• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electronic and magnetic properties of single-layer and double-layer VX2(X=Cl,Br)under biaxial stress?

    2021-10-28 07:02:32XingLi李興YanfengGe蓋彥峰JunLi李軍WenhuiWan萬(wàn)文輝andYongLiu劉永
    Chinese Physics B 2021年10期
    關(guān)鍵詞:李軍

    Xing Li(李興), Yanfeng Ge(蓋彥峰), Jun Li(李軍), Wenhui Wan(萬(wàn)文輝), and Yong Liu(劉永)

    State Key Laboratory of Metastable Materials Science and Technology&Key Laboratory for Microstructural Material Physics of Hebei Province,

    School of Science,Yanshan University,Qinhuangdao 066004,China

    Keywords: first-principles,biaxial tensile stress,phase transition,magnetic properties

    1. Introduction

    Since graphene[1]with weak interlayer van der Waals (vdW) interaction was successfully exfoliated, twodimensional (2D) materials have received extensive attention from scientists. Many 2D materials with excellent optical,[2,3]mechanical,[4]electrical,[5–7]and magnetic[8,9]properties have been widely studied, such as: phosphorene,[10,11]transition metal dichalcogenides (TMDs),[12,13]and CrI3.[14–16]Among them, 2D magnetic semiconductor materials have great potential in spintronic devices[17,18]due to their magnetic properties and ultra-thin thickness.

    The large area and outstanding stretchability of 2D materials allow its magnetic properties be tailored by external field. For example, when an external electric field[19]is applied to this CrI3,electrons transporting through the CrI3barriers will generate huge magnetoresistance[15,16,20]due to the spin filtering effect. Songet al.proposed that the perpendicular electric field can adjust the splitting energy and reverse the spin splitting direction in the vdW monolayer arsenene/FeCl2heterostructures.[21]On the other side, stress engineering is also a common method to control the magnetic properties of 2D materials. The stress on the 2D material can be realized by the methods of substrate effect[22–24]and piezoelectric actuators[25,26]in the experiments. Zhuet al.pointed that the magnetic anisotropy energy of the 2D vdW GeS/FeCl2multiferroic heterostructures can be increased by applying biaxial compressive strain.[27]Zhanget al.found that there is a strain-induced phase transition from half semiconductor to bipolar magnetic semiconductor in the Janus Cr2I3X3(X=Cl,Br)monolayer.[28]When a biaxial tensile stress of 3.5%is applied to the single-layer of MoS2doped with single Fe atom,its magnetic moment changes from 2.04μBto 4μB.[12]Besides,there are phase transitions between the FM state and the AFM state in 2D materials[29–31]when stress is applied. For instance, when a biaxial compressive stress is applied, single layer CrI3[29]has a phase transition from FM state to AFM state,and single layer MnPSe3[30]has a phase transition from AFM state to FM state.

    Inspired by the research of 2D material under external stress field, we put the research goal on 2D transition metal dihalides VX2(X= Cl, Br). There are three stable phases[13,32–34](T phase,H phase,and Tdphase)in the widely studied 2D TMDs.[35,36]Since 2D transition metal dihalides and TMDs differ only in non-metallic atoms, we also use the phases mentioned above to analyze 2D transition metal dihalide VX2. Several theoretical works[37,38]have displayed that the ground state of free-standing single-layer VX2in both 1H and 1T phases are AFM. In this work, we systematically investigated the mechanical, dynamic, electronic, and magnetic properties of single-layer and double-layer VX2under different stresses.Similar to previous work,[39]different stacking patterns are considered in constructing double-layer VX2.We find that the ground states of the single and double layer VX2are AFM semiconductors with T phase, and they are mechanically and kinetically stable. A phase transition from AFM state to FM state occurs when the biaxial tensile stress is applied. The mechanism of the magnetical phase transition is the competition between direct exchange and superexchange interactions. The band gaps increase and then turn to decreasing under biaxial tensile stress. Besides,applying stress to the VX2can increase the value ofTN.

    2. Theoretical method

    In the framework of density functional theory (DFT),the electronic structure and magnetic properties of materials were studied using the projector augmented wave (PAW)method, which was implemented in the Viennaab initiosimulation software package (VASP).[40,41]Perdew–Burke–Ernzerhof (PBE) was used to process the exchange relation function.[42]In this paper, a supercell size of 2×2×1 unit cells was used to study the magnetic structures in the calculations. A cutoff energy of 600 eV and aΓ-centered Monkhorst–Packk-points mesh of 9×9×1 for the Brillouin zone was found to be sufficient to obtain the convergence.The conjugate-gradient algorithm was employed for geometry optimization using convergence criterion of 10?6eV for the total energy and 0.01 eV/°A for Hellmann–Feynman force components. Using the density functional perturbation theory(DFPT)[43]to calculate the phonon spectrum,the convergence criterion of 10?10eV for the total energy and 10?5eV/°A for Hellmann–Feynman force components. We included the vdW correction in all the calculations using zero damping DFT-D3 method of Grimme.[44]

