    The temperature-dependent powder x-ray diffraction(PXRD) was performed fromT=300 K to 4 K on Rigaku Smartlab-9 kW diffractometer with CuKαradiation (λKα1=1.54056 °A,λKα2=1.54439 °A,and intensity ratioIKα1:IKα2=2 : 1). The scanning step width of 0.01°was applied to record the patterns in a 2θrange of 10°–100°. The structures of LnCu3(OH)6Cl3were refined by Rietveld profile methods using the FULLPROF suite of programs.[25]The magnetic and specific heat measurements of LnCu3(OH)6Cl3were performed with Quantum Design (QD) magnetic property measurement system(MPMS)SQUID magnetometer and physical property measurement system(PPMS),respectively.

    3. Results and discussion

    3.1. Crystal structure

    The site disorder remains mired in controversy in this series of compounds. For YCu3(OH)6Cl3,single-crystal diffraction revealed a splitting disorder of Y3+and no anti-site disorder between Cu2+and Y3+.[20]However, the neutron scattering results[26]supported no splitting disorder for Y3+. The no site-splitting for the rare earth ions was also proposed for LnCu3(OH)6Cl3(Ln=Nd, Sm, Gd, Eu).[23,24]In this experiment,we found no obvious improvement for the refinements after taking into account the splitting disorder for the rare earth ions. Therefore,we performed Rietveld profile refinement on LnCu3(OH)6Cl3(Ln = Gd, Tb and Dy) without considering the site-splitting of Ln3+.

    Fig. 1. Powder XRD patterns and refinements for LnCu3(OH)6Cl3. (a)–(c) Refinements for PXRD at 300 K. (d)–(f) XRD patterns of LnCu3(OH)6Cl3 at T =300 K,100 K,4 K.

    As shown in Figs. 1(a)–1(c), the good refniements for LnCu3(OH)6Cl3in space groupP3m1(No.164)suggest that our powder sample is of high quality. The detailed lattice parameters are listed in Table 1.As excepted at 300 K,the lattice parameters decrease from Gd3+to Dy3+in coincidence with the decreasing of ion radius(r=1.053 °A,1.04 °A,1.027 °A for Gd3+, Tb3+, Dy3+, respectively). However, at 4 K,aandbshow a contrast behavior withc,which is associated with the anisotropic thermal expansion. The temperature-dependent XRD patterns, as shown in Figs. 1(d)–1(f), have no peaksplitting or new peaks appearing as the temperature decreases down to 4 K,suggesting that no structure transition happens to LnCu3(OH)6Cl3.

    Table 1. Comparison of lattice parameters at 300 K and 4 K forLnCu3(OH)6Cl3. LnCu3(OH)6Cl3 is abbreviated to LnCu3.

    As depicted in Fig. 2, each Cu2+is surrounded by four equivalent O2?and two Cl?, forming a distorted [CuO4Cl2]octahedron with the Cu–Cl bond (~2.82 °A) significantly longer than the Cu–O bond (~1.97 °A). The [CuO4Cl2] octahedrons connect to each other by sharing the O–Cl edges to build the Cu-kagome plane. Ln3+is 8-coordinated by six O2?and two Cl?to form[LnO6Cl2]dodecahedron and locates at the center of the Cu-hexagon to constitute a Ln-triangular lattice(Fig.2(c)).

    Fig. 2. Crystal structure of LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy) without considering the site-splitting of Ln3+ ions. (a)Unit cell structure. (b)Coordinations of Cu and Ln atoms. (c)The illustration of Cu-kagome lattice and Ln-triangular lattice.

    It is worth noting that analogous distorted octahedra[CuO4Cl2] in herbertsmithite and Y3Cu9(OH)19Cl8increase the splitting in the ligand-field of d orbitals and lower the energy level of dz2with a large d–d gap around 1–2 eV,unveiling the insulating nature of a charge transfer insulator,[27]which would be adapted to YCu3(OH)6Cl3and LnCu3(OH)6Cl3.

    The Cu–O–Cu super-exchange bond angles are 118.78(12)°for GdCu3(OH)6Cl3, 118.19(10)°for TbCu3(OH)6Cl3, and 117.7(4)°for DyCu3(OH)6Cl3, respectively.The values are comparable to the antiferromagnets like barlowite (117.4°)[28]and herbertsmithite (119°).[29]The Cu–Cu distances are 3.40330(11) °A for GdCu3(OH)6Cl3,3.39115(16) °A for TbCu3(OH)6Cl3, and 3.3830(3) °A for DyCu3(OH)6Cl3,equal to the corresponding Ln–Cu distance.

