• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Goos–H¨anchen-like shift related to spin and valley polarization in ferromagnetic silicene?

    2021-10-28 07:14:54MeiRongLiu劉美榮ZhengFangLiu劉正方RuoLongZhang張若龍XianBoXiao肖賢波andQingPingWu伍清萍
    Chinese Physics B 2021年10期
    關鍵詞:正方

    Mei-Rong Liu(劉美榮) Zheng-Fang Liu(劉正方) Ruo-Long Zhang(張若龍)Xian-Bo Xiao(肖賢波) and Qing-Ping Wu(伍清萍)

    1Department of Applied Physics,East China Jiaotong University,Nanchang 330013,China

    2School of Computer Science,Jiangxi University of Traditional Chinese Medicine,Nanchang 330004,China

    Keywords: Goos–H¨anchen-like shift,silicene,polarization

    1. Introduction

    The Goos–H¨anchen (GH) shift was first discovered by Goos and H¨anchen in 1947.[1,2]This is an optical phenomenon, which means that when a very narrow beam is totally reflected, the reflection point and the incident point are not at the same position, and the reflected light has a very small lateral shift at the interface relative to geometric optics.The GH shift is widely used in integrated optics,near-field optics and optical devices. For example, optical switch based on GH shift,[3]solution concentration sensor[4]and temperature sensor.[5]In addition, quantum GH effect has been considered in electronics. For example, it has shown that the effect at a p–n interface in graphene is strongly dependent on the sublattice degree of freedom.[6]And it has been studied in graphene double barriers,[7]which provides feasibility for making valley splitter. Furthermore, the GH effect can be affected by the presence of a magnetic field in graphene triangular barrier.[8]This GH shift can be applied to spintronics to obtain spintronic devices.[9]Compared with traditional electronic devices,spintronic devices have the advantages of large information storage capacity, fast data processing speed, and low power consumption.[10]

    Combining semiconductor materials with the optical phenomenon[11,12]of GH shift, Chenet al.[13–15]extended it to partial reflection to obtain Goos–H¨anchen-like(GHL)shift,which is similar to but different from GH shift and has nothing to do with evanescent waves. Researchers studied GHL shift on various graphene-based nanostructures in single barrier,[16]and have proved that the GHL shift can be adjusted by changing the electrostatic potential and the induced gap. The GH shift in Weyl semi-metallic electrons is analogous to that in graphene.[17]It is also found that the GHL shift, as the function of the barrier’s width and incidence angle,can be negative and positive in the cases of Klein tunneling and classical motion. Studies in strained graphene[18–20]have shown that the GHL shift is the function of the strain tensor and direction. In a gated monolayer WS2,[21]the GHL shift of spin-polarized electrons extremely rely on the width of the gated region and can be positive or negative in both Klein tunneling and classical motion regimes.

    In addition, silicene is similar in structure and physical properties to graphene. However, there is a significant difference between silicene and graphene, the strong spin–orbit coupling (SOC), which results in a band gap in the energy spectrum of silicene.[22,23]It has demonstrated that for a normal/ferromagnetic/normal silicene junction, the GHL shift is negative and positive.[24,25]However, there are few further studies on simultaneous valley-and spin-polarized GHL shift in silicene. Recently, it is reported that the off-resonant circularly polarized light can open a band gap of the Dirac cone in silicene,[26–28]which can lead to the valley separation.[29]In this paper, we investigate the GHL shift of a single silicene barrier with the external perpendicular electric field,the exchange field and the off-resonant circularly polarized light.The GHL shift of spin-polarized can be achieved in silicene with off-resonant circularly polarized light or the exchange field. The addition of the external perpendicular electric field can make the GHL shift of the system have the characteristics of spin polarization and valley polarization at the same time.What’s more, the continuous exchange field can realize the transition between positive and negative GHL shifts.

    2. Model and formalism

    We place a ferromagnetic insulator on the bottom of the silicene to form a ferromagnetic silicene. The external perpendicular electric fieldλzand off-resonant circularly polarized lightλΩare applied to the ferromagnetic silicene area,as shown in Fig.1. The low-energy effective Hamiltonian of the ferromagnetic silicene region with the external perpendicular electric field and off-resonant circularly polarized light can be written as[28–31]

    Here,vF≈5.5×105m/s is the Fermi velocity,λso≈3.9 meV is the spin–orbit coupling in silicene,τx,y,zare the Pauli matrixs in sublattice pseudo-spin space,Mis the effective exchange field obtained by the magnetic neighboring effect of ferromagnetic insulators,λzis the external perpendicular electric field andλΩis the effective energy induced by the off-resonant circularly polarized light.