    3. Results and discussion

    The present work explores single-layer and double-layer VX2(X= Cl, Br) with the three most common phases in TMDs,namely T,H,and Tdphases.[13,32,34]Since the singlelayer and double-layer materials can be constructed by peeling off one or two layers from bulk materials, we need to construct the bulk structures at first. For the single-layer T-phase structure, there are three unequal positions (named A, B, C)in the c-axis direction, which are the position of one V atom and the positions of twoXatoms. And the single-layer Hphase structure has two unequal positions (named A, B) in thec-axis direction. Therefore, we could consider different stackings for the bulk structures. For example, AA stacking,AB stacking, and ABC stacking (stacking here only considers the different stacking methods of V atoms) are shown in Fig. 1 and Figs. A1–A3 in Appendix A: Supplemental material(See supplemental material for more details on the structures constructed, antiferromagnetic configurations of singlelayer structure, phonon spectrums, the formula for calculating the exchange correlation constant of double layer materials,and the exchange correlation constant of the ground-state single-layer and double-layer VX2). The bulk T-phase structure (ABC stacking) has hexagonal lattice, which belongs to theR3mspace group(166). In calculations,the non-magnetic(NM),FM,and AFM states are considered,by optimizing the atomic position and lattice constant to fnid the lowest energy states. The structures of Tdphase and T′phase would turn to the corresponding stacking forms of T phase when magnetism is considered, and the only difference between Td-phase and T′-phase structures is the stacking. In the following calculations,we only consider the T-phase and H-phase structures.

    Fig.1. The schematic diagrams of the ground-state structure of the bulk transition metal dihalide VX2 (X =Cl, Br) in the c direction(a)and a direction(b). The ground-state AFM configurations of single-layer (c) and doublelayer (d) transition metal dihalide VX2 (X =Cl, Br), respectively. J1 and J2 represent the exchange correlation constant of the nearest neighbor and next-nearest neighbor in the layer,and J3 represents the exchange correlation constant of the third nearest neighbor between the layers.

    The cleavage energy is the energy required to cleave the bulk materials in two halves,[45]which is a criterion for judging whether the bulk material is easy to peel off. The formula used to calculate the cleavage energy givesEc=Es?Et,whereEsdenotes the total energy of two separate parts andEtdenotes the total energy of the bulk. We find that the cleavage energy(see Table 1)of all structures considered in the article are less than that of graphene[46](0.36 J/m2), so they are easy to be peel off. Furthermore,the formation energy determine the difficulty for sythesision of VX2. For the binary compound VX2,the expression for the formation energy can be written as

    whereE(V),E(X),andE(VX2)are the normalized energy of the stable bulk bcc-V, gas phases (Cl2, Br2), and bulk VX2,respectively. See Table 1, since the formation energies of all stuctures considered in this paper have negative values,which are experimentally stable.

    Table 1. A summary table of the formation and cleavage energy of bulk VCl2 and VBr2. Ec stands for cleavage energy and Ef stands for formation energy.

    In order to determine the most stable phases in all structures, one NM, one FM, and four AFM configurations are considered for the single-layer structure. For the double-layer structure,one NM,one FM,and seven AFM configurations[47]are considered. We find that the T-phase of the single-layer structure has lower formation energies, and the ground state magnetic order (named AFM2) is shown in Fig. 1(c) which is consistent with previous work.[37,38]The ABC stacking double-layer structure with T phase is more stable, and the ground-state AFM configuration is shown in Fig.1(d). In Table 2,the NM state has higher energy than the magnetic state,only the corresponding AFM configuration of the ground state is considered in the following calculations. Furthermore, in order to test the dynamic stability of the ground state singlelayer and double-layer structures,we provide the corresponding phonon spectrums in Fig.A5. There is no imaginary frequencies,implying the kinetic stability of the single-layer and double-layer VX2.

    Figure 2 shows the electronic band structures and project density of states(PDOS)of the ground-state phases(the structure shown in Fig. 1). The indirect band gaps of the doublelayer VX2(1.0276 eV forX=Cl, 1.0170 eV forX=Br)is smaller than that of the single-layer VX2(1.0713 eV forX=Cl, 1.0472 eV forX=Br). Further, the electronic band structure of the double-layer structure is different from that of the single-layer structure in theKtoΓrange. The electrons of the d orbital of the V atom that play a major role to the band structure in this range. Due to the coupling between the layers, the electrons are not only localized in the plane, but also a small amount of electrons in a small range close to the plane, which leads to the difference in the band structure betweenKandΓ. The density of states (DOS) of all materials near the Fermi energy is reduced to zero,make these materials semi-conductivity.

    Table 2. The normalized energy table of the ground state(AFM state),FM state,and NM state of single-layer and double-layer VX2 (X =Cl,Br). s-T represents single-layer T-phase structure,and d-T represents double-layer T-phase structure.

