• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Goos–H¨anchen-like shift related to spin and valley polarization in ferromagnetic silicene?

    2021-10-28 07:14:54MeiRongLiu劉美榮ZhengFangLiu劉正方RuoLongZhang張若龍XianBoXiao肖賢波andQingPingWu伍清萍
    Chinese Physics B 2021年10期
    關鍵詞:正方

    Mei-Rong Liu(劉美榮) Zheng-Fang Liu(劉正方) Ruo-Long Zhang(張若龍)Xian-Bo Xiao(肖賢波) and Qing-Ping Wu(伍清萍)

    1Department of Applied Physics,East China Jiaotong University,Nanchang 330013,China

    2School of Computer Science,Jiangxi University of Traditional Chinese Medicine,Nanchang 330004,China

    Keywords: Goos–H¨anchen-like shift,silicene,polarization

    1. Introduction

    The Goos–H¨anchen (GH) shift was first discovered by Goos and H¨anchen in 1947.[1,2]This is an optical phenomenon, which means that when a very narrow beam is totally reflected, the reflection point and the incident point are not at the same position, and the reflected light has a very small lateral shift at the interface relative to geometric optics.The GH shift is widely used in integrated optics,near-field optics and optical devices. For example, optical switch based on GH shift,[3]solution concentration sensor[4]and temperature sensor.[5]In addition, quantum GH effect has been considered in electronics. For example, it has shown that the effect at a p–n interface in graphene is strongly dependent on the sublattice degree of freedom.[6]And it has been studied in graphene double barriers,[7]which provides feasibility for making valley splitter. Furthermore, the GH effect can be affected by the presence of a magnetic field in graphene triangular barrier.[8]This GH shift can be applied to spintronics to obtain spintronic devices.[9]Compared with traditional electronic devices,spintronic devices have the advantages of large information storage capacity, fast data processing speed, and low power consumption.[10]

    Combining semiconductor materials with the optical phenomenon[11,12]of GH shift, Chenet al.[13–15]extended it to partial reflection to obtain Goos–H¨anchen-like(GHL)shift,which is similar to but different from GH shift and has nothing to do with evanescent waves. Researchers studied GHL shift on various graphene-based nanostructures in single barrier,[16]and have proved that the GHL shift can be adjusted by changing the electrostatic potential and the induced gap. The GH shift in Weyl semi-metallic electrons is analogous to that in graphene.[17]It is also found that the GHL shift, as the function of the barrier’s width and incidence angle,can be negative and positive in the cases of Klein tunneling and classical motion. Studies in strained graphene[18–20]have shown that the GHL shift is the function of the strain tensor and direction. In a gated monolayer WS2,[21]the GHL shift of spin-polarized electrons extremely rely on the width of the gated region and can be positive or negative in both Klein tunneling and classical motion regimes.

    In addition, silicene is similar in structure and physical properties to graphene. However, there is a significant difference between silicene and graphene, the strong spin–orbit coupling (SOC), which results in a band gap in the energy spectrum of silicene.[22,23]It has demonstrated that for a normal/ferromagnetic/normal silicene junction, the GHL shift is negative and positive.[24,25]However, there are few further studies on simultaneous valley-and spin-polarized GHL shift in silicene. Recently, it is reported that the off-resonant circularly polarized light can open a band gap of the Dirac cone in silicene,[26–28]which can lead to the valley separation.[29]In this paper, we investigate the GHL shift of a single silicene barrier with the external perpendicular electric field,the exchange field and the off-resonant circularly polarized light.The GHL shift of spin-polarized can be achieved in silicene with off-resonant circularly polarized light or the exchange field. The addition of the external perpendicular electric field can make the GHL shift of the system have the characteristics of spin polarization and valley polarization at the same time.What’s more, the continuous exchange field can realize the transition between positive and negative GHL shifts.

    2. Model and formalism

    We place a ferromagnetic insulator on the bottom of the silicene to form a ferromagnetic silicene. The external perpendicular electric fieldλzand off-resonant circularly polarized lightλΩare applied to the ferromagnetic silicene area,as shown in Fig.1. The low-energy effective Hamiltonian of the ferromagnetic silicene region with the external perpendicular electric field and off-resonant circularly polarized light can be written as[28–31]

    Here,vF≈5.5×105m/s is the Fermi velocity,λso≈3.9 meV is the spin–orbit coupling in silicene,τx,y,zare the Pauli matrixs in sublattice pseudo-spin space,Mis the effective exchange field obtained by the magnetic neighboring effect of ferromagnetic insulators,λzis the external perpendicular electric field andλΩis the effective energy induced by the off-resonant circularly polarized light.