    Fig.1. Schematic diagram of the normal-ferromagnetic-normal silicene under the external perpendicular electric field λz and off-resonant circularly polarized light λΩ. The transport direction is along the x-axis.

    Upon diagonalization of the Hamiltonian,the energy dispersion can be calculated as following:

    3. Results and discussion

    Firstly,we calculate the GHL shift as a function ofqxdat the different external perpendicular electric field,off-resonant circularly polarized light or the exchange field. Herein,Sthas been rescaled byλF,whereλFis the Fermi wavelength of electrons,whiledis rescaled byqx?1.

    We discuss the GHL shift for silicene with different external perpendicular electric field strength (as seen in Figs. 2(a)and 2(b)). The shifts of spin-up electrons atKvalley(K↑)are the same as that for spin-down electrons atK′valley (K′↓),and the shifts of spin-down electrons atKvalley(K↓)are also the same as that for spin-up electrons atK′valley (K′↑). Asλz= 25 meV (as shown in Fig. 2(b)), the shifts of spin-up(spin-down)electrons atK(K′)valley are high,while the shifts of spin-down(spin-up)electrons atK(K′)valley vanish. The maximum value of the GHL shift corresponds to the resonance conditionsqxd=kπ(k=0,1,2,3,...),which is given as

    For sake of clearness, the inset of Fig. 2(b) further displays the magnitude ofSt-peak versus external perpendicular electric field atqxd=3π, where the GHL shift demonstrates obvious jump. For example,the shift values of spin-up(spindown)electrons atK(K′)valley suddenly change from a large positive shift to zero whenλz ≈21 meV,while the shift values of spin-down (spin-up) electrons atK(K′) valley emerge the same adjustment atλz ≈29 meV.

    Fig.2. GHL shift for the transmitted beam as a function of barrier width d with parameters E =50 meV,λso =3.9 meV,and θ =π/3. (a)λz =20 meV, (b)λz =25 meV. (d)λΩ =20 meV, (e)λΩ =25 meV. (g) M=6 meV, (h)M=100 meV. Panels(c), (f)and (i) are electronic band structures for spins and valleys corresponding to(a),(d)and(g),respectively.

    Under the modulation of the off-resonant circularly polarized light (as seen in Figs. 2(d) and 2(e)), the values of CHL shift have no difference, which is similar to that of Figs. 2(a) and 2(b). However, the shifts of the spin-up electrons are identical, and the spin-down of that are also identical. AsλΩ= 25 meV (as shown in Fig. 2(e)), the shifts of spin-up electrons become higher, while the shifts of spindown electrons vanish. In the inset of Fig.2(e),the values of all shifts increase first, then rapidly decrease to zero. However,the position where the shift of the spin-up electrons and the spin-down electrons vary to zero is different. We can find that the shift of spin-up electrons exhibits a mutation atλΩ ≈21 meV, and comparably, the shift of spin-down electrons is atλΩ ≈29 meV.

    The electrons shifts are also spin-dependent with only adjusting the exchange field (as shown in Figs. 2(g) and 2(h)).But the difference is that the fluctuation in shifts of spin-down electrons is very weak. WhenM=6 meV,the shifts of spinup electrons are positive.While,for the case ofM=100 meV,the shifts of spin-up electrons are negative. To show this reversal more clearly, we plotSt-peak atqxd=3πin the inset of Fig. 2(h). With the value of the exchange fieldMincreasing from 0 meV to 6.65 meV, the shift value of spin-up electrons gradually increases to positive peak value, then it abruptly reduced to zero. WhenMsurpasses to the critical value 93.34 meV, the shift value suddenly changes from 0 to negative peak value. Then it increases to zero gradually with the further increasing exchange fieldM. Such a changed shift is closely related to the longitudinal wave-vector which is determined by the exchange fieldM.

    In order to explore the effect of combined modulation,the calculated results for GHL shift are shown in Fig.3. The relationship between the GHL shift and incident energy is discussed when both off-resonant circularly polarized light and the exchange field are considered (as seen in Fig. 3(a)). The electrons shifts separate two spin-dependent beams for a specific valley. A strong contrast in amplitude can be observed for spins orientation. Specifically,at the same valley,the shift value of the spin-up electrons is about six times that of the spin-down electrons. These maximum values correspond to the transmission resonances and demonstrate the spin splitting of charge carriers in silicene, which means that the shift can be generated and controlled by the exchange field and offresonant circularly polarized light. The equation of propagation mode is given as

    Only considering off-resonant circularly polarized light and the exchange field in this structure,we can obtain that the values of shift are 0 whenE1,1=E?1,1< 101.4145 meV andE1,?1=E?1,?1<247.0904 meV. Then, with increasing exchange fieldM, it reaches the maximum, and finally decay.The band gap forK↑(K↓)is also the same as that ofK′↑(K′↓)(as seen in Fig.3(a)).So,the GHL shift with both off-resonant circularly polarized light and the exchange field is only spindependent.