    Fig.2. The ground-state electronic band structures and project density of states(PDOS)of(a)s-T-VCl2,(b)d-T-VCl2,(c)s-T-VBr2,and(d)d-T-VBr2.

    For the 2D material VX2(X=Cl, Br), the microscopic mechanisms of VX2,which determine the magnetic properties,contain two parts: (i) direct AFM exchange interaction between two V atoms;(ii)FM superexchange interaction among V–Cl(Br)–V with an anionic mediation Cl(Br). The competition between AFM and FM may lead to different magnetic ground state. When the direct exchange interaction between two V atoms is stronger than the superexchange interaction between V–Cl(Br)–V,the ground state of the material shows AFM, otherwise it is FM. Here, the direct exchange interaction between V atoms is dominant in these systems. For AFM materials,the N′eel temperature(TN)[48,49]refers to a parameter of the temperature at which the AFM phase of the antiparallel magnetic order changes to the NM phase. We use the Ising model in the Monte Carlo method to calculate it. The Hamiltonian[50]can be written in the following form:

    whereJijrepresents the exchange interactions of over all neighbor V–V pairs,Sirepresents the spin of the atomi.For the single-layer structure, this paper considers the nearest neighbor and the next nearest neighbor interaction,and the third nearest neighbor interaction between the layers is also considered for the double-layer structure. To calculateJ, we write the energy of the single-layer VX2in the FM, AFM2,and AFM4 configurations(shown in Fig.A4)in the following form:

    whereJ1andJ2(shown in Fig. 1(c)) represent the exchange correlation constant of the nearest neighbor and the next nearest neighbor,andE0is the energy of a single-layer VX2without spin polarization andS=3/2.[51]Through calculations,the absolute value ofJ1for all materials is much greater thanJ2(J3),and the value ofJ1is negative(in the Table A1),which further verifies the antiferromagnetism of the ground states.We use the Metropolis algorithm and a 32×32 2D supercell with periodic boundary conditions to computeTN,and the calculations are implemented in mcsolver software.[52]Besides,because 2D materials have excellent stretchability, the pressure factor is also taken into account in the calculations. Figure 3 shows that the Monte Carlo simulations ofTNof the single-layer and double-layer VX2with pressure. When no stress is applied,theTNof single-layer and double-layer VCl2is 62 K and 96 K, and the value of single-layer and doublelayer VBr2is 32 K and 144 K.Compared with the single-layer VX2, theTNof the double-layer VX2are higher. In Table 2,the normalized energy of the double-layer structure is lower than that of the single-layer structure, so the coupling effect between the layers makes the double-layer systems more stable and higherTN. When stress is applied to the materials,as the stress increases,theTNof all materials tend to increase.

    Further,we calculate the Curie temperature(Tc)of the ferromagnetic state under a tensile stress of 8%,theTcof singlelayer and double-layer VCl2is 53 K and 24 K, respectively.Due to the 8% stress is close to the phase transition point of single-layer and double-layer VCl2, the small exchange correlation constant results in a low Curie temperature. TheTcof single-layer and double-layer VBr2is 175 K and 293 K,respectively. The latter one is close to the room temperature.

    Fig.3. (a) The N′eel temperature of single-layer and double-layer VCl2 and VBr2 under stress. (b) The Curie temperature of single-layer and doublelayer VCl2 and VBr2 under 8% biaxial tensile stress, m represents the total magnetic moment per V atom.

    We also explore the magnetic state, magnetic moment and band gap depends of biaxial stress. From Fig. 4(a), the ground states of all materials change from an AFM state to an FM state when the biaxial tensile stress reaches the corresponding critical point. Meanwhile, there are no phase transitions under biaxial compressive stress. The stress of the phase transition points of the single-layer and double-layer VCl2are 6.65%and 7.64%,while the single-layer and doublelayer VBr2are 4.49%and 5.32%. For the same material, the phase transition stress for a double-layer structure is greater than that of a single-layer structure. See Fig. 4(b), the band gaps also changes under by applying biaxial stress. When applying pressure, the band gaps of all materials gradually decrease. However, when stress increases, the band gaps of all materials firstly become larger and then turn smaller. Noted that the band gaps decrease rapidly near the phase transition point. In Fig. 4(c), we find that the magnetic moment gradually decreases and increases under biaxial compressive and tensile stress, respectively. As the spin-polarized charges of VX2(X=Cl and Br)mainly arise from the localized nonbonding V-3d electrons,the increase of tensile stress reduces the covalent interaction between V and Cl or Br atoms. As a result,the number of nonbonding V-3d electrons increases, so that the magnetic moment of V atomic increases.[53]On the other side,compressive stress has the opposite effect. Moreover,the magnetic moment jumps at the phase transition points,and becomes insensitive to stress after the phase transition points.

    Fig.4. (a)Magnetic ground state,(b)band gap,and(c)magnetic moment of single-layer and double-layer VCl2 and VBr2 under biaxial stress.