    Fig.1. Schematic diagram of the normal-ferromagnetic-normal silicene under the external perpendicular electric field λz and off-resonant circularly polarized light λΩ. The transport direction is along the x-axis.

    Upon diagonalization of the Hamiltonian,the energy dispersion can be calculated as following:

    3. Results and discussion

    Firstly,we calculate the GHL shift as a function ofqxdat the different external perpendicular electric field,off-resonant circularly polarized light or the exchange field. Herein,Sthas been rescaled byλF,whereλFis the Fermi wavelength of electrons,whiledis rescaled byqx?1.

    We discuss the GHL shift for silicene with different external perpendicular electric field strength (as seen in Figs. 2(a)and 2(b)). The shifts of spin-up electrons atKvalley(K↑)are the same as that for spin-down electrons atK′valley (K′↓),and the shifts of spin-down electrons atKvalley(K↓)are also the same as that for spin-up electrons atK′valley (K′↑). Asλz= 25 meV (as shown in Fig. 2(b)), the shifts of spin-up(spin-down)electrons atK(K′)valley are high,while the shifts of spin-down(spin-up)electrons atK(K′)valley vanish. The maximum value of the GHL shift corresponds to the resonance conditionsqxd=kπ(k=0,1,2,3,...),which is given as

    For sake of clearness, the inset of Fig. 2(b) further displays the magnitude ofSt-peak versus external perpendicular electric field atqxd=3π, where the GHL shift demonstrates obvious jump. For example,the shift values of spin-up(spindown)electrons atK(K′)valley suddenly change from a large positive shift to zero whenλz ≈21 meV,while the shift values of spin-down (spin-up) electrons atK(K′) valley emerge the same adjustment atλz ≈29 meV.

    Fig.2. GHL shift for the transmitted beam as a function of barrier width d with parameters E =50 meV,λso =3.9 meV,and θ =π/3. (a)λz =20 meV, (b)λz =25 meV. (d)λΩ =20 meV, (e)λΩ =25 meV. (g) M=6 meV, (h)M=100 meV. Panels(c), (f)and (i) are electronic band structures for spins and valleys corresponding to(a),(d)and(g),respectively.

    Under the modulation of the off-resonant circularly polarized light (as seen in Figs. 2(d) and 2(e)), the values of CHL shift have no difference, which is similar to that of Figs. 2(a) and 2(b). However, the shifts of the spin-up electrons are identical, and the spin-down of that are also identical. AsλΩ= 25 meV (as shown in Fig. 2(e)), the shifts of spin-up electrons become higher, while the shifts of spindown electrons vanish. In the inset of Fig.2(e),the values of all shifts increase first, then rapidly decrease to zero. However,the position where the shift of the spin-up electrons and the spin-down electrons vary to zero is different. We can find that the shift of spin-up electrons exhibits a mutation atλΩ ≈21 meV, and comparably, the shift of spin-down electrons is atλΩ ≈29 meV.

    The electrons shifts are also spin-dependent with only adjusting the exchange field (as shown in Figs. 2(g) and 2(h)).But the difference is that the fluctuation in shifts of spin-down electrons is very weak. WhenM=6 meV,the shifts of spinup electrons are positive.While,for the case ofM=100 meV,the shifts of spin-up electrons are negative. To show this reversal more clearly, we plotSt-peak atqxd=3πin the inset of Fig. 2(h). With the value of the exchange fieldMincreasing from 0 meV to 6.65 meV, the shift value of spin-up electrons gradually increases to positive peak value, then it abruptly reduced to zero. WhenMsurpasses to the critical value 93.34 meV, the shift value suddenly changes from 0 to negative peak value. Then it increases to zero gradually with the further increasing exchange fieldM. Such a changed shift is closely related to the longitudinal wave-vector which is determined by the exchange fieldM.

    In order to explore the effect of combined modulation,the calculated results for GHL shift are shown in Fig.3. The relationship between the GHL shift and incident energy is discussed when both off-resonant circularly polarized light and the exchange field are considered (as seen in Fig. 3(a)). The electrons shifts separate two spin-dependent beams for a specific valley. A strong contrast in amplitude can be observed for spins orientation. Specifically,at the same valley,the shift value of the spin-up electrons is about six times that of the spin-down electrons. These maximum values correspond to the transmission resonances and demonstrate the spin splitting of charge carriers in silicene, which means that the shift can be generated and controlled by the exchange field and offresonant circularly polarized light. The equation of propagation mode is given as

    Only considering off-resonant circularly polarized light and the exchange field in this structure,we can obtain that the values of shift are 0 whenE1,1=E?1,1< 101.4145 meV andE1,?1=E?1,?1<247.0904 meV. Then, with increasing exchange fieldM, it reaches the maximum, and finally decay.The band gap forK↑(K↓)is also the same as that ofK′↑(K′↓)(as seen in Fig.3(a)).So,the GHL shift with both off-resonant circularly polarized light and the exchange field is only spindependent.