    3.2. Magnetic properties

    Figure 3 shows the temperature-dependent magnetizaion for LnCu3(OH)6Cl3(Ln=Gd,Tb,Dy),with YCu3(OH)6Cl3served as a reference.For YCu3(OH)6Cl3(Fig.3(a)),the magnetic susceptibilities increase suddenly at 15 K,which is associated with the negative-vector-chirality 120°magnetic structure, confirmed by the neutron scattering study.[22]Continuously lowering the temperature,the drops at 3–4 K correspond to possible spin-glass state.[21]Compared to the small magnetic moment of Cu in YCu3(OH)6Cl3, the magnetic susceptibilities of LnCu3(OH)6Cl3are much larger, suggesting that the dominant contribution to the magnetization arises from lanthanides, especially at low temperatures. As shown in Figs.3(b)–3(d),under low fields,LnCu3(OH)6Cl3compounds present similar temperature-dependent magnetization curves as YCu3(OH)6Cl3,with a rapid increase at about 16 K or 17 K and followed by a drop at lower temperatures. The zero fieldcooling(ZFC)and field-cooling(FC)data at 0.005 T begin to split after the rapid increase, which could be ascribed to the possible in-plane canted ferromagnetic component, as previously pronounced inRCu3(OH)6Cl3(R=Nd,Sm,Eu).[23,24]It indicates that the Cu-kagome lattice of LnCu3(OH)6Cl3may have the same physics as YCu3(OH)6Cl3, and form a magnetic structure atTN~16 K, which necessitates a neutron scattering study. In contrast to the robust magnetic order at 15 K in YCu3(OH)6Cl3, the magnetic phase transition of LnCu3(OH)6Cl3can not be identified easily with increasing field. WhetherTNwas suppressed by fields or the magnetic responses of Ln3+ions masked the magnetic order of Cu2+needs a further measurement of the specific heat.

    As shown in Fig.4,the high temperature behavior of the inverse magnetic susceptibility above 150 K was fit to the Curie–Weiss lawχ=C/(T ?θ) (whereCis the Curie constant, andθis the Weiss temperature) in red lines withC=9.52 K·emu·mol?1,13.76 K·emu·mol?1,16.05 K·emu·mol?1andθ=?13.98 K,?16.37 K,?13.72 K for Gd-, Tb-, and Dy-compounds, respectively. Considering the crystal-field splitting for Ln3+ions, we also applied the Curie–Weiss fitting between 20 K to 50 K, shown in black lines. The deducedθare?1.71 K,?4.24 K,?1.40 K for GdCu3(OH)6Cl3,TbCu3(OH)6Cl3, and DyCu3(OH)6Cl3, respectively. The absolute values ofθare smaller than those at high temperatures. The small Weiss temperatures are significant different from Nd-,Sm-,and Eu-analogues,[23,24]whoseθranges from?100 K to?300 K with a distinct spin frustration compared toTN~15 K.Two main reasons for the reduction ofθare proposed: One is that the Cu–Cu AFM-interaction is weakened by Ln3+; the other is that Ln3+ions form a FM-interaction that competes with the Cu–Cu AFM-interaction.

    Fig. 3. Temperature-dependent magnetization of YCu3(OH)6Cl3 and LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy) at selected fields. Inset in (a) is the zoom-in data,and insets in(b)–(d)are the ZFC and FC curves collected at 0.005 T.

    Fig. 4. Temperature dependence of inverse magnetic susceptibilities 1/χ under a field of 0.3 T.The red and black lines are the fitting-plots of Curie–Weiss law at high temperatures (150–300 K) and low temperatures (20–50 K),respectively.

    The field-dependent magnetization curves (M–H) of LnCu3(OH)6Cl3(Ln = Gd, Tb, Dy) are shown in Fig. 5,referred to YCu3(OH)6Cl3collected at 2 K. With decreasing temperature, the magnetization of LnCu3(OH)6Cl3increases and grows rapidly below a field of about 2 T. At 2 K, GdCu3(OH)6Cl3saturates to a large value of 7.69μBat 7 T, suggesting that spins of Gd3+ions are polarized.TbCu3(OH)6Cl3and DyCu3(OH)6Cl3seem to be saturated with a linear increase under higher fields, especially for DyCu3(OH)6Cl3,which could be ascribed to the temperatureindependent Van Vleck paramagnetism. It is noted that the magnetic moment of each Cu2+at 2 K is only 0.065μBin the strong frustrated material, YCu3(OH)6Cl3(μ0H= 7 T)(Fig.5(a)),which is two orders of magnitude smaller than that of LnCu3(OH)6Cl3. Thus, we deduce that lanthanide has a dominated magnetic contribution in LnCu3(OH)6Cl3at low temperatures and can easily dominate the magnetic response of the Cu-kagome lattice.