    4. Conclusion

    In summary, we explore the ground state phases among the possible structures of single-layer and double-layer VX2(X=Cl, Br)based on first-principles calculations. The electronic and magnetic properties of the corresponding phase under biaxial stress are systematically investigated. The ground states of single-layer and double-layer VX2are all AFM semiconductors with T phase, and are dynamically and mechanically stable. All ground-state structures only have one phase transition from AFM to FM under biaxial tensile stress. The mechanism of the magnetic phase transition is the competition between direct exchange and superexchange interactions.The band gaps increase and then turn to decreasing under biaxial tensile stress.TNof the single-layer are lower than that of double-layer VX2according to Monte Carlo simulations,which may be caused by the coupling effect between the layers. Besides,applying stress to the VX2can increase the value ofTNand the magnetic moment increases as the biaxial tensile stress increases. In 2015,Lvet al.[54]summarized controlled synthesis of 2D TMDs using wet chemical approaches,chemical exfoliation,and chemical vapor deposition(CVD).Meanwhile,it is possible to control the number of layers when synthesizing these materials. Our results show that single-layer and double-layer VX2(X=Cl, Br) would possess potential applications in spintronic devices. We also hope that our theoretical research will be helpful to the further experiment.

    Acknowledgment

    Thanks to the teachers and classmates who have helped me,and thanks to my parents and friends for their supports.

    Appendix A:Supplemental material

    In order to better understand and explain the descriptions in the main text, some figures, formulas, and table are given below.

    Fig.A1. The schematic diagrams of the bulk T-phase VX2(X=Cl,Br)of(a)AA stacking and(b)AB stacking.

    Fig. A2. The schematic diagrams of the bulk H-phase VX2 (X =Cl, Br) of(a)AA stacking and(b)AB stacking.

    Fig.A3.The schematic diagrams of the bulk VX2(X=Cl,Br)of(a)T′-phase and(b)Td-phase.

    Table A1. The exchange correlation constants of the ground-state singlelayer and double-layer VX2.

    Fig. A4. The antiferromagnetic configurations of single-layer VX2 of (a)AFM1,(b)AFM3,and(c)AFM4.

    Fig.A5. Phonon spectrum of the ground-state single-layer and double-layer(a)VCl2 and(b)VBr2.

    Fig.A6. Phonon spectrum of the ground-state single-layer and double-layer(a)VCl2 and(b)VBr2 under 10%tensile stress.

    The formulas for calculating the exchange correlation constants of double layer materials are given below:

    猜你喜歡
    李軍
    木棉花開
    人民之聲(2022年3期)2022-04-12 12:00:14
    Superconductivity in octagraphene
    Soliton,breather,and rogue wave solutions for solving the nonlinear Schr¨odinger equation using a deep learning method with physical constraints?
    A physics-constrained deep residual network for solving the sine-Gordon equation
    Flow structures and hydrodynamics of unsteady cavitating flows around hydrofoil at various angles of attack *
    Mechanical Behavior of Plastic PiPe Reinforced by Cross-Winding Steel Wire Subject to Foundation Settlement
    滬港通一周成交概況
    李軍書法藝術(shù)簡(jiǎn)介
    散文百家(2014年11期)2014-08-21 07:16:04
    MULTI-OBJECTIVE PROGRAMMING FOR AIRPORT GATE REASSIGNMENT
    AIRCRAFT CONCEPT EVALUATION AND EFFECTIVENESS-BASED DECISION-MAKING
    好男人电影高清在线观看| xxx大片免费视频| 高清不卡的av网站| av国产久精品久网站免费入址| av一本久久久久| 国产av一区二区精品久久| 亚洲国产av新网站| 国产精品亚洲av一区麻豆| 国产成人av激情在线播放| 美女大奶头黄色视频| 国产在线视频一区二区| 97精品久久久久久久久久精品| 中文字幕制服av| 久久亚洲精品不卡| 国产高清不卡午夜福利| 男女边摸边吃奶| 看免费成人av毛片| 亚洲人成电影观看| 久久精品久久久久久噜噜老黄| 亚洲综合色网址| 久久久国产精品麻豆| 亚洲一区二区三区欧美精品| 免费高清在线观看日韩| 免费高清在线观看日韩| 国产av精品麻豆| 中文字幕人妻丝袜制服| 性高湖久久久久久久久免费观看| 中文精品一卡2卡3卡4更新| 高潮久久久久久久久久久不卡| 男女边吃奶边做爰视频| 久久热在线av| 人妻人人澡人人爽人人| 另类精品久久| 欧美黑人精品巨大| 精品国产一区二区三区四区第35| 欧美黄色片欧美黄色片| 欧美激情高清一区二区三区| 久久性视频一级片| 亚洲成国产人片在线观看| 天堂8中文在线网| 一本大道久久a久久精品| 欧美日韩黄片免| 日韩电影二区| 看十八女毛片水多多多| 精品福利永久在线观看| 成人手机av| 午夜av观看不卡| 成年人免费黄色播放视频| 啦啦啦 在线观看视频| 最近最新中文字幕大全免费视频 | 国产精品秋霞免费鲁丝片| 国产亚洲欧美精品永久| 两个人看的免费小视频| 久久人人爽av亚洲精品天堂| 看免费av毛片| 丰满少妇做爰视频| 亚洲熟女毛片儿| 精品人妻一区二区三区麻豆| 亚洲精品久久成人aⅴ小说| 欧美日本中文国产一区发布| 亚洲国产精品一区二区三区在线| 国产熟女午夜一区二区三区| 91麻豆av在线| 欧美久久黑人一区二区| 人妻人人澡人人爽人人| 又紧又爽又黄一区二区| 亚洲少妇的诱惑av| a级片在线免费高清观看视频| 五月开心婷婷网| 欧美在线一区亚洲| 亚洲欧洲国产日韩| 中国国产av一级| 国产精品久久久久成人av| 午夜视频精品福利| 另类亚洲欧美激情| 国产免费现黄频在线看| 老鸭窝网址在线观看| 国产极品粉嫩免费观看在线| 亚洲综合色网址| 国产免费视频播放在线视频| 欧美国产精品va在线观看不卡| 婷婷成人精品国产| 午夜影院在线不卡| 国产在线免费精品| 婷婷色麻豆天堂久久| 国产成人91sexporn| 99国产精品99久久久久| 久久国产精品影院| 亚洲少妇的诱惑av| 亚洲,欧美,日韩| 51午夜福利影视在线观看| 十八禁人妻一区二区| 欧美黄色淫秽网站| 高潮久久久久久久久久久不卡| 亚洲欧美清纯卡通| 乱人伦中国视频| 亚洲图色成人| 免费在线观看完整版高清| 午夜福利免费观看在线| 国产熟女午夜一区二区三区| 中文精品一卡2卡3卡4更新| 一区二区三区四区激情视频| 欧美日韩国产mv在线观看视频| 亚洲成人免费电影在线观看 | 国产国语露脸激情在线看| 日本猛色少妇xxxxx猛交久久| 国产99久久九九免费精品| 亚洲精品一卡2卡三卡4卡5卡 | 在现免费观看毛片| 