    The GHL shift is spin-polarized when only the exchange field is modulated. By further involving a nonzero external perpendicular electric fieldλz, we can find that the shifts of different valleys can be distinguished weakly (as seen in Fig.3(b)). Spin-up and spin-down states are mixed at the energy band intersection and spin degeneracy is broken. Similarly, from Eq.(15), the maximum shifts ofK↑,K′↑,K↓andK′↓occur at 156.1 meV,163.9 meV,3.9 meV and?3.9 meV,respectively. Thus, the GHL shift under the external perpendicular electric field combined with exchange field is partial spin-and valley-polarized.

    The GHL shifts with the external perpendicular electric field and the off-resonant circularly polarized light comodulated are plotted in Fig. 3(c). From Eq. (15), we can obtain that the four spectras change from zero to the maximum atE?1,1= 111.9965 meV,E?1,?1= 127.6214 meV,E1,1= 192.0813 meV andE1,?1= 207.6902 meV, respectively,then oscillation decay.Moreover,the shift value of electrons fromK′valley is a quarter ofKvalley,which can be perfectly reflected in Fig.3(c). The band gap of spins and valleys are both broader,and the gaps with different spins and valleys do not coincident. Since the both spin-and valley-dependent beams can be well separated under the external perpendicular electric field and off-resonant circularly polarized light modulations,the GHL shift is spin and valley polarization.

    Considering all three external modulations, the polarization is more pronounced (as seen in Fig. 3(d)).The spin and valley are separate completely, which features that fourSt-peaks appear inE?1,?1= 65.2144 meV,E1,?1=138.9411 meV,E?1,1=211.6936 meV andE1,1=284.1940 meV, respectively. These conclusions can also be proved from Eq.(15). More interestingly, the values of GHL shifts atK′↓,K↓,K′↑, andK↑increase in turn. Based on Eq. (2), one can find that the valley and spin degenerate are lifted and different gaps are induced at different spins and valleys (as seen in Fig. 3(d)). Therefore, both spin and valley polarization are striking in this case.Since the above researches were conducted under the fixed value of the field strength, we further explore the influence of the continuous off-resonant circularly polarized light,the external perpendicular electric field or the exchange field on the GHL shift,respectively.Figure 4(a)displays the shift as a function of the circularly polarized light modulation. As we can see, the shift of spin-down electrons occur, but the electrons shift of spin-up electrons is negligible. The formula of the critical point can be derived from Eq.(15)as

    The shift of spin-down electrons increases oscillatingly,and then alters to zero abruptly. However, the shift values of spin-up electrons are negligible. The shift values of spindown electrons atKandK′become maximum at the position ofλΩ=31.2036 meV andλΩ=71.2036 meV, respectively,which can be derived from Eq.(17).

    Fig. 3. GHL shift as a function of incident energy E with λso =3.9 meV, θ =π/3, and d =40 nm. (a) λΩ =80 meV, M =20 meV and λz=0 meV. (b)λΩ =0 meV,M=20 meV and λz=20 meV. (c)λΩ =80 meV,M=0 meV and λz=20 meV. (d)λΩ =80 meV,M=20 meV and λz=20 meV.

    The effect of the external perpendicular electric field on the GHL shift in Fig.4(b)is similar to that of off-resonant circularly polarized light modulation in Fig. 4(a). However, the values of the electrons shift for the same valley are different.In the case,with the external perpendicular electric fieldλzincreasing to 55.0709 meV and 102.8709 meV, from Eq. (17),the shifts ofK′↓andK↓increase gradually to maximum.

    While under a continuous range of the exchange field modulation, in Fig. 4(c), all spin up-related peaks are displayed as a negative value, and spin down-related peaks are displayed as positive values. For valleys with the same spin direction, a strong amplitude contrast can be observed.The GHL shifts ofK′↓,K ↓,K′↑, andK ↑convert from zero to maximum in turn, and then the oscillation decrease.WhenM=11.5695 meV, 44.3547 meV, 106.2744 meV and 137.4917 meV, the values of GHL shift reach maximum,which can be derived from Eq. (17). Therefore, the filtering function can be modified by adjusting the values of the three fields.