    The GHL shift is spin-polarized when only the exchange field is modulated. By further involving a nonzero external perpendicular electric fieldλz, we can find that the shifts of different valleys can be distinguished weakly (as seen in Fig.3(b)). Spin-up and spin-down states are mixed at the energy band intersection and spin degeneracy is broken. Similarly, from Eq.(15), the maximum shifts ofK↑,K′↑,K↓andK′↓occur at 156.1 meV,163.9 meV,3.9 meV and?3.9 meV,respectively. Thus, the GHL shift under the external perpendicular electric field combined with exchange field is partial spin-and valley-polarized.

    The GHL shifts with the external perpendicular electric field and the off-resonant circularly polarized light comodulated are plotted in Fig. 3(c). From Eq. (15), we can obtain that the four spectras change from zero to the maximum atE?1,1= 111.9965 meV,E?1,?1= 127.6214 meV,E1,1= 192.0813 meV andE1,?1= 207.6902 meV, respectively,then oscillation decay.Moreover,the shift value of electrons fromK′valley is a quarter ofKvalley,which can be perfectly reflected in Fig.3(c). The band gap of spins and valleys are both broader,and the gaps with different spins and valleys do not coincident. Since the both spin-and valley-dependent beams can be well separated under the external perpendicular electric field and off-resonant circularly polarized light modulations,the GHL shift is spin and valley polarization.

    Considering all three external modulations, the polarization is more pronounced (as seen in Fig. 3(d)).The spin and valley are separate completely, which features that fourSt-peaks appear inE?1,?1= 65.2144 meV,E1,?1=138.9411 meV,E?1,1=211.6936 meV andE1,1=284.1940 meV, respectively. These conclusions can also be proved from Eq.(15). More interestingly, the values of GHL shifts atK′↓,K↓,K′↑, andK↑increase in turn. Based on Eq. (2), one can find that the valley and spin degenerate are lifted and different gaps are induced at different spins and valleys (as seen in Fig. 3(d)). Therefore, both spin and valley polarization are striking in this case.Since the above researches were conducted under the fixed value of the field strength, we further explore the influence of the continuous off-resonant circularly polarized light,the external perpendicular electric field or the exchange field on the GHL shift,respectively.Figure 4(a)displays the shift as a function of the circularly polarized light modulation. As we can see, the shift of spin-down electrons occur, but the electrons shift of spin-up electrons is negligible. The formula of the critical point can be derived from Eq.(15)as

    The shift of spin-down electrons increases oscillatingly,and then alters to zero abruptly. However, the shift values of spin-up electrons are negligible. The shift values of spindown electrons atKandK′become maximum at the position ofλΩ=31.2036 meV andλΩ=71.2036 meV, respectively,which can be derived from Eq.(17).

    Fig. 3. GHL shift as a function of incident energy E with λso =3.9 meV, θ =π/3, and d =40 nm. (a) λΩ =80 meV, M =20 meV and λz=0 meV. (b)λΩ =0 meV,M=20 meV and λz=20 meV. (c)λΩ =80 meV,M=0 meV and λz=20 meV. (d)λΩ =80 meV,M=20 meV and λz=20 meV.

    The effect of the external perpendicular electric field on the GHL shift in Fig.4(b)is similar to that of off-resonant circularly polarized light modulation in Fig. 4(a). However, the values of the electrons shift for the same valley are different.In the case,with the external perpendicular electric fieldλzincreasing to 55.0709 meV and 102.8709 meV, from Eq. (17),the shifts ofK′↓andK↓increase gradually to maximum.

    While under a continuous range of the exchange field modulation, in Fig. 4(c), all spin up-related peaks are displayed as a negative value, and spin down-related peaks are displayed as positive values. For valleys with the same spin direction, a strong amplitude contrast can be observed.The GHL shifts ofK′↓,K ↓,K′↑, andK ↑convert from zero to maximum in turn, and then the oscillation decrease.WhenM=11.5695 meV, 44.3547 meV, 106.2744 meV and 137.4917 meV, the values of GHL shift reach maximum,which can be derived from Eq. (17). Therefore, the filtering function can be modified by adjusting the values of the three fields.

