• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic behavior of the cyanobacterial circadian clock with regulation of CikA?

    2021-10-28 07:18:30YingLi李瑩GuangKunZhang張廣鹍andYanMingGe葛焰明
    Chinese Physics B 2021年10期
    關(guān)鍵詞:李瑩

    Ying Li(李瑩), Guang-Kun Zhang(張廣鹍), and Yan-Ming Ge(葛焰明)

    College of Information Technology,Shanghai Ocean University,Shanghai 201306,China

    Keywords: cyanobacterial circadian clock,mathematical model,adaptability,sensitivity analysis

    1. Introduction

    Circadian clocks are the fundamental process of many organisms to keep the physical and behavior order and adapt to daily environmental variations, which are intrinsic selfsustained oscillators with a period of approximately 24 h. The great progress in molecular biology experiments has enabled researchers to explore the components and molecular mechanisms involved in circadian clocks.[1]Among a wide variety of organisms,cyanobacteria are the simplest organisms to have circadian clocks.

    In the cyanobacterial circadian clock, the gene clusterkaiABCand its product proteins KaiA, KaiB, and KaiC are essential for generating the rhythm.[2]KaiC plays a central role and undergoes rhythmic activities in transcription,translation, phosphorylation, and autodephosphorylation in the presence of both KaiA and KaiB.[3,4]The cyanobacterial circadian clock is composed of two coupled components: a post-translational oscillator (PTO) and a transcriptional/translational feedback loop(TTFL).These two components have a hierarchical relationship. The PTO is the core pacemaker to which the TTFL is attached. The TTFL feeds back to the PTO by the synthesis of clock proteins.[5]

    In the TTFL,the clock genes,kaiA,kaiB,andkaiC,form a gene cluster, wherekaiBandkaiCare co-transcribed askaiABCmRNA.[2]Biological experiment shows that KaiC over expression consistently reduces kaiBC promoter activity, which implies KaiC regulates kaiBC transcription negatively.[2]This self-repression of KaiC indicates that the negative feedback transcriptional regulation generates oscillation ofkaigene expression. Additionally, KaiA over expression shows different effects on kaiBC transcription depending on KaiC; the transcriptional regulation by KaiC also showskaiAdependency.[6]Based on the fact that KaiA enhances KaiC phosphorylation, this cooperative regulation by KaiA and KaiC is considered to be realized by KaiC phosphorylation.[7]

    The PTO is a self-sustained core pacemaker which consists of three core proteins: KaiA, KaiB, and KaiC.[8]KaiC can autophosphorylate and autodephosphorylate. The other clock proteins KaiA and KaiB modulate KaiC autophosphorylation. KaiA enhances the autophosphorylation of KaiC by binding to the A-loop, whereas KaiB inhibits this action of KaiA by sequestering KaiA from the A-loop,[6]which generates the oscillation of KaiC phosphorylation with a circadian period.[9]

    Although the Kai proteins alone produce a robust circadian rhythm in vitro,there are several other proteins that have a great influence on the rhythms.[10]CikA,a signal transduction protein, plays an important role in the three processes of cyanobacterial circadian clock: input, oscillator and output.In the input pathway, CikA senses environmental light information indirectly, which entrains the circadian oscillator.[11]CikA also functions as an output pathway component by acting as a phosphatase against RpaA,a transcription factor regulated by the circadian clock.[12]In the central oscillator,CikA affects the phosphorylation and dephosphorylation of KaiC indirectly. Structural analysis reveals that both CikA and KaiA bind competitively to the same site on KaiB that is used to sequester KaiA,[13]which changes the ability of KaiA to stimulate KaiC phosphorylation. This regulation of CikA affects both the amplitude and the period of the circadian oscillation.[14]Considering the important role of CikA on the circadian clock,many biological results have been found.However, the molecular mechanism is not fully understood.To our knowledge, there is no research work on it from the dynamical angle,which may help us more deeply understand the role of CikA in the cyanobacterial circadian clock.

    On the investigation of the regulatory mechanism of circadian clocks, mathematical models are useful and powerful,which have been widely used.[11,15–18]To explore the regulation mechanisms of CikA on the phosphorylation and dephosphorylation of KaiC,we bring forward a mathematical model with incorporation of additional regulation of CikA into the cyanobacterial circadian clock model. We will carry out a detailed study of the model to reveal the crucial role of CikA on the cyanobacterial circadian clock. The rest of this article is organized as follows. In Section 2, a detailed mathematical model is developed. Section 3 shows the numerical simulation and analysis. The conclusion and discussion are presented in Section 4.