    Fig.5. Field-dependent magnetization of(a)YCu3(OH)6Cl3 at 2 K and(b)–(d)LnCu3(OH)6Cl3 (Ln=Gd,Tb,Dy)at selected temperatures.

    3.3. Specific heat

    Figure 6 shows the specific heat results of LnCu3(OH)6Cl3(Ln = Gd, Tb, Dy) and YCu3(OH)6Cl3.As shown in Fig. 6(a), under zero field, a shoulder anomaly is observed at around 15–17 K for each compound, consistent with the rapid increase of magnetic susceptibilities atTN,representing a formation of magnetic order for kagome-Cu2+.Moreover, the low temperature (below 10 K) specific heat of LnCu3(OH)6Cl3shows more features,in contrast to decaying to zero for YCu3(OH)6Cl3, relating to the low-temperature magnetic correlation of Ln3+ions.

    For further understanding the origin of the magnetic phase transition, we measured the specific heat with applied magnetic fields. Since the intrinsic nearest neighboring interaction in YCu3(OH)6Cl3is around 80 K,[30]the applied magnetic field (5 T) has little impact on the specific heat and entropy (see Figs. 6(b) and 6(c)), in line with previous report on YCu3(OH)6Cl3[21]and EuCu3(OH)6Cl3.[24]However, as shown in Figs.6(d)–6(f),Cp/Tof LnCu3(OH)6Cl3responses notably to the external magnetic field. For GdCu3(OH)6Cl3,the upturn ofCp/Tis generally evolved into a broad peak and pushed to high temperatures by field withTNkeeping constant. For TbCu3(OH)6Cl3and DyCu3(OH)6Cl3,the lowtemperature broad peak ofCp/Tis efficiently pushed to aboveTNby a field of 7 T and merges with the high-temperature broad peak induced by the magnetic phase transition. This behavior of driving the specific heat peak position to high temperatures by applied magnetic fields may indicate a formation of short-range ferromagnetic order belowTN.

    Considering that YCu3(OH)6Cl3forms a robustq= 0 type AFM order andRCu3(OH)6Cl3(R= Nd, Sm, Eu) enters a canted AFM phase belowTN,we speculated reasonably that LnCu3(OH)6Cl3(Ln = Gd, Tb, Dy) also has a canted AFM phase transition atTNwith a large ferromagnetic component. The ferromagnetic correlation is influenced obviously by fields and even screens the signal of AFM ordering in magnetic susceptibility, but the AFM phase indeed exists and is robust under large fields,like the case in YCu3(OH)6Cl3.

    Fig. 6. Specific heat for YCu3(OH)6Cl3 and LnCu3(OH)6Cl3 (Ln = Gd, Tb, Dy). (a)Cp/T for YCu3(OH)6Cl3 and LnCu3(OH)6Cl3 under zero field.(b) The Cp/T of YCu3(OH)6Cl3. The red solid line is phonon-contribution fitting. (c) Magnetic specific heat Cm/T of YCu3(OH)6Cl3 after subtracting phonon-contribution. Inset is magnetic entropy per Cu2+. (d)–(f)Temperature-dependent specific heat under different magnetic fields for GdCu3(OH)6Cl3,TbCu3(OH)6Cl3,and DyCu3(OH)6Cl3,respectively.

    3.4. Discussion and conclusion

    Theq=0 type magnetic structure with negative-chirality in YCu3(OH)6Cl3is interesting, which was also reported in other kapellasite-type compounds like CdCu3(OH)6(NO3)2withTN=4 K[14]and CaCu3(OH)6Cl2withTN=7.2 K.[31,32]As demonstrated recently,with light lanthanides(Sm and Eu)replacing yttrium, SmCu3(OH)6Cl3and EuCu3(OH)6Cl3still feature canted antiferromagnetic ordering with strong spin frustration.[23,24]The light lanthanides with small magnetic moment may have limited influence on the magnetism of Cukagome lattice.

    In our work,the magnetic and thermodynamic behaviors of LnCu3(OH)6Cl3(Ln = Gd, Tb, Dy) exhibit two significantly different characteristics: large magnetic moment compared with YCu3(OH)6Cl3and a ferromagnetic-like spin correlation belowTN. According to our experimental results,heavy lanthanides(Gd,Tb,Dy)probably modulate the DM interaction and induce a large ferromagnetic correlation, which can mask the intrinsic low-temperature magnetic properties of kagome-Cu2+, but can not prevent the AFM ordering of Cukagome as revealed in specific heat. The Curie–Weiss law no longer works for evaluating the intrinsic interactions. The spectroscopy technology, like electron spin resonance (ESR)orμSR,is hopeful to further detect the detailed magnetic interactions for LnCu3(OH)6Cl3(Ln = Nd, Sm, Eu, Gd, Tb,Dy).