国产精品久久久久久精品电影小说| 男人舔女人的私密视频| 国产一卡二卡三卡精品| 免费女性裸体啪啪无遮挡网站| 国产黄色免费在线视频| 在线av久久热| 日韩免费高清中文字幕av| 欧美日韩亚洲高清精品| 精品人妻在线不人妻| 中文字幕另类日韩欧美亚洲嫩草| 久久性视频一级片| 欧美日韩亚洲国产一区二区在线观看 | 妹子高潮喷水视频| 午夜福利乱码中文字幕| 啦啦啦 在线观看视频| 婷婷色麻豆天堂久久| 十分钟在线观看高清视频www| 日日爽夜夜爽网站| 秋霞在线观看毛片| 少妇精品久久久久久久| 99国产精品免费福利视频| 亚洲av日韩精品久久久久久密 | 51午夜福利影视在线观看| 日本a在线网址| 日本wwww免费看| 欧美日韩视频高清一区二区三区二| 精品福利观看| 亚洲 国产 在线| 日韩电影二区| 亚洲av电影在线进入| 亚洲色图 男人天堂 中文字幕| 多毛熟女@视频| 亚洲成人手机| 亚洲国产欧美日韩在线播放| 国产又色又爽无遮挡免| 国产成人精品久久二区二区91| 亚洲av国产av综合av卡| av片东京热男人的天堂| 高潮久久久久久久久久久不卡| 婷婷色av中文字幕| 成年动漫av网址| 在线看a的网站| e午夜精品久久久久久久| xxxhd国产人妻xxx| 亚洲三区欧美一区| 国产av一区二区精品久久| 天天操日日干夜夜撸| 欧美日韩一级在线毛片| 久久人人爽av亚洲精品天堂| 九色亚洲精品在线播放| 搡老岳熟女国产| 人人妻人人澡人人爽人人夜夜| 两性夫妻黄色片| 搡老乐熟女国产| 777久久人妻少妇嫩草av网站| 丝袜喷水一区| 人人妻人人澡人人爽人人夜夜| 亚洲熟女精品中文字幕| 国产人伦9x9x在线观看| 一本色道久久久久久精品综合| 精品卡一卡二卡四卡免费| 蜜桃国产av成人99| 中文字幕人妻丝袜一区二区| 最新的欧美精品一区二区| 夫妻午夜视频| 2021少妇久久久久久久久久久| av在线app专区| 成人免费观看视频高清| 精品国产一区二区久久| 9色porny在线观看| 免费看av在线观看网站| 亚洲av美国av| 一区二区三区精品91| 国产高清国产精品国产三级| 777久久人妻少妇嫩草av网站| 国产日韩欧美在线精品| 国产成人精品久久二区二区91| 亚洲国产欧美在线一区| 亚洲自偷自拍图片 自拍| 伊人久久大香线蕉亚洲五| 免费在线观看完整版高清| 麻豆av在线久日| 成人三级做爰电影| 我的亚洲天堂| 亚洲三区欧美一区| 久久亚洲精品不卡| 黑丝袜美女国产一区| 又大又黄又爽视频免费| 黑人猛操日本美女一级片| av电影中文网址| videos熟女内射| 色网站视频免费| 日韩大片免费观看网站| 日日摸夜夜添夜夜爱| 一级黄色大片毛片| 亚洲欧美色中文字幕在线| 国产精品av久久久久免费| 可以免费在线观看a视频的电影网站| 久久国产亚洲av麻豆专区| 国产高清视频在线播放一区 | 男人舔女人的私密视频| 欧美日本中文国产一区发布| 99精品久久久久人妻精品| 亚洲,一卡二卡三卡| 国产无遮挡羞羞视频在线观看| 男女床上黄色一级片免费看| 在线观看免费日韩欧美大片| 久久久久精品国产欧美久久久 | 国产成人a∨麻豆精品| 纯流量卡能插随身wifi吗| 欧美激情极品国产一区二区三区| 亚洲美女黄色视频免费看| 亚洲色图综合在线观看| 国产一级毛片在线| 亚洲av美国av| 麻豆国产av国片精品| 制服人妻中文乱码| 久热爱精品视频在线9| 欧美变态另类bdsm刘玥| 久久久亚洲精品成人影院| 亚洲国产中文字幕在线视频| 在现免费观看毛片| 国产av一区二区精品久久| 免费看十八禁软件| 可以免费在线观看a视频的电影网站| 日本欧美国产在线视频| 午夜福利视频在线观看免费| 国产亚洲精品久久久久5区| 首页视频小说图片口味搜索 | 久久女婷五月综合色啪小说| 女警被强在线播放| 中文字幕高清在线视频| 一级黄色大片毛片| 国产av一区二区精品久久| 欧美精品一区二区大全| 99热网站在线观看| 一级毛片我不卡| 国产xxxxx性猛交| 免费看十八禁软件| 久久人人爽av亚洲精品天堂| 妹子高潮喷水视频| 欧美人与善性xxx| 成人黄色视频免费在线看| 91老司机精品| 亚洲精品国产区一区二| 精品少妇黑人巨大在线播放| 老鸭窝网址在线观看| 欧美另类一区| 一边摸一边做爽爽视频免费| 久久av网站| 女警被强在线播放| 久久精品久久精品一区二区三区| 国产在视频线精品| 中文字幕制服av| 久久中文字幕一级| 久久久久久亚洲精品国产蜜桃av| 最近手机中文字幕大全| 国产野战对白在线观看| 大型av网站在线播放| 两个人看的免费小视频| 美女视频免费永久观看网站| 亚洲人成77777在线视频| 成人国语在线视频| 曰老女人黄片| 午夜福利一区二区在线看| 波多野结衣一区麻豆| 在线观看免费高清a一片| 久久久国产欧美日韩av| 亚洲欧美一区二区三区黑人| 