    From Eq. (16), we can find that the incident angle can also affect the GHL shifts of the electrons. The GHL shifts with different incident angles are demonstrated in Fig. 5. Indeed,it is shown that valley and spin are always polarization,and the GHL shift is closely related to the incident angle. In Fig.5(a),for the incident angleθ=π/18,the maximum shift ofK′valley is always smaller than that ofKvalley. Increasing the incident angle to 4π/18 (see Fig. 5(b)), the magnitude of the shift value is six times that of the original value in Fig.5(a).By further comparing with the corresponding results forθ=8π/18 in Fig.5(c),the spin up-related peaks become larger than the spin down-related peaks. We can regulate the GHL shift to higher values by increasing incident angle,which can be a good way to make valley correlation filters.4

    Fig.4. (a)GHL shift as a function of off-resonant circularly polarized light λΩ with M=20 meV,and λz=20 meV. (b)GHL shift as a function of the external perpendicular electric field λz with M =40 meV, and λΩ =20 meV. (c) GHL shift as a function of the exchange field M with λΩ =60 meV,and λz=20 meV. Other parameters are λso=3.9 meV,θ =π/3,E=50 meV,and d=40 nm.

    Fig.5. GHL shift for the transmitted beam as a function of incident energy E with λso=3.9 meV,M=20 meV,λΩ =80 meV,λz=20 meV,and d=40 nm. (a)θ =π/18. (b)θ =4π/18. (c)θ =8π/18. The regime for 0

    4. Conclusion

    In summary, the Goos–H¨anchen-like shift for single silicene with off-resonant circularly polarized light, exchange field and the external perpendicular electric field has been studied.It was found that the GHL shift of silicene with an external perpendicular electric field cannot distinguish valleys or spins. Only with the exchange field or the off-resonant circularly polarized modulation,the GHL shift was spin-dependent.Particularly,not only under the external perpendicular electric field and off-resonant circularly polarized light modulations but also under the exchange field and the external perpendicular electric field modulations,the GHL shift is both spin-and valley-polarized. Furthermore, by controlling the strength of these three fields appropriately,the spin-and valley-polarized of the shift is more noticeable. The magnitude of the shift can also be changed by adjusting the incident angle. We hope our findings can be helpful for the electrical control of spin and valley filtering and the application of quantum information.