    From Eq. (16), we can find that the incident angle can also affect the GHL shifts of the electrons. The GHL shifts with different incident angles are demonstrated in Fig. 5. Indeed,it is shown that valley and spin are always polarization,and the GHL shift is closely related to the incident angle. In Fig.5(a),for the incident angleθ=π/18,the maximum shift ofK′valley is always smaller than that ofKvalley. Increasing the incident angle to 4π/18 (see Fig. 5(b)), the magnitude of the shift value is six times that of the original value in Fig.5(a).By further comparing with the corresponding results forθ=8π/18 in Fig.5(c),the spin up-related peaks become larger than the spin down-related peaks. We can regulate the GHL shift to higher values by increasing incident angle,which can be a good way to make valley correlation filters.4

    Fig.4. (a)GHL shift as a function of off-resonant circularly polarized light λΩ with M=20 meV,and λz=20 meV. (b)GHL shift as a function of the external perpendicular electric field λz with M =40 meV, and λΩ =20 meV. (c) GHL shift as a function of the exchange field M with λΩ =60 meV,and λz=20 meV. Other parameters are λso=3.9 meV,θ =π/3,E=50 meV,and d=40 nm.

    Fig.5. GHL shift for the transmitted beam as a function of incident energy E with λso=3.9 meV,M=20 meV,λΩ =80 meV,λz=20 meV,and d=40 nm. (a)θ =π/18. (b)θ =4π/18. (c)θ =8π/18. The regime for 0

    4. Conclusion

    In summary, the Goos–H¨anchen-like shift for single silicene with off-resonant circularly polarized light, exchange field and the external perpendicular electric field has been studied.It was found that the GHL shift of silicene with an external perpendicular electric field cannot distinguish valleys or spins. Only with the exchange field or the off-resonant circularly polarized modulation,the GHL shift was spin-dependent.Particularly,not only under the external perpendicular electric field and off-resonant circularly polarized light modulations but also under the exchange field and the external perpendicular electric field modulations,the GHL shift is both spin-and valley-polarized. Furthermore, by controlling the strength of these three fields appropriately,the spin-and valley-polarized of the shift is more noticeable. The magnitude of the shift can also be changed by adjusting the incident angle. We hope our findings can be helpful for the electrical control of spin and valley filtering and the application of quantum information.