    2. Description of the mathematical model

    When CikA regulation is incorporated into the PTO and TTFL circadian network,[8]the model of the cyanobacterial circadian oscillator is schematized in Fig.1. Cooperative regulation of KaiA and KaiC on kaiBC is realized by phosphorylated KaiC.KaiC can autophosphorylate and autodephosphorylate. KaiA promotes the phosphorylation of KaiC,and KaiB inhibits the phosphorylation in a competitive manner. However,CikA weakens the inhibition of KaiB.

    It has been observed that the amount of KaiA in a single cell remain constant at a low level in the cytosol, and the amount of KaiB is always kept to be proportional to that of KaiC.[19]The model is described by a three-dimensional system of ordinary differential equations which include the temporal dynamics of kaiBC mRNA and KaiC in two forms: unphosphorylated and phosphorylated. This system is described as follows:

    whereX1,X2, andX3are the concentration of kaiBC mRNA,unphosphorylated KaiC(NP-KaiC)and phosphorylated KaiC(P-KaiC),respectively;δ1,δ2,andδ3are the degradation rates of kaiBC,NP-KaiC,and P-KaiC,respectively;pis the translation rate of kaiBC.

    Fig.1. Schematic diagram for the cyanobacterial circadian clock with the regulation of CikA, which involves the processes of kaiBC transcription and KaiC phosphorylation.

    whereαandKare both nonnegative constants.

    Phosphorylation rate of KaiC is described by the Phos function. We suppose that KaiB interacts with KaiA which decreases KaiA amount that can stimulate the phosphorylation of KaiC,and CikA depresses the interaction. KaiA-mediated KaiC phosphorylation is described with the Michaelis–Menten function as follows:

    where [KaiA] represents the concentration of KaiA and it is a constant;kaandkmare the maximum phosphorylation rate per KaiA concentration activity and the Michaelis constant,respectively. The dephosphorylation rate is denoted askdX3,wherekdis the dephosphorylation rate per P-KaiC concentration. Without KaiB and CikA,the total change of phosphorylation and dephosphorylation is as follows:

    Considering the interaction of KaiB with KaiA decreases KaiA amount and [KaiB] is always proportional to the total amount of KaiC,we use the following equation to describe the total change of phosphorylation and dephosphorylation with KaiB:

    wheref,g,eandmare constants.

    In the following numerical simulations, we take the parameter values asδ1= 0.135 h?1,δ2= 0.1425 h?1,δ3=0.1425 h?1,p=36.1 h?1,α=5,K=15μM,ka=110 h?1,km= 1 μM,f= 16.48,g= 3.3,e= 1.6,m= 1,kd=0.105 h?1.

    3. Results

    3.1. The effect of CikA on the dynamics of the circadian clock

    For a mathematical model of the circadian clock, we should first validate whether its dynamic behaviors agree with experimental observations. In order to observe the effect of CikA on KaiC phosphorylation, we take various values of [CikA] in the circadian clock model with fixed [KaiA].Time evolution for the concentrations of P-KaiC is shown in Fig.2(a). The corresponding amplitude and period are shown in Fig. 2(b), from which we can see that CikA affects both the amplitude and the period of the circadian oscillation of KaiC phosphorylation. In particular, increasing amounts of CikA shorten the period of the KaiC phosphorylation oscillation,which is consistent with the experimental results.[14]

    Biological experiments showed that the amount of KaiA in the reaction mixture is an important factor for the circadian oscillator of KaiC phosphorylation.[21]Numerical simulation of the system shows that with the increase of [KaiA], the period decreases, and the amplitude increases first and then decreases (see Figs. 2(c)–2(d)). All these results are coincident with experimental findings.[14,21]

    Considering the competition of CikA with KaiA for the binding site on KaiB, to explore the effect of CikA, we decrease the concentration of KaiA in the reaction mixture while simultaneously increasing the concentration of CikA.The sum of[KaiA]and[CikA]is maintained. From Figs.2(e)–2(f),we can see that the phosphorylation state of KaiC maintains robust circadian rhythms with a stable circadian amplitude and a relatively stable period with the increase of [KaiA]. That is to say, in the presence of CikA, decreasing [KaiA] lengthens the period slightly. The ability of KaiA to stimulate KaiC phosphorylation is enhanced by CikA,which makes KaiA out of its sequestered state. Therefore,more CikA in the reaction mixture can release more free KaiA by occupying its binding site on KaiB,keeping the kinase activity of KaiC turned on by comparatively small amounts of KaiA.

    In order to see the dynamics more clearly, we give the bifurcation diagrams in Fig. 3, which show that only when[KaiA] is large enough the presented model produces selfsustained oscillations, no matter whether CikA presents or not. The bifurcation point in Fig. 3(b) is smaller than that in Fig.3(a),which means that the regulation of CikA expands the range of[KaiA]that makes the system oscillate.