    猜你喜歡
    正方
    有力的反駁
    基于機器視覺的千粒質(zhì)量測量儀的設計與試驗
    人日
    源流(2020年3期)2020-07-14 05:38:15
    尋找缺失的一角
    我的機器人在哪里
    辯論會的啟發(fā)
    快樂語文(2019年10期)2019-11-28 00:23:03
    回憶辯論賽
    回憶辯論賽
    減肥秘方
    可折疊3D魔方
    最新中文字幕久久久久| 大陆偷拍与自拍| 爱豆传媒免费全集在线观看| 久久亚洲国产成人精品v| 午夜福利成人在线免费观看| av国产免费在线观看| 中文在线观看免费www的网站| 能在线免费看毛片的网站| 一区二区三区乱码不卡18| 一区二区三区四区激情视频| 免费大片18禁| 国产精品女同一区二区软件| 国国产精品蜜臀av免费| 久久人人爽人人爽人人片va| 一级毛片电影观看| 一级毛片久久久久久久久女| av在线播放精品| av国产久精品久网站免费入址| 欧美日韩国产mv在线观看视频 | 欧美精品国产亚洲| 国产美女午夜福利| 91精品一卡2卡3卡4卡| 国产免费一级a男人的天堂| 色综合亚洲欧美另类图片| 国产免费视频播放在线视频 | 美女黄网站色视频| 好男人视频免费观看在线| 免费看日本二区| 啦啦啦韩国在线观看视频| 国产又色又爽无遮挡免| 亚洲av电影不卡..在线观看| 欧美+日韩+精品| 国产乱人偷精品视频| 成年人午夜在线观看视频 | 99热网站在线观看| 七月丁香在线播放| www.色视频.com| 国产一区二区在线观看日韩| 亚洲熟女精品中文字幕| 中文天堂在线官网| 国产 一区精品| 丰满人妻一区二区三区视频av| 在线免费观看的www视频| 国国产精品蜜臀av免费| 日韩成人av中文字幕在线观看| 99九九线精品视频在线观看视频| 一级毛片黄色毛片免费观看视频| 久久99热6这里只有精品| 免费观看无遮挡的男女| 国产亚洲精品久久久com| 午夜激情久久久久久久| 白带黄色成豆腐渣| 亚洲av成人精品一区久久| 91精品国产九色| 国产乱人偷精品视频| 成年av动漫网址| 夜夜爽夜夜爽视频| 天堂av国产一区二区熟女人妻| 欧美人与善性xxx| 久久久久久久久久人人人人人人| 久久久久久九九精品二区国产| 神马国产精品三级电影在线观看| 97人妻精品一区二区三区麻豆| 久久久久久久久大av| 亚洲国产欧美人成| 97热精品久久久久久| 亚洲精品中文字幕在线视频 | 亚洲欧美日韩东京热| 久久99蜜桃精品久久| 18禁在线播放成人免费| 中文字幕制服av| 国产毛片a区久久久久| 亚洲精品成人久久久久久| 日本爱情动作片www.在线观看| 国产精品一二三区在线看| 在线播放无遮挡| 自拍偷自拍亚洲精品老妇| 成人漫画全彩无遮挡| 国产视频内射| 少妇高潮的动态图| 久久久久精品久久久久真实原创| 色播亚洲综合网| 丝瓜视频免费看黄片| 成人亚洲精品一区在线观看 | 国产男女超爽视频在线观看| 一级片'在线观看视频| 亚洲国产精品成人久久小说| 国产伦一二天堂av在线观看| 精品久久久久久久久亚洲| 午夜福利视频精品| 午夜久久久久精精品| 欧美三级亚洲精品| 噜噜噜噜噜久久久久久91| 国产亚洲一区二区精品| 亚洲av二区三区四区| 久久99热这里只有精品18| 亚洲婷婷狠狠爱综合网| 老师上课跳d突然被开到最大视频| 国产有黄有色有爽视频| 黑人高潮一二区| 五月天丁香电影| 国产欧美日韩精品一区二区| av播播在线观看一区| 亚洲精品久久午夜乱码| 免费黄网站久久成人精品| 欧美最新免费一区二区三区| 久久久久久久久久黄片| 国产精品国产三级国产专区5o| 国产av国产精品国产| 久久久久九九精品影院| 精品一区二区三卡| 免费观看a级毛片全部| av卡一久久| 国产 一区 欧美 日韩| 国产精品一区二区性色av| 九色成人免费人妻av| 国产美女午夜福利| 看十八女毛片水多多多| 国产国拍精品亚洲av在线观看| 亚洲人与动物交配视频| 麻豆成人av视频| 男人舔女人下体高潮全视频| 五月天丁香电影| 欧美高清成人免费视频www| 日本与韩国留学比较| 国精品久久久久久国模美| 精品久久久久久成人av| 国产免费福利视频在线观看| 超碰av人人做人人爽久久| 精品久久久久久成人av| 人妻夜夜爽99麻豆av| 噜噜噜噜噜久久久久久91| 亚洲精品456在线播放app| 亚洲色图av天堂| 99久久中文字幕三级久久日本| 国产精品久久久久久精品电影小说 | 淫秽高清视频在线观看| 成人亚洲精品av一区二区| 亚洲成人av在线免费| 欧美精品国产亚洲| 亚洲国产成人一精品久久久| 欧美区成人在线视频| 天堂√8在线中文| 一级黄片播放器| 国产探花极品一区二区| 久久人人爽人人爽人人片va| 亚洲国产成人一精品久久久| 久久热精品热| 国精品久久久久久国模美| 又黄又爽又刺激的免费视频.