    猜你喜歡
    正方
    有力的反駁
    基于機器視覺的千粒質(zhì)量測量儀的設計與試驗
    人日
    源流(2020年3期)2020-07-14 05:38:15
    尋找缺失的一角
    我的機器人在哪里
    辯論會的啟發(fā)
    快樂語文(2019年10期)2019-11-28 00:23:03
    回憶辯論賽
    回憶辯論賽
    減肥秘方
    可折疊3D魔方
    丝袜喷水一区| 丝袜脚勾引网站| 成人黄色视频免费在线看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 九色亚洲精品在线播放| 一区二区三区四区激情视频| 国产97色在线日韩免费| 天天操日日干夜夜撸| 亚洲精华国产精华液的使用体验| 老熟女久久久| 久久久久网色| 男女国产视频网站| 婷婷色麻豆天堂久久| av有码第一页| 国产成人午夜福利电影在线观看| 18禁观看日本| 9191精品国产免费久久| 国产视频首页在线观看| 麻豆av在线久日| 国产探花极品一区二区| 成年av动漫网址| av女优亚洲男人天堂| 日日摸夜夜添夜夜爱| 色婷婷av一区二区三区视频| av在线观看视频网站免费| 丝袜美腿诱惑在线| 伦精品一区二区三区| 日韩电影二区| 午夜精品国产一区二区电影| a 毛片基地| 久久 成人 亚洲| 一级片'在线观看视频| 久久久亚洲精品成人影院| 亚洲人成77777在线视频| 午夜福利视频在线观看免费| 韩国av在线不卡| 日韩欧美精品免费久久| 9色porny在线观看| 最近最新中文字幕免费大全7| 成人毛片60女人毛片免费| 亚洲av电影在线进入| 少妇的逼水好多| 午夜精品国产一区二区电影| 久久人人爽人人片av| 91精品国产国语对白视频| 久久久精品94久久精品| 日韩制服骚丝袜av| 婷婷色综合大香蕉| 18在线观看网站| 人人妻人人澡人人爽人人夜夜| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 男人添女人高潮全过程视频| 九色亚洲精品在线播放| 黄片播放在线免费| www.精华液| av免费在线看不卡| 哪个播放器可以免费观看大片| 这个男人来自地球电影免费观看 | 在线天堂中文资源库| 国产精品国产av在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 在线观看免费视频网站a站| 精品亚洲成国产av| 国产成人欧美| 青春草国产在线视频| 日韩欧美精品免费久久| 亚洲,一卡二卡三卡| 欧美少妇被猛烈插入视频| 日韩大片免费观看网站| 26uuu在线亚洲综合色| 只有这里有精品99| 男女啪啪激烈高潮av片| 国产精品av久久久久免费| 日韩,欧美,国产一区二区三区| 久久狼人影院| 国产成人精品一,二区| 飞空精品影院首页| 一二三四在线观看免费中文在| 热99国产精品久久久久久7| 午夜91福利影院| 精品少妇久久久久久888优播| 精品午夜福利在线看| 一级毛片 在线播放| 日韩中字成人| 亚洲精品日韩在线中文字幕| 大话2 男鬼变身卡| 高清视频免费观看一区二区| a级毛片黄视频| 亚洲婷婷狠狠爱综合网| 中文字幕av电影在线播放| 国产日韩一区二区三区精品不卡| 在线观看国产h片| 婷婷色综合www| 看免费av毛片| 欧美日韩一级在线毛片| 国产免费福利视频在线观看| 欧美老熟妇乱子伦牲交| 国产乱人偷精品视频| 少妇人妻精品综合一区二区| 91精品伊人久久大香线蕉| 各种免费的搞黄视频| 欧美日韩视频精品一区| 满18在线观看网站| 黄色一级大片看看| 国产淫语在线视频| 在线观看www视频免费| 王馨瑶露胸无遮挡在线观看| 久久久国产一区二区| 国产极品粉嫩免费观看在线| 电影成人av| 久久久久久久久久人人人人人人| 国产又色又爽无遮挡免| 国产在线一区二区三区精| 9热在线视频观看99| 黑人欧美特级aaaaaa片| 成人国语在线视频| 波多野结衣一区麻豆| 边亲边吃奶的免费视频| 久久久久久久久久久免费av| 蜜桃在线观看..