一级片'在线观看视频| 少妇 在线观看| 日韩,欧美,国产一区二区三区| 极品人妻少妇av视频| 国产1区2区3区精品| 国产亚洲av片在线观看秒播厂| 男女下面插进去视频免费观看| 国产片内射在线| 亚洲精品成人av观看孕妇| 九草在线视频观看| 亚洲精品乱久久久久久| 在现免费观看毛片| 成人午夜精彩视频在线观看| 欧美成狂野欧美在线观看| 校园人妻丝袜中文字幕| 99久久人妻综合| 亚洲国产欧美一区二区综合| 久久影院123| 久久久久久久国产电影| 国产av精品麻豆| 大片电影免费在线观看免费| 美女国产高潮福利片在线看| 一区二区日韩欧美中文字幕| 欧美精品人与动牲交sv欧美| 国产成人啪精品午夜网站| 国产精品99久久99久久久不卡| 在线精品无人区一区二区三| 亚洲欧美成人综合另类久久久| 久久国产亚洲av麻豆专区| 十八禁高潮呻吟视频| cao死你这个sao货| √禁漫天堂资源中文www| 天堂俺去俺来也www色官网| 女人久久www免费人成看片| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美激情在线| 老汉色av国产亚洲站长工具| e午夜精品久久久久久久| 超碰成人久久| 亚洲国产精品999| 国产国语露脸激情在线看| 亚洲精品国产av成人精品| 欧美在线黄色| 91国产中文字幕| 国精品久久久久久国模美| 男人爽女人下面视频在线观看| 新久久久久国产一级毛片| 午夜福利在线免费观看网站| 91国产中文字幕| 狂野欧美激情性xxxx| 日日夜夜操网爽| 韩国高清视频一区二区三区| 日韩视频在线欧美| 欧美激情极品国产一区二区三区| 国产成人精品无人区| 在线av久久热| 咕卡用的链子| 婷婷色av中文字幕| 欧美变态另类bdsm刘玥| 亚洲av欧美aⅴ国产| 精品免费久久久久久久清纯 | 宅男免费午夜| 亚洲人成电影免费在线| 五月天丁香电影| 捣出白浆h1v1| www.精华液| 欧美日韩精品网址| 蜜桃在线观看..| 亚洲人成电影免费在线| 下体分泌物呈黄色| 宅男免费午夜| 在线av久久热| 久久久精品区二区三区| 精品国产乱码久久久久久男人| 熟女少妇亚洲综合色aaa.| 老汉色∧v一级毛片| 亚洲国产精品一区二区三区在线| 国产日韩一区二区三区精品不卡| videos熟女内射| 只有这里有精品99| 精品国产国语对白av| 80岁老熟妇乱子伦牲交| 黄色片一级片一级黄色片| 国产视频一区二区在线看| 美女脱内裤让男人舔精品视频| 亚洲欧洲精品一区二区精品久久久| 丁香六月天网| 后天国语完整版免费观看| 美女国产高潮福利片在线看| 国产在线免费精品| 熟女少妇亚洲综合色aaa.| 国产在线一区二区三区精| 久久九九热精品免费| 在线 av 中文字幕| 国产亚洲欧美在线一区二区| 男女国产视频网站| 在线亚洲精品国产二区图片欧美| 母亲3免费完整高清在线观看| 丝袜美足系列| 久久精品aⅴ一区二区三区四区| 日韩伦理黄色片| 一级a爱视频在线免费观看| 大陆偷拍与自拍| 精品第一国产精品| tube8黄色片| 别揉我奶头~嗯~啊~动态视频 | 欧美日韩亚洲高清精品| 欧美精品一区二区大全| 国产成人精品久久二区二区免费| 80岁老熟妇乱子伦牲交| 国产欧美日韩综合在线一区二区| 一边摸一边抽搐一进一出视频| 一本一本久久a久久精品综合妖精| 一本—道久久a久久精品蜜桃钙片| 婷婷成人精品国产| 高清黄色对白视频在线免费看| 国产99久久九九免费精品| 国产又色又爽无遮挡免| 少妇人妻久久综合中文| 99热全是精品| 精品国产一区二区三区久久久樱花| 国产高清videossex| 精品人妻一区二区三区麻豆| 国产精品国产三级专区第一集| 又黄又粗又硬又大视频| 欧美激情 高清一区二区三区| 国产97色在线日韩免费| 天堂俺去俺来也www色官网| 国产亚洲精品久久久久5区| 熟女av电影| 国产97色在线日韩免费| 妹子高潮喷水视频| 国产av精品麻豆| 亚洲,一卡二卡三卡| 日韩视频在线欧美| 精品国产乱码久久久久久小说| 女性被躁到高潮视频| 九草在线视频观看| 精品一区在线观看国产| 国产爽快片一区二区三区| 免费看十八禁软件| 国产精品久久久久成人av| 亚洲久久久国产精品| 又粗又硬又长又爽又黄的视频| 亚洲av成人不卡在线观看播放网 | 午夜福利一区二区在线看| 亚洲成国产人片在线观看| 晚上一个人看的免费电影| 国产精品免费大片| 国产亚洲av高清不卡| 天天操日日干夜夜撸| 日韩免费高清中文字幕av| 国产一区二区三区综合在线观看| 男女高潮啪啪啪动态图| 天天躁狠狠躁夜夜躁狠狠躁| 99精品久久久久人妻精品| 欧美成人午夜精品| 高清黄色对白视频在线免费看| 高清不卡的av网站| 熟女av电影| 国产精品免费大片| 亚洲国产毛片av蜜桃av| 久久九九热精品免费| 99热全是精品| 国产精品 