| 22中文网久久字幕| 天美传媒精品一区二区| 成人美女网站在线观看视频| 91av网一区二区| 好男人视频免费观看在线| 国产探花在线观看一区二区| 3wmmmm亚洲av在线观看| 精品人妻熟女av久视频| 日本熟妇午夜| 久久久久久国产a免费观看| 一级av片app| .国产精品久久| 一级片'在线观看视频| 超碰97精品在线观看| 亚洲经典国产精华液单| 综合色av麻豆| 又爽又黄a免费视频| 中文天堂在线官网| 97热精品久久久久久| 久久久精品免费免费高清| av国产免费在线观看| 高清欧美精品videossex| 久久久欧美国产精品| 国产不卡一卡二| 免费观看的影片在线观看| 中文字幕av在线有码专区| 五月伊人婷婷丁香| 国产精品美女特级片免费视频播放器| 大陆偷拍与自拍| a级毛片免费高清观看在线播放| 91精品国产九色| 精品熟女少妇av免费看| 啦啦啦中文免费视频观看日本| 乱码一卡2卡4卡精品| 亚洲av中文av极速乱| 久久6这里有精品| 亚洲人成网站高清观看| 国产不卡一卡二| 中文乱码字字幕精品一区二区三区 | 高清日韩中文字幕在线| 干丝袜人妻中文字幕| 大陆偷拍与自拍| 日韩强制内射视频| 国产精品麻豆人妻色哟哟久久 | 久久久久久久久久久丰满| 午夜福利网站1000一区二区三区| 国产精品久久视频播放| 亚洲av中文字字幕乱码综合| 国产精品国产三级国产av玫瑰| 午夜激情福利司机影院| av.在线天堂| 激情 狠狠 欧美| av线在线观看网站| 国产av在哪里看| 一区二区三区乱码不卡18| 亚洲国产日韩欧美精品在线观看| 国产欧美另类精品又又久久亚洲欧美| 干丝袜人妻中文字幕| 亚洲电影在线观看av| 青春草亚洲视频在线观看| 高清在线视频一区二区三区| 97人妻精品一区二区三区麻豆| 一本一本综合久久| 夫妻性生交免费视频一级片| 精品一区在线观看国产| 最近最新中文字幕大全电影3| 蜜臀久久99精品久久宅男| 午夜福利在线观看吧| 精品久久久久久久人妻蜜臀av| 在线观看一区二区三区| 人妻少妇偷人精品九色| 伦理电影大哥的女人| 亚洲欧洲日产国产| 国产 一区 欧美 日韩| 日韩欧美精品v在线| 国产亚洲av嫩草精品影院| 国产精品99久久久久久久久| 久久久久久久午夜电影| 久久久久久久久久久丰满| 日产精品乱码卡一卡2卡三| 国产在视频线精品| 国产伦在线观看视频一区| 日韩三级伦理在线观看| 亚洲精品一区蜜桃| 中文欧美无线码| 久久久色成人| 欧美区成人在线视频| 久久综合国产亚洲精品| 久久久精品免费免费高清| 色综合亚洲欧美另类图片| 国产亚洲一区二区精品| 亚洲欧美精品自产自拍| 大片免费播放器 马上看| 日韩在线高清观看一区二区三区| 97超视频在线观看视频| 99热这里只有精品一区| 97人妻精品一区二区三区麻豆| 国产精品久久久久久精品电影小说 | 精品99又大又爽又粗少妇毛片| 成人毛片a级毛片在线播放| 卡戴珊不雅视频在线播放| 午夜免费男女啪啪视频观看| 国产成人91sexporn| 超碰97精品在线观看| 91久久精品电影网| 国模一区二区三区四区视频| 99久久九九国产精品国产免费| 久久久久久国产a免费观看| videos熟女内射| 亚洲成人精品中文字幕电影| 亚洲av免费高清在线观看| 国产成人精品福利久久| 国产精品女同一区二区软件| 99久久精品一区二区三区| 亚洲伊人久久精品综合| 狠狠精品人妻久久久久久综合| 91午夜精品亚洲一区二区三区| 一级二级三级毛片免费看| 亚洲人成网站高清观看| 亚洲av.av天堂| 国产单亲对白刺激| 国产精品福利在线免费观看| 亚洲精品成人av观看孕妇| 全区人妻精品视频| 91久久精品国产一区二区成人| 人人妻人人看人人澡| 亚洲自偷自拍三级| 日本三级黄在线观看| 亚洲欧美日韩无卡精品| 99热这里只有是精品在线观看| 两个人的视频大全免费| 国模一区二区三区四区视频| 网址你懂的国产日韩在线| 舔av片在线| 免费观看精品视频网站| 日韩欧美三级三区| 欧美极品一区二区三区四区| 国产三级在线视频| 久久久久性生活片| 日日啪夜夜撸| 水蜜桃什么品种好| 91久久精品电影网| 午夜爱爱视频在线播放| 一区二区三区高清视频在线| 国产淫片久久久久久久久| 老司机影院毛片| 成人午夜高清在线视频| 日本熟妇午夜| 免费观看性生交大片5| 国产在线男女| 