| 韩国精品一区二区三区| 一级黄片播放器| 丰满少妇做爰视频| 97在线视频观看| 国产成人免费观看mmmm| 亚洲一码二码三码区别大吗| 成年人免费黄色播放视频| 久久精品熟女亚洲av麻豆精品| 久久人人97超碰香蕉20202| 亚洲欧美精品综合一区二区三区 | 国产精品久久久久久精品电影小说| 久久 成人 亚洲| 欧美少妇被猛烈插入视频| 久热久热在线精品观看| 亚洲精品日本国产第一区| 99九九在线精品视频| 亚洲av电影在线进入| 五月开心婷婷网| 久久久国产精品麻豆| 人人妻人人澡人人爽人人夜夜| 国产精品二区激情视频| 十八禁网站网址无遮挡| 久久久久久久久久久免费av| 国产又色又爽无遮挡免| 亚洲精品一二三| 欧美+日韩+精品| 精品人妻在线不人妻| 国产av一区二区精品久久| 老熟女久久久| 久久久久久久国产电影| 水蜜桃什么品种好| 亚洲av综合色区一区| 国产精品久久久久久精品古装| 女人高潮潮喷娇喘18禁视频| 飞空精品影院首页| 韩国高清视频一区二区三区| 日韩制服丝袜自拍偷拍| 久久久久久人人人人人| 乱人伦中国视频| 熟妇人妻不卡中文字幕| 少妇精品久久久久久久| 丰满饥渴人妻一区二区三| 欧美精品亚洲一区二区| 777久久人妻少妇嫩草av网站| 亚洲精品日本国产第一区| 亚洲国产精品成人久久小说| 人妻少妇偷人精品九色| 性色av一级| 女的被弄到高潮叫床怎么办| 国产日韩欧美亚洲二区| 亚洲精品国产av蜜桃| 国产爽快片一区二区三区| 国产爽快片一区二区三区| 国产亚洲av片在线观看秒播厂| 久久久久久久国产电影| 91成人精品电影| 在线观看免费视频网站a站| 男女无遮挡免费网站观看| 亚洲精品一二三| 大香蕉久久网| 日本免费在线观看一区| 色网站视频免费| 成人毛片a级毛片在线播放| 国产女主播在线喷水免费视频网站| 国产 一区精品| 国产欧美日韩综合在线一区二区| 亚洲av成人精品一二三区| 免费在线观看黄色视频的| 日本vs欧美在线观看视频| 亚洲国产精品一区三区| 99久久精品国产国产毛片| 天天躁日日躁夜夜躁夜夜| 又黄又粗又硬又大视频| www日本在线高清视频| 欧美日韩av久久| 香蕉精品网在线| 免费黄网站久久成人精品| 国产免费又黄又爽又色| 亚洲国产毛片av蜜桃av| 丝袜喷水一区| 国产精品久久久久久精品古装| 自线自在国产av| 新久久久久国产一级毛片| tube8黄色片| 久久久精品免费免费高清| 午夜免费男女啪啪视频观看| 亚洲第一青青草原| 黄色一级大片看看| 看十八女毛片水多多多| 亚洲人成电影观看| 亚洲精品,欧美精品| 精品国产一区二区久久| 亚洲av男天堂| 久久久久人妻精品一区果冻| 久久97久久精品| 国产老妇伦熟女老妇高清| 一边摸一边做爽爽视频免费| 国产精品一二三区在线看| 18禁观看日本| 亚洲第一av免费看| 免费看不卡的av| 女性生殖器流出的白浆| 久久午夜综合久久蜜桃| 国产精品女同一区二区软件| 日韩欧美精品免费久久| 亚洲综合精品二区| www日本在线高清视频| 性色av一级| 九九爱精品视频在线观看| 女性被躁到高潮视频| 亚洲色图综合在线观看| 中文乱码字字幕精品一区二区三区| a级毛片黄视频| 美女福利国产在线| 久久久久久免费高清国产稀缺| 成年av动漫网址| 男人添女人高潮全过程视频| 中文字幕人妻丝袜一区二区 | 国产人伦9x9x在线观看 | 亚洲av电影在线进入| 日本-黄色视频高清免费观看| 国产一区二区三区av在线| 女人精品久久久久毛片| 在线观看免费高清a一片| 亚洲欧美精品综合一区二区三区 | 国产高清不卡午夜福利| 男女边摸边吃奶| 久久精品久久久久久噜噜老黄| 中国国产av一级| 我要看黄色一级片免费的| 女人被躁到高潮嗷嗷叫费观| a级片在线免费高清观看视频| 大香蕉久久网| 黄片无遮挡物在线观看| 中文字幕色久视频| 丰满乱子伦码专区| 一本久久精品| 高清av免费在线| 亚洲婷婷狠狠爱综合网| 国产精品国产三级国产专区5o| 天天影视国产精品| 亚洲精品美女久久av网站| 男女啪啪激烈高潮av片| 国产精品亚洲av一区麻豆 | 免费久久久久久久精品成人欧美视频| 成人漫画全彩无遮挡| 婷婷色综合www| 国产精品久久久久久久久免| videos熟女内射| 国产伦理片在线播放av一区| 亚洲激情五月婷婷啪啪| av免费在线看不卡| 综合色丁香网| 亚洲一区中文字幕在线| 久久精品国产鲁丝片午夜精品| 欧美老熟妇乱子伦牲交| av.