    In summary, we have successfully synthesized the polycrystalline samples of LnCu3(OH)6Cl3(Ln = Gd, Tb and Dy). The heavy lanthanides significantly change the magnetic and thermodynamic behaviors,which keep the intrinsic magnetism of Cu-kagome lattice. LnCu3(OH)6Cl3(Ln=Nd,Sm,Eu, Gd, Tb, Dy) compounds provide a good platform to further investigate systemically the effect of lanthanides on the frustrated magnetism of Cu-kagome lattice.

    Acknowledgement

    We thank Dr. L.Zhang,Dr. J.M.Sheng,and Prof. L.S.Wu for useful discussion.

    猜你喜歡
    李海峰張馨陳鵬
    “烤”驗
    Comparing simulated and experimental spectral line splitting in visible spectroscopy diagnostics in the HL-2A tokamak
    A NEW SUFFICIENT CONDITION FOR SPARSE RECOVERY WITH MULTIPLE ORTHOGONAL LEAST SQUARES*
    陳鵬
    Temperature-dependent structure and magnetization of YCrO3 compound
    涂布率在再造煙草綜合品質(zhì)中的重要性分析
    人生舞臺
    向日葵
    快樂的班隊課
    張馨予
    欧美一级a爱片免费观看看| 成年女人看的毛片在线观看| 亚洲精品日韩在线中文字幕| 亚洲av.av天堂| 久久99热这里只频精品6学生| 国产精品久久久久久精品电影小说 | 亚洲欧洲日产国产| 丝袜脚勾引网站| 亚洲天堂国产精品一区在线| 三级男女做爰猛烈吃奶摸视频| 亚洲精品日韩av片在线观看| 久久久精品94久久精品| 日韩 亚洲 欧美在线| 久久精品国产亚洲av天美| 亚洲av中文字字幕乱码综合| 边亲边吃奶的免费视频| 777米奇影视久久| 日韩欧美精品免费久久| 久久久a久久爽久久v久久| 国产精品一区二区三区四区免费观看| 在线观看一区二区三区| 欧美成人a在线观看| 国产精品一二三区在线看| a级一级毛片免费在线观看| 你懂的网址亚洲精品在线观看| 国内揄拍国产精品人妻在线| 男男h啪啪无遮挡| 国产精品久久久久久精品古装| 免费看不卡的av| 成人毛片60女人毛片免费| 一级毛片 在线播放| 久久韩国三级中文字幕| 高清毛片免费看| 亚洲在久久综合| 男人舔奶头视频| 777米奇影视久久| 一本久久精品| 黄色欧美视频在线观看| 午夜福利网站1000一区二区三区| 久久久久久久久大av| 女人十人毛片免费观看3o分钟| 欧美丝袜亚洲另类| 国产精品不卡视频一区二区| 国产极品天堂在线| 综合色av麻豆| 久久人人爽人人片av| 精品久久久噜噜| 一级毛片黄色毛片免费观看视频| 一本色道久久久久久精品综合| av国产久精品久网站免费入址| 国产成人精品一,二区| 国产精品不卡视频一区二区| 少妇人妻一区二区三区视频| 欧美激情在线99| 特大巨黑吊av在线直播| 黄色日韩在线| 免费不卡的大黄色大毛片视频在线观看| 王馨瑶露胸无遮挡在线观看| 男女那种视频在线观看| 日韩欧美 国产精品| av又黄又爽大尺度在线免费看| 性色avwww在线观看| 国产乱人偷精品视频| 