国内视频| av不卡在线播放| 国产精品九九99| 久久热在线av| 午夜福利乱码中文字幕| 国产麻豆69| 欧美成人精品欧美一级黄| 亚洲人成电影观看| 9热在线视频观看99| 久久精品国产亚洲av高清一级| 91精品国产国语对白视频| 亚洲男人天堂网一区| 国产亚洲午夜精品一区二区久久| 精品人妻1区二区| 日本一区二区免费在线视频| 婷婷色av中文字幕| 视频在线观看一区二区三区| av国产久精品久网站免费入址| 免费在线观看完整版高清| 激情五月婷婷亚洲| 国产淫语在线视频| 国产精品亚洲av一区麻豆| 日韩制服丝袜自拍偷拍| 日本av免费视频播放| a 毛片基地| 国产免费福利视频在线观看| 大片免费播放器 马上看| 熟女av电影| 午夜久久久在线观看| 国产亚洲精品第一综合不卡| 无限看片的www在线观看| 精品卡一卡二卡四卡免费| 国产精品二区激情视频| 欧美精品av麻豆av| 亚洲第一av免费看| 精品一区二区三区四区五区乱码 | 久久精品国产亚洲av涩爱| 搡老乐熟女国产| 考比视频在线观看| 免费av中文字幕在线| 免费少妇av软件| 国产成人欧美在线观看 | 一本一本久久a久久精品综合妖精| 一级毛片电影观看| 搡老岳熟女国产| 国产成人免费观看mmmm| 国产欧美日韩一区二区三区在线| 青草久久国产| 丰满饥渴人妻一区二区三| 电影成人av| 欧美日韩精品网址| 中文字幕人妻丝袜制服| 美国免费a级毛片| 人体艺术视频欧美日本| 好男人视频免费观看在线| 天天添夜夜摸| 久久国产亚洲av麻豆专区| 一本一本久久a久久精品综合妖精| 午夜久久久在线观看| 国产日韩欧美在线精品| 国产一区二区在线观看av| 老司机靠b影院| 欧美亚洲 丝袜 人妻 在线| 黄色视频在线播放观看不卡| 欧美人与善性xxx| 国产片内射在线| 久热这里只有精品99| 又粗又硬又长又爽又黄的视频| 波多野结衣av一区二区av| 亚洲伊人久久精品综合| 超碰97精品在线观看| 一区二区三区精品91| 亚洲专区国产一区二区| 免费观看人在逋| 欧美乱码精品一区二区三区| 精品少妇黑人巨大在线播放| 中文字幕最新亚洲高清| 日韩精品免费视频一区二区三区| 久久久久久亚洲精品国产蜜桃av| 天堂俺去俺来也www色官网| 男女边摸边吃奶| 日韩 亚洲 欧美在线| 男女免费视频国产| 人妻人人澡人人爽人人| 国产精品av久久久久免费| 99久久综合免费| 国产三级黄色录像| 日日爽夜夜爽网站| 欧美黑人欧美精品刺激| 欧美国产精品一级二级三级| 久久狼人影院| 777米奇影视久久| 日韩 欧美 亚洲 中文字幕| av片东京热男人的天堂| 天天躁夜夜躁狠狠躁躁| 欧美日韩视频精品一区| 在线观看www视频免费| 久久性视频一级片| 另类精品久久| 大香蕉久久成人网| 少妇 在线观看| 这个男人来自地球电影免费观看| 又紧又爽又黄一区二区| 超色免费av| 黄网站色视频无遮挡免费观看| 久久九九热精品免费| 老汉色∧v一级毛片| 成人手机av| 国产精品一二三区在线看| 国产精品一国产av| 午夜视频精品福利| 中文字幕人妻熟女乱码| 黄色 视频免费看| av福利片在线| 三上悠亚av全集在线观看| 午夜av观看不卡| 久久久久久人人人人人| 亚洲美女黄色视频免费看| 国产亚洲一区二区精品| 纵有疾风起免费观看全集完整版| a 毛片基地| 最新的欧美精品一区二区| 建设人人有责人人尽责人人享有的| 男女边摸边吃奶| 黄色视频在线播放观看不卡| 男的添女的下面高潮视频| 777久久人妻少妇嫩草av网站| 麻豆av在线久日| 亚洲精品第二区| 成人手机av| 老汉色∧v一级毛片| 观看av在线不卡| 国产爽快片一区二区三区| 日韩制服骚丝袜av| 涩涩av久久男人的天堂| 国产成人一区二区三区免费视频网站 | 亚洲欧美日韩高清在线视频 | 丁香六月欧美| 九草在线视频观看| 午夜91福利影院| 99国产精品一区二区蜜桃av | 亚洲国产精品成人久久小说| 欧美精品一区二区大全| 亚洲精品久久午夜乱码| 色94色欧美一区二区| 欧美人与性动交α欧美软件| 美女大奶头黄色视频| 天堂俺去俺来也www色官网| 久9热在线精品视频| www.自偷自拍.com| 国产一区亚洲一区在线观看| av视频免费观看在线观看| 制服人妻中文乱码| 一二三四社区在线视频社区8| 大片免费播放器 马上看| 亚洲七黄色美女视频| 一级黄片播放器| 亚洲一卡2卡3卡4卡5卡精品中文| 国产日韩欧美亚洲二区| 高清av免费在线| 18禁国产床啪视频网站| 啦啦啦视频在线资源免费观看| 久久国产精品大桥未久av| 亚洲国产最新在线播放| 纵有疾风起免费观看全集完整版| 黄网站色视频无遮挡免费观看| 别揉我奶头~嗯~啊~动态视频 | av欧美777| 搡老乐熟女国产| 亚洲中文av在线| 在现免费观看毛片| 欧美亚洲 丝袜 人妻 在线| 狠狠精品人妻久久久久久综合|