    Fig. 2. Effects of varying the amounts of CikA and KaiA on KaiC phosphorylation. (a) Simulation of circadian oscillators of P-KaiC with various[CikA]and fixed[KaiA](1.2μM).(b)Amplitude and period of P-KaiC in(a). (c)Simulation of circadian oscillators of P-KaiC with various[KaiA]and without CikA.(d)Amplitude and period of P-KaiC in(c). (e)Simulation of circadian oscillators of P-KaiC with various[KaiA]and[CikA]. (f)Amplitude and period of P-KaiC in(e),with[CikA]+[KaiA]=1.8μM.

    Fig.3.Bifurcation diagrams with[KaiA]as the control parameter in the absence(a)and presence of CikA(b),respectively.

    3.2. Sensitivity analysis of the oscillation period to parameter values

    Robustness is an intrinsical property of a system, which describes the capability to keep performance facing up to the perturbation of system parameters. In order to study the robustness of the system with the regulation of CikA,we present the dynamic sensitivity analysis. The degree of robustness displays an inverse correlation with that of the corresponding sensitivity. The oscillator period is an important character to quantify the oscillator system,so we investigate the period sensitivity. The period sensitivity shows the variations of period coming from perturbations of the parameters in the model,which is described as follows:[22]

    whereTis the period of the circadian clock,andpiis the parameter with indexi. Considering that there are several parameters in the model,it is difficult to fully study the dynamic properties of the system in the whole parameter space.In order to evaluate the period’s sensitivity to changes of the parameters, we vary one parameter value at a time and keep the rest unchanged.

    The following system parameters are considered. The first kind is about the production of KaiC and dephosphorylation of KaiC, denoted by parameterspandkdrespectively,which reflect the roles of TTFL on the cyanobacterial circadian clock. The second kind is about the regulation of KaiA,KaiB and KaiC on the phosphorylation of KaiC, denoted by parameterka, which reflects the role of OPT on the circadian clock. The third kind is about the degradation rate of kaiBC,NP-KaiC,and P-KaiC,denoted byδ1,δ2,andδ3,respectively.

    Fig.4. Period sensitivity related to the parameters of the system. [(a),(b)] The conditions of +10% perturbation and ?10% perturbation to each parameter,respectively. The other parameters are fixed.

    Figure 4 shows the period sensitivity to the parameter perturbations with different concentrations of CikA. In Fig. 4(a)and 4(b), +10%perturbation and?10%perturbation to each parameter are introduced,respectively.From Fig.4,we obtain some interesting results. With the regulation of CikA,the system still oscillates when the parameters are set within a certain range. That is to say,the system is robust with the regulation of CikA. With or without CikA, the oscillator period is least sensitive to the perturbation of parameterspandkd, which are associated with TTFL.However,it is most sensitive to the perturbation of parameterka,which is associated to PTO.This finding indicates that the PTO as the core pacemaker plays the key role on deciding the oscillator period,while the TTFL is a slave oscillator. The presence of CikA decreases the sensitivity of the period to most of the parameters related to the TTFL and the sensitivity is inversely proportional to the concentration of CikA.On the contrary,the presence of CikA increases the sensitivity toka, which is proportional to the concentration of CikA.This result indicates that the regulation of CikA further strengthens the crucial role of the PTO. With the regulation of CikA,the system is more sensitive to the core PTO compared with that without CikA.That is to say,with the regulation of CikA,it is easier for the system to modulate its period against the environmental perturbations.

    3.3. CikA increases the adaptation to disrupted light-dark cycle

    Without the external time cues,the endogenous period of the cyanobacterial circadian clock is not exactly 24 h. The period becomes 24 h when it is exposed to natural environmental cycles. In other words, the oscillator is phase-locked or entrained in the external cycles.[23]The daily light-dark(LD) cycle is the strongest entraining signal. If entrainment is disrupted by a sudden shift in the phase of the LD cycle,the circadian oscillator will adjust its phase until the oscillator is reentrainmented or locked to the new LD cycle.[24]The time for the oscillator to get reentrainment reflects the ability of organisms to adapt to environmental changes,i.e.,adaptation.

    Experimental observations show that the light can increase KaiC phosphorylation rate,so we will simulate the effect of light by adding a term to the right-hand side of the differential equation for P-KaiC,i.e.,

    Fig.5.Reentrainment of the cyanobacterial circadian clock where the LD cycle is disturbed by 6 h delays.Simulation of circadian oscillators of P-KaiC in the absence of CikA(a)and in the presence of CikA(b),