人人妻人人澡人人爽人人夜夜| 少妇丰满av| 亚洲国产精品成人综合色| 嘟嘟电影网在线观看| 国产精品99久久久久久久久| 亚洲欧美精品专区久久| 欧美性猛交╳xxx乱大交人| 亚洲精品第二区| 精品久久久久久久人妻蜜臀av| 纵有疾风起免费观看全集完整版| a级毛片免费高清观看在线播放| 日韩 亚洲 欧美在线| 欧美变态另类bdsm刘玥| 亚洲自拍偷在线| 国产视频首页在线观看| 色视频www国产| 欧美激情国产日韩精品一区| 菩萨蛮人人尽说江南好唐韦庄| 毛片一级片免费看久久久久| 亚洲av成人精品一区久久| 欧美三级亚洲精品| 久久久精品94久久精品| 如何舔出高潮| 精品国产一区二区三区久久久樱花 | 日本黄大片高清| 久久久国产一区二区| 中文乱码字字幕精品一区二区三区| 夜夜爽夜夜爽视频| 日韩一本色道免费dvd| 一级a做视频免费观看| 水蜜桃什么品种好| 伊人久久精品亚洲午夜| 国产精品秋霞免费鲁丝片| 18禁在线无遮挡免费观看视频| 伊人久久国产一区二区| 国产av码专区亚洲av| 久久久久久伊人网av| 男插女下体视频免费在线播放| 国产高清三级在线| 在线天堂最新版资源| 色吧在线观看| 亚洲欧美一区二区三区国产| 免费大片黄手机在线观看| 精品久久久久久久久亚洲| 国产成人免费无遮挡视频| 国产爽快片一区二区三区| 女人久久www免费人成看片| 久久久久精品久久久久真实原创| 五月天丁香电影| 男女无遮挡免费网站观看| 男的添女的下面高潮视频| 国产精品爽爽va在线观看网站| 建设人人有责人人尽责人人享有的 | 高清毛片免费看| 九九在线视频观看精品| 夫妻午夜视频| 中文字幕制服av| 国产黄片美女视频| 成人国产av品久久久| 国产av码专区亚洲av| 精品午夜福利在线看| 人妻少妇偷人精品九色| 国产午夜精品一二区理论片| 亚洲熟女精品中文字幕| 精品久久久久久久末码| av黄色大香蕉| 边亲边吃奶的免费视频| 一级毛片久久久久久久久女| 尤物成人国产欧美一区二区三区| 成年女人看的毛片在线观看| 久久人人爽av亚洲精品天堂 | 欧美+日韩+精品| 欧美bdsm另类| 美女内射精品一级片tv| 又爽又黄a免费视频| 欧美日韩一区二区视频在线观看视频在线 | 在线观看美女被高潮喷水网站| 国产欧美日韩一区二区三区在线 | 亚洲国产色片| 内射极品少妇av片p| 26uuu在线亚洲综合色| 欧美xxxx黑人xx丫x性爽| 在线观看一区二区三区激情| 婷婷色麻豆天堂久久| 亚洲av一区综合| 欧美成人午夜免费资源| 91午夜精品亚洲一区二区三区| av在线天堂中文字幕| 晚上一个人看的免费电影| 少妇人妻一区二区三区视频| 亚洲精品国产av成人精品| 成人综合一区亚洲| 国产 一区精品| 欧美成人a在线观看| 免费少妇av软件| 男人舔奶头视频| 啦啦啦中文免费视频观看日本| 久久精品国产亚洲av天美| 日本黄大片高清| 舔av片在线| 欧美极品一区二区三区四区| 国内少妇人妻偷人精品xxx网站| 久久人人爽av亚洲精品天堂 | 国产高清不卡午夜福利| 国产精品三级大全| 嘟嘟电影网在线观看| 欧美区成人在线视频| 久久人人爽人人爽人人片va| 狠狠精品人妻久久久久久综合| 99久久九九国产精品国产免费| 18禁裸乳无遮挡动漫免费视频 | 日韩中字成人| 丝袜喷水一区| 国产黄频视频在线观看| 久久午夜福利片| 久久精品熟女亚洲av麻豆精品| 国产黄频视频在线观看| 在现免费观看毛片| 成人高潮视频无遮挡免费网站| 免费av毛片视频| 麻豆成人午夜福利视频| 亚洲经典国产精华液单| 久久久精品欧美日韩精品| 一级av片app| 熟女电影av网| 日韩成人av中文字幕在线观看| 国产乱人偷精品视频| 交换朋友夫妻互换小说| 王馨瑶露胸无遮挡在线观看| 亚洲无线观看免费| 各种免费的搞黄视频| 51国产日韩欧美| 伊人久久精品亚洲午夜| 一级片'在线观看视频| 久久精品久久久久久久性| 老司机影院毛片| 国产成人精品婷婷| 女的被弄到高潮叫床怎么办| 1000部很黄的大片| 