麻豆国产97在线/欧美| 亚洲国产精品国产精品| 26uuu在线亚洲综合色| 人妻系列 视频| 在线观看av片永久免费下载| 成人av在线播放网站| 美女脱内裤让男人舔精品视频| 最近中文字幕高清免费大全6| 小蜜桃在线观看免费完整版高清| 亚洲欧洲日产国产| 天堂av国产一区二区熟女人妻| 国产一区亚洲一区在线观看| 亚洲人成网站高清观看| 国产成年人精品一区二区| 日本三级黄在线观看| 美女主播在线视频| 国产精品一二三区在线看| 中文字幕av成人在线电影| 好男人在线观看高清免费视频| 熟女电影av网| 久久国内精品自在自线图片| 亚洲电影在线观看av| 丰满少妇做爰视频| 欧美区成人在线视频| 六月丁香七月| 精品不卡国产一区二区三区| 亚洲va在线va天堂va国产| 色综合色国产| 日韩av在线大香蕉| 白带黄色成豆腐渣| 18禁在线无遮挡免费观看视频| 国产一区二区三区综合在线观看 | 又粗又硬又长又爽又黄的视频| 亚洲国产精品国产精品| 亚洲av.av天堂| 别揉我奶头 嗯啊视频| 精华霜和精华液先用哪个| 成人鲁丝片一二三区免费| 亚洲精品久久久久久婷婷小说| 国产成人aa在线观看| 国产高潮美女av| 午夜精品在线福利| 亚洲欧美一区二区三区黑人 | 中文字幕亚洲精品专区| 久久国产乱子免费精品| 日本黄色片子视频| 亚洲成人中文字幕在线播放| 99久国产av精品| 国产精品无大码| 国产69精品久久久久777片| 汤姆久久久久久久影院中文字幕 | 身体一侧抽搐| 人妻少妇偷人精品九色| 日韩精品青青久久久久久| 日韩 亚洲 欧美在线| 人妻夜夜爽99麻豆av| 国产精品嫩草影院av在线观看| 永久网站在线| 国产精品一区www在线观看| 寂寞人妻少妇视频99o| 亚洲综合精品二区| 麻豆久久精品国产亚洲av| 好男人在线观看高清免费视频| 国内精品美女久久久久久| 国产精品嫩草影院av在线观看| 亚洲欧美精品自产自拍| 人妻少妇偷人精品九色| 亚洲精品久久久久久婷婷小说| 国产中年淑女户外野战色| 日韩精品青青久久久久久| 免费黄色在线免费观看| 国产黄频视频在线观看| 国产精品久久久久久久久免| 久久精品久久久久久噜噜老黄| 亚洲av电影不卡..在线观看| 精品久久久久久电影网| 老师上课跳d突然被开到最大视频| 国产成人免费观看mmmm| 在线观看人妻少妇| 久久人人爽人人爽人人片va| 精品久久久久久久人妻蜜臀av| 欧美另类一区| 亚洲性久久影院| 99九九线精品视频在线观看视频| 亚洲无线观看免费| 日韩成人av中文字幕在线观看| 十八禁网站网址无遮挡 | 欧美三级亚洲精品| 国产精品久久久久久精品电影小说 | 国产探花在线观看一区二区| 男女国产视频网站| 久久久久免费精品人妻一区二区| 综合色丁香网| 99re6热这里在线精品视频| 国产黄色小视频在线观看| 少妇熟女aⅴ在线视频| 国产免费视频播放在线视频 | 国产美女午夜福利| 久久99蜜桃精品久久| 成人二区视频| 在线观看一区二区三区| 老师上课跳d突然被开到最大视频| 97超视频在线观看视频| 成人综合一区亚洲| 夫妻午夜视频| 麻豆成人av视频| 一区二区三区四区激情视频| 成人亚洲欧美一区二区av| 18禁裸乳无遮挡免费网站照片| 熟女电影av网| 亚洲成人久久爱视频| 日日啪夜夜撸| 女的被弄到高潮叫床怎么办| 久久久久久伊人网av| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品色激情综合| 一级毛片aaaaaa免费看小| 日本猛色少妇xxxxx猛交久久| 日韩欧美一区视频在线观看 | 亚洲经典国产精华液单| 国产亚洲精品久久久com| 91久久精品电影网| 啦啦啦啦在线视频资源| 男人舔女人下体高潮全视频| 观看免费一级毛片| 国产成人福利小说| 伦精品一区二区三区| 欧美zozozo另类| 夫妻性生交免费视频一级片| 日韩亚洲欧美综合| 免费高清在线观看视频在线观看| 亚洲av电影不卡..