在线天堂| 成人国产av品久久久| 精品99又大又爽又粗少妇毛片| 两个人免费观看高清视频| 女性生殖器流出的白浆| 国产一区二区三区av在线| 成人漫画全彩无遮挡| 在线 av 中文字幕| 亚洲国产精品国产精品| 午夜福利,免费看| 婷婷色麻豆天堂久久| 欧美中文综合在线视频| 久久午夜福利片| 成人二区视频| 国产成人午夜福利电影在线观看| 日本免费在线观看一区| 久久这里只有精品19| 国产精品三级大全| 亚洲五月色婷婷综合| 一级爰片在线观看| 免费观看在线日韩| 日韩一卡2卡3卡4卡2021年| 国产精品欧美亚洲77777| 日本vs欧美在线观看视频| √禁漫天堂资源中文www| 一级毛片我不卡| 狠狠精品人妻久久久久久综合| 亚洲男人天堂网一区| 狠狠婷婷综合久久久久久88av| 最黄视频免费看| 卡戴珊不雅视频在线播放| 丝瓜视频免费看黄片| 午夜免费观看性视频| 色网站视频免费| 国产精品 国内视频| 国产精品人妻久久久影院| 精品久久久精品久久久| 中文字幕亚洲精品专区| 国产成人精品在线电影| 国产亚洲午夜精品一区二区久久| 久久久精品区二区三区| 国产精品.久久久| 久久精品久久久久久噜噜老黄| 99九九在线精品视频| 日本欧美视频一区| 最近中文字幕高清免费大全6| 久久久精品区二区三区| 欧美黄色片欧美黄色片| 在线观看免费日韩欧美大片| 丰满迷人的少妇在线观看| 午夜激情av网站| 赤兔流量卡办理| 亚洲精品自拍成人| av一本久久久久| 麻豆乱淫一区二区| kizo精华| 99香蕉大伊视频| 我的亚洲天堂| 香蕉精品网在线| 满18在线观看网站| 久久久久久久久免费视频了| 侵犯人妻中文字幕一二三四区| 18+在线观看网站| 国产一区二区激情短视频 | 国产毛片在线视频| 女人久久www免费人成看片| 18在线观看网站| 久久精品国产自在天天线| 日本爱情动作片www.在线观看| 一区二区三区激情视频| 亚洲欧美成人精品一区二区| 18在线观看网站| 久久久久人妻精品一区果冻| 韩国高清视频一区二区三区| 欧美激情 高清一区二区三区| 香蕉国产在线看| 国产 一区精品| 看免费av毛片| 999久久久国产精品视频| 亚洲中文av在线| 视频区图区小说| 日日爽夜夜爽网站| 纯流量卡能插随身wifi吗| 大香蕉久久网| 亚洲国产av新网站| 色播在线永久视频| 久久精品国产a三级三级三级| 99精国产麻豆久久婷婷| 国产精品亚洲av一区麻豆 | 精品国产国语对白av| 精品亚洲成国产av| 免费观看av网站的网址| 2018国产大陆天天弄谢| 777久久人妻少妇嫩草av网站| 人妻 亚洲 视频| 2022亚洲国产成人精品| 观看美女的网站| 18禁观看日本| 99国产综合亚洲精品| 少妇的丰满在线观看| 下体分泌物呈黄色| 欧美老熟妇乱子伦牲交| 亚洲精品日韩在线中文字幕| 中文字幕最新亚洲高清| 老汉色∧v一级毛片| 亚洲经典国产精华液单| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久久久精品电影小说| 少妇的逼水好多| 欧美日韩成人在线一区二区| 久久青草综合色| 老熟女久久久| 国产成人精品久久久久久| 国产精品三级大全| 亚洲av综合色区一区| 色94色欧美一区二区| 各种免费的搞黄视频| 亚洲欧美一区二区三区国产| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 久久99蜜桃精品久久| 啦啦啦在线免费观看视频4| 亚洲国产精品国产精品| 亚洲一码二码三码区别大吗| 国产亚洲最大av| 亚洲国产欧美日韩在线播放| 波野结衣二区三区在线| 欧美精品国产亚洲| 五月天丁香电影| 免费看不卡的av| 亚洲美女视频黄频| 亚洲四区av| 久久久精品免费免费高清| 波多野结衣一区麻豆| 亚洲国产最新在线播放| 成年动漫av网址| 如日韩欧美国产精品一区二区三区| av国产久精品久网站免费入址| 亚洲第一av免费看| 国产精品国产三级专区第一集| 国产1区2区3区精品| 亚洲av在线观看美女高潮| 大话2 男鬼变身卡| 国产一区二区 视频在线| 纯流量卡能插随身wifi吗| 最近最新中文字幕大全免费视频 | 成年动漫av网址| 亚洲熟女精品中文字幕| 精品国产国语对白av| 在线观看免费视频网站a站| 两性夫妻黄色片| 男男h啪啪无遮挡| 亚洲第一av免费看| 街头女战士在线观看网站| 美女福利国产在线| 久久婷婷青草| 日本午夜av视频| 欧美国产精品va在线观看不卡| 深夜精品福利| av免费在线看不卡| 国产精品国产三级国产专区5o| 亚洲av电影在线进入| √禁漫天堂资源中文www| 精品99又大又爽又粗少妇毛片| 亚洲一码二码三码区别大吗| 日本av手机在线免费观看| 国产精品麻豆人妻色哟哟久久| 一区二区三区精品91| 一区二区三区乱码不卡18| 国产av一区二区精品久久| 免费播放大片免费观看视频在线观看| 国产精品久久久久久精品电影小说| 中文精品一卡2卡3卡4更新| 女性被躁到高潮视频| 日本黄色日本黄色录像| 亚洲av福利一区| 三级国产精品片| 国产av码专区亚洲av| 