精品久久久久久久末码| 国产精品99久久久久久久久| 亚洲内射少妇av| 亚洲精品中文字幕在线视频 | 高清毛片免费看| 22中文网久久字幕| 国产免费视频播放在线视频| 国产成人午夜福利电影在线观看| 高清日韩中文字幕在线| 91精品国产九色| 永久网站在线| 亚洲av一区综合| 久久久a久久爽久久v久久| 国产黄频视频在线观看| 2021少妇久久久久久久久久久| 亚洲精华国产精华液的使用体验| 国产伦精品一区二区三区视频9| 国产 精品1| 国产成人精品福利久久| 亚洲精品国产成人久久av| 99热这里只有精品一区| 欧美精品人与动牲交sv欧美| 好男人视频免费观看在线| 赤兔流量卡办理| 亚洲欧美成人综合另类久久久| 大香蕉97超碰在线| 成人免费观看视频高清| 在线观看国产h片| 乱码一卡2卡4卡精品| 男人舔奶头视频| 亚洲高清免费不卡视频| 欧美+日韩+精品| 亚洲av免费在线观看| 成人二区视频| 午夜日本视频在线| 国内精品宾馆在线| 久久久久久久久久人人人人人人| 日韩强制内射视频| 欧美一级a爱片免费观看看| av国产免费在线观看| 毛片女人毛片| 一个人看的www免费观看视频| 丰满乱子伦码专区| 国产成人a区在线观看| 2021天堂中文幕一二区在线观| 一级毛片我不卡| 国产伦在线观看视频一区| 亚洲精品乱久久久久久| 欧美极品一区二区三区四区| 2021天堂中文幕一二区在线观| 久久久久九九精品影院| 十八禁网站网址无遮挡 | 欧美日韩视频精品一区| 热99国产精品久久久久久7| 欧美+日韩+精品| 中文精品一卡2卡3卡4更新| 如何舔出高潮| 国产黄频视频在线观看| 久久久色成人| 国产男女超爽视频在线观看| 久久99热这里只频精品6学生| 日韩电影二区| 97超视频在线观看视频| 免费黄网站久久成人精品| 午夜福利高清视频| 国内精品宾馆在线| 成年版毛片免费区| 国产精品女同一区二区软件| 老女人水多毛片| 欧美日韩在线观看h| 一本一本综合久久| av福利片在线观看| 深爱激情五月婷婷| 免费av观看视频| 亚洲av男天堂| 亚洲av在线观看美女高潮| 日日啪夜夜撸| 免费黄色在线免费观看| 1000部很黄的大片| 2021少妇久久久久久久久久久| 久久鲁丝午夜福利片| 夫妻午夜视频| 欧美潮喷喷水| 国产成人91sexporn| 啦啦啦啦在线视频资源| 中文字幕av成人在线电影| 18禁在线无遮挡免费观看视频| 人妻一区二区av| 又粗又硬又长又爽又黄的视频| 中文字幕免费在线视频6| 国产精品国产三级专区第一集| 男插女下体视频免费在线播放| 亚洲最大成人中文| 久久人人爽av亚洲精品天堂 | 欧美精品一区二区大全| 日本欧美国产在线视频| 免费av不卡在线播放| 久久综合国产亚洲精品| 可以在线观看毛片的网站| 亚洲av男天堂| 久久久久久久久久久丰满| 国产黄色免费在线视频| 丝袜脚勾引网站| 国产av码专区亚洲av| 91久久精品国产一区二区成人| 中国美白少妇内射xxxbb| 有码 亚洲区| 亚洲av在线观看美女高潮| 国产精品成人在线| 国产成人aa在线观看| 欧美三级亚洲精品| 禁无遮挡网站| 国产有黄有色有爽视频| 国语对白做爰xxxⅹ性视频网站| 国产欧美亚洲国产| 久久久久久久精品精品| 在线精品无人区一区二区三 | 99热这里只有是精品在线观看| 交换朋友夫妻互换小说| 亚洲欧美中文字幕日韩二区| 两个人的视频大全免费| 老司机影院成人| 三级男女做爰猛烈吃奶摸视频| 久久精品久久精品一区二区三区| 日本熟妇午夜| 欧美日韩视频高清一区二区三区二| 欧美潮喷喷水| 一级a做视频免费观看| tube8黄色片| 亚洲欧美成人综合另类久久久| 欧美3d第一页| 久久99精品国语久久久| 国产乱来视频区| 午夜福利网站1000一区二区三区| 午夜福利视频1000在线观看| 精品国产露脸久久av麻豆| 亚洲aⅴ乱码一区二区在线播放| 亚洲在久久综合| 麻豆成人av视频| 97在线视频观看| 一级爰片在线观看| 亚洲一级一片aⅴ在线观看| 99热这里只有精品一区| 