在线观看| 国产精品国产三级国产av玫瑰| 啦啦啦韩国在线观看视频| 激情 狠狠 欧美| 日韩国内少妇激情av| 国产精品久久久久久av不卡| 国产免费福利视频在线观看| 人妻系列 视频| 能在线免费观看的黄片| 久久99精品国语久久久| 亚洲精品国产av蜜桃| av免费在线看不卡| 亚洲丝袜综合中文字幕| 免费大片18禁| 三级男女做爰猛烈吃奶摸视频| 亚洲av免费高清在线观看| 久久久亚洲精品成人影院| 三级国产精品片| 少妇丰满av| 精品久久久久久久久久久久久| 亚州av有码| 国产欧美日韩精品一区二区| 天美传媒精品一区二区| 最近中文字幕2019免费版| 99久国产av精品国产电影| 亚洲人成网站在线播| 久久精品夜夜夜夜夜久久蜜豆| 国产乱人偷精品视频| 国产亚洲91精品色在线| 人妻一区二区av| 国产精品久久久久久av不卡| 国产免费一级a男人的天堂| 人妻系列 视频| 少妇丰满av| 丝袜喷水一区| 淫秽高清视频在线观看| 看十八女毛片水多多多| 亚洲国产色片| 黄片无遮挡物在线观看| 午夜久久久久精精品| 亚洲欧洲日产国产| 日韩,欧美,国产一区二区三区| 国产精品久久视频播放| 精品人妻偷拍中文字幕| 中文字幕制服av| 久久久久久久久久黄片| 中文资源天堂在线| av国产久精品久网站免费入址| 中文天堂在线官网| 特大巨黑吊av在线直播| 国产一区亚洲一区在线观看| 国产午夜精品论理片| 午夜福利视频精品| 国产精品综合久久久久久久免费| 超碰97精品在线观看| 久久久久久伊人网av| 国产激情偷乱视频一区二区| 国产高清有码在线观看视频| 亚洲欧美精品自产自拍| 啦啦啦啦在线视频资源| 美女黄网站色视频| 中文资源天堂在线| 午夜老司机福利剧场| 国产精品综合久久久久久久免费| 如何舔出高潮| xxx大片免费视频| 中国美白少妇内射xxxbb| 精品久久久久久久末码| 午夜福利高清视频| 久久久久久久大尺度免费视频| 亚洲精品色激情综合| 日日摸夜夜添夜夜添av毛片| 丰满少妇做爰视频| 2022亚洲国产成人精品| 精品人妻一区二区三区麻豆| 亚洲欧洲日产国产| 看十八女毛片水多多多| 熟女人妻精品中文字幕| 国产一区二区在线观看日韩| 国产探花在线观看一区二区| 一区二区三区四区激情视频| 成人毛片60女人毛片免费| 干丝袜人妻中文字幕| 免费电影在线观看免费观看| 中国美白少妇内射xxxbb| 亚洲国产最新在线播放| 亚洲精品视频女| 日本三级黄在线观看| 国产亚洲午夜精品一区二区久久 | 3wmmmm亚洲av在线观看| 日韩电影二区| 日日摸夜夜添夜夜爱| 人妻夜夜爽99麻豆av| 久热久热在线精品观看| 国产一区亚洲一区在线观看| 日韩国内少妇激情av| 国产精品嫩草影院av在线观看| 国产真实伦视频高清在线观看| 观看免费一级毛片| 欧美日韩视频高清一区二区三区二| 高清午夜精品一区二区三区| 国产乱来视频区| 久久99热这里只有精品18| 小蜜桃在线观看免费完整版高清| 精品久久久久久久末码| 汤姆久久久久久久影院中文字幕 | 美女主播在线视频| 啦啦啦韩国在线观看视频| 亚洲欧美日韩卡通动漫| 国产高潮美女av| 亚洲av电影不卡..在线观看| 亚洲国产欧美人成| 欧美最新免费一区二区三区| 亚洲精品成人av观看孕妇| www.色视频.com| 日韩在线高清观看一区二区三区| 插阴视频在线观看视频| av在线观看视频网站免费| 老师上课跳d突然被开到最大视频| av在线天堂中文字幕| av.在线天堂| 国产一级毛片在线| 一级片'在线观看视频| 少妇高潮的动态图| 久久精品夜色国产| 99热网站在线观看| 国产精品99久久久久久久久| 亚洲精品日本国产第一区| 日韩伦理黄色片| 久久久精品免费免费高清| 好男人视频免费观看在线| 国产极品天堂在线| 老师上课跳d突然被开到最大视频| 偷拍熟女少妇极品色| 大话2 男鬼变身卡| 狠狠精品人妻久久久久久综合| 久久久久久久午夜电影| 精品国产一区二区三区久久久樱花 | 3wmmmm亚洲av在线观看| 国产伦精品一区二区三区四那| 毛片一级片免费看久久久久| 午夜日本视频在线| 国产 一区 欧美 日韩| 搡老妇女老女人老熟妇| 国产爱豆传媒在线观看| 日日啪夜夜爽| 视频中文字幕在线观看| 国内精品美女久久久久久| 精品久久久久久成人av| 久久久精品欧美日韩精品| 欧美日韩一区二区视频在线观看视频在线 | 最近手机中文字幕大全| 日本色播在线视频| 免费人成在线观看视频色| 嫩草影院入口| 亚洲乱码一区二区免费版| 夜夜爽夜夜爽视频| 大片免费播放器 马上看| 国产精品福利在线免费观看| 中文字幕久久专区| 亚洲婷婷狠狠爱综合网| 亚洲自拍偷在线| 国产欧美日韩精品一区二区| 能在线免费看毛片的网站| 国产 一区精品| 国产伦精品一区二区三区四那| 成人无遮挡网站| 国产精品福利在线免费观看| 联通29元200g的流量卡| 欧美xxxx黑人xx丫x性爽| 国产乱人视频| av在线老鸭窝| 成人午夜高清在线视频| 汤姆久久久久久久影院中文字幕 | 亚洲国产精品专区欧美| 十八禁网站网址无遮挡 | 久久久久精品久久久久真实原创| 欧美高清成人免费视频www| 亚洲av免费高清在线观看| 亚洲美女视频黄频| 国产成人一区二区在线| 精品人妻熟女av久视频| 日韩欧美三级三区| 成年版毛片免费区|