青青草视频在线视频观看| 久久久欧美国产精品| 亚洲精品乱久久久久久| 久久久精品区二区三区| 90打野战视频偷拍视频| 97在线视频观看| 亚洲成人一二三区av| 国产毛片在线视频| 最近最新中文字幕免费大全7| 秋霞在线观看毛片| 国产av精品麻豆| 久久ye,这里只有精品| 97在线人人人人妻| 成人手机av| 欧美国产精品va在线观看不卡| 亚洲久久久国产精品| 日日撸夜夜添| 一边摸一边做爽爽视频免费| 99国产综合亚洲精品| 天堂8中文在线网| 国产又爽黄色视频| 欧美bdsm另类| 亚洲欧美一区二区三区国产| 成人亚洲欧美一区二区av| 久久久久人妻精品一区果冻| 国产亚洲精品第一综合不卡| 一区二区三区精品91| 亚洲av免费高清在线观看| 国产亚洲精品第一综合不卡| 国产黄频视频在线观看| 国产在视频线精品| 久久久久精品人妻al黑| 日本猛色少妇xxxxx猛交久久| 丝瓜视频免费看黄片| 街头女战士在线观看网站| 不卡av一区二区三区| 亚洲精品美女久久久久99蜜臀 | 国产又爽黄色视频| 搡女人真爽免费视频火全软件| 麻豆乱淫一区二区| 高清黄色对白视频在线免费看| 男男h啪啪无遮挡| 伦精品一区二区三区| 久久久国产一区二区| 国产深夜福利视频在线观看| av在线观看视频网站免费| 成年人午夜在线观看视频| 亚洲av电影在线进入| 亚洲情色 制服丝袜| 久久这里有精品视频免费| 桃花免费在线播放| 如何舔出高潮| 亚洲精品自拍成人| 欧美 亚洲 国产 日韩一| 久久久国产精品麻豆| 人人妻人人添人人爽欧美一区卜| 80岁老熟妇乱子伦牲交| 精品久久蜜臀av无| 老熟女久久久| 免费在线观看黄色视频的| 三级国产精品片| 欧美精品人与动牲交sv欧美| 日韩免费高清中文字幕av| 女性生殖器流出的白浆| 人人澡人人妻人| 久久这里有精品视频免费| 日韩三级伦理在线观看| 国产乱人偷精品视频| 日本午夜av视频| 一区二区三区激情视频| 一级片免费观看大全| 99久国产av精品国产电影| videosex国产| 91在线精品国自产拍蜜月| 18禁国产床啪视频网站| 多毛熟女@视频| 国产色婷婷99| 日韩中文字幕视频在线看片| 丝瓜视频免费看黄片| 最黄视频免费看| 999精品在线视频| 大香蕉久久成人网| 最近的中文字幕免费完整| 中文天堂在线官网| 2021少妇久久久久久久久久久| 精品国产一区二区三区久久久樱花| 久久 成人 亚洲| 国产欧美亚洲国产| 最近中文字幕高清免费大全6| 亚洲男人天堂网一区| 成人18禁高潮啪啪吃奶动态图| 赤兔流量卡办理| 欧美国产精品一级二级三级| 精品视频人人做人人爽| 国产男人的电影天堂91| 国产精品久久久av美女十八| 日日撸夜夜添| 高清在线视频一区二区三区| 精品国产一区二区久久| 欧美成人午夜免费资源| 久久久久精品久久久久真实原创| 黄色 视频免费看| 男人操女人黄网站| 精品国产超薄肉色丝袜足j| 亚洲人成电影观看| 亚洲三区欧美一区| 国产精品成人在线| 亚洲欧美精品综合一区二区三区 | 美女主播在线视频| 麻豆精品久久久久久蜜桃| 国产成人精品久久久久久| 亚洲欧美一区二区三区久久| 十八禁网站网址无遮挡| 青春草亚洲视频在线观看| 久久久国产欧美日韩av| 久久这里只有精品19| 18禁动态无遮挡网站| 亚洲人成电影观看| 侵犯人妻中文字幕一二三四区| 永久免费av网站大全| 99久久精品国产国产毛片| 色网站视频免费| 国产成人a∨麻豆精品| 在线天堂中文资源库| 日韩成人av中文字幕在线观看| 久久久精品免费免费高清| 日本av手机在线免费观看| 夫妻性生交免费视频一级片| 高清欧美精品videossex| 久久免费观看电影| 建设人人有责人人尽责人人享有的| av在线观看视频网站免费| 青春草国产在线视频| 2022亚洲国产成人精品| 久久人人爽人人片av| 岛国毛片在线播放| 综合色丁香网| 老汉色av国产亚洲站长工具| 日日摸夜夜添夜夜爱| 亚洲经典国产精华液单| 国产精品久久久久成人av| 亚洲精品aⅴ在线观看| 人妻系列 视频| 免费在线观看黄色视频的| 欧美在线黄色| 国产精品欧美亚洲77777| 国产在线视频一区二区| 中文字幕精品免费在线观看视频| 精品福利永久在线观看| 久久久久久免费高清国产稀缺| av福利片在线| 亚洲精品在线美女| 18在线观看网站| 欧美成人精品欧美一级黄| 成人国产av品久久久| 日本午夜av视频| 国产深夜福利视频在线观看| 日韩大片免费观看网站| 男人添女人高潮全过程视频| 精品一区在线观看国产| 欧美+日韩+精品| 黄色毛片三级朝国网站|