亚洲av成人精品一二三区| 亚洲精品中文字幕在线视频 | 高清视频免费观看一区二区| 99九九线精品视频在线观看视频| 人妻一区二区av| 国产精品爽爽va在线观看网站| 国产伦精品一区二区三区四那| 啦啦啦在线观看免费高清www| 亚洲天堂国产精品一区在线| 亚洲精品乱久久久久久| 亚洲人成网站高清观看| 国产成人精品婷婷| 可以在线观看毛片的网站| 午夜激情久久久久久久| 国产探花在线观看一区二区| 国产国拍精品亚洲av在线观看| 国产一区有黄有色的免费视频| 美女国产视频在线观看| 一个人观看的视频www高清免费观看| 一级毛片aaaaaa免费看小| 亚洲av免费在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产av新网站| 免费黄网站久久成人精品| eeuss影院久久| 女人被狂操c到高潮| 日本与韩国留学比较| 建设人人有责人人尽责人人享有的 | 三级经典国产精品| 天天躁日日操中文字幕| av福利片在线观看| 最后的刺客免费高清国语| 国产高清不卡午夜福利| 高清欧美精品videossex| 女人久久www免费人成看片| 91久久精品国产一区二区成人| 国产欧美亚洲国产| 毛片一级片免费看久久久久| 三级男女做爰猛烈吃奶摸视频| 91久久精品国产一区二区成人| 色综合色国产| 18禁在线无遮挡免费观看视频| 免费av不卡在线播放| 久久韩国三级中文字幕| 在线a可以看的网站| 日韩欧美精品免费久久| 天堂中文最新版在线下载 | 一个人看的www免费观看视频| 国产成人a∨麻豆精品| 黄色日韩在线| 插阴视频在线观看视频| 国产成人精品久久久久久| 国产av国产精品国产| 久久精品国产亚洲av涩爱| 91在线精品国自产拍蜜月| 国产一区二区三区综合在线观看 | 国产精品伦人一区二区| 日本色播在线视频| 国产欧美日韩一区二区三区在线 | 男人添女人高潮全过程视频| 麻豆国产97在线/欧美| av专区在线播放| 亚洲精品色激情综合| 在线亚洲精品国产二区图片欧美 | 日韩一本色道免费dvd| 男女国产视频网站| 精品亚洲乱码少妇综合久久| 国产 一区精品| 国产成人aa在线观看| 在线天堂最新版资源| 噜噜噜噜噜久久久久久91| 天堂网av新在线| 国产精品秋霞免费鲁丝片| 韩国高清视频一区二区三区| 日本黄大片高清| 亚洲欧美清纯卡通| 欧美+日韩+精品| 精品一区二区免费观看| 热99国产精品久久久久久7| 人人妻人人澡人人爽人人夜夜| 国产一区二区亚洲精品在线观看| 国产精品蜜桃在线观看| 网址你懂的国产日韩在线| 我的女老师完整版在线观看| 欧美丝袜亚洲另类| 亚洲成人av在线免费| 啦啦啦在线观看免费高清www| 内地一区二区视频在线| 蜜臀久久99精品久久宅男| 久久久色成人| 精品国产一区二区三区久久久樱花 | 成人高潮视频无遮挡免费网站| 超碰av人人做人人爽久久| 小蜜桃在线观看免费完整版高清| av又黄又爽大尺度在线免费看| 最近最新中文字幕大全电影3| 少妇人妻一区二区三区视频| 日本欧美国产在线视频| 女人久久www免费人成看片| 国产综合精华液| 国产探花在线观看一区二区| 国产精品av视频在线免费观看| 啦啦啦啦在线视频资源| 国产爱豆传媒在线观看| 美女cb高潮喷水在线观看| 亚洲av二区三区四区| 国产精品精品国产色婷婷| 成人午夜精彩视频在线观看| 一区二区三区四区激情视频| 精品人妻一区二区三区麻豆| 免费播放大片免费观看视频在线观看| 干丝袜人妻中文字幕| 在线看a的网站| 女人十人毛片免费观看3o分钟| 在线播放无遮挡| 色哟哟·www| 欧美97在线视频| 99热网站在线观看| 国产中年淑女户外野战色| 边亲边吃奶的免费视频| 99久国产av精品国产电影| 一个人看的www免费观看视频| 91在线精品国自产拍蜜月| 久久这里有精品视频免费| 五月玫瑰六月丁香| 婷婷色av中文字幕| 男人舔奶头视频| 在现免费观看毛片| 伊人久久精品亚洲午夜| xxx大片免费视频| 老女人水多毛片| 九九久久精品国产亚洲av麻豆| 亚洲人与动物交配视频| 久久精品国产亚洲av涩爱| 自拍欧美九色日韩亚洲蝌蚪91 | 在线观看三级黄色| 别揉我奶头 嗯啊视频| 在线观看一区二区三区| 久久人人爽人人片av| 丰满少妇做爰视频| www.av在线官网国产| 嫩草影院新地址| 免费av观看视频| 男女边吃奶边做爰视频| 国产免费又黄又爽又色| 精品久久久久久电影网| 特大巨黑吊av在线直播| 免费观看a级毛片全部| 91精品国产九色| 日韩人妻高清精品专区| 亚洲av免费高清在线观看| 亚洲av日韩在线播放| 亚洲国产色片| 三级国产精品欧美在线观看| 在线 av 中文字幕| 久久热精品热| videossex国产| 成人免费观看视频高清| 成人无遮挡网站| 美女脱内裤让男人舔精品视频| av国产久精品久网站免费入址| 99视频精品全部免费 在线| 成人无遮挡网站| 在线a可以看的网站| 国产亚洲精品久久久com| av在线蜜桃| 2021少妇久久久久久久久久久| 成年女人看的毛片在线观看| 国产精品嫩草影院av在线观看| 中文天堂在线官网| 一级毛片久久久久久久久女| 欧美一级a爱片免费观看看| 亚州av有码| 乱码一卡2卡4卡精品| 99热网站在线观看| 97在线人人人人妻| 国产精品久久久久久精品电影| 直男gayav资源| 男女下面进入的视频免费午夜| 18禁动态无遮挡网站| 精品久久久久久久久亚洲| 欧美日韩亚洲高清精品| 精品人妻视频免费看| 成人鲁丝片一二三区免费| 久久99蜜桃精品久久| 国产老妇伦熟女老妇高清| av.在线天堂| 高清欧美精品videossex| 成年女人看的毛片在线观看| 国产精品嫩草影院av在线观看| 高清午夜精品一区二区三区| av国产久精品久网站免费入址| 国产精品.久久久| 天天躁日日操中文字幕| 成人亚洲精品一区在线观看 | 美女国产视频在线观看| 亚洲不卡免费看| 又大又黄又爽视频免费| 免费黄色在线免费观看| 日韩av在线免费看完整版不卡| 性色avwww在线观看| 久久精品国产亚洲av涩爱| 99九九线精品视频在线观看视频| kizo精华| 舔av片在线| 亚洲国产精品999| 国产亚洲午夜精品一区二区久久 | 欧美精品国产亚洲| 在线观看人妻少妇| www.色视频.com| 日日啪夜夜爽| 又大又黄又爽视频免费| 狠狠精品人妻久久久久久综合| 亚洲精品成人久久久久久| 热re99久久精品国产66热6| 在线观看一区二区三区| 久久精品国产亚洲av天美| 26uuu在线亚洲综合色| 免费黄网站久久成人精品| 久久精品人妻少妇| 99热6这里只有精品| 亚洲一区二区三区欧美精品 | 国产熟女欧美一区二区| 成人无遮挡网站| 国产男女超爽视频在线观看| 青春草亚洲视频在线观看| 99热这里只有是精品50| 国产av不卡久久| 国产精品国产av在线观看| 午夜亚洲福利在线播放| 国产欧美亚洲国产| 男男h啪啪无遮挡| 欧美日韩一区二区视频在线观看视频在线 | 欧美成人一区二区免费高清观看| 熟女电影av网| 国产老妇伦熟女老妇高清| 午夜日本视频在线| 啦啦啦啦在线视频资源| 黄片wwwwww| 涩涩av久久男人的天堂| 欧美精品国产亚洲| 国产精品人妻久久久久久| 青春草亚洲视频在线观看| 精品少妇黑人巨大在线播放| 一个人观看的视频www高清免费观看| 国产成人精品一,二区| 欧美最新免费一区二区三区| 亚洲高清免费不卡视频| 亚洲av日韩在线播放| 免费黄色在线免费观看| 男的添女的下面高潮视频| 青春草国产在线视频| 成人黄色视频免费在线看| 啦啦啦啦在线视频资源| 国产精品久久久久久精品电影| 国产免费又黄又爽又色| 亚洲精品国产成人久久av| 免费大片黄手机在线观看| 性色avwww在线观看| 国产永久视频网站| 最近的中文字幕免费完整| 午夜福利在线在线| 别揉我奶头 嗯啊视频| 亚洲内射少妇av| 伦精品一区二区三区| 国产精品久久久久久av不卡| 欧美日韩一区二区视频在线观看视频在线 | 中文精品一卡2卡3卡4更新| 日韩一区二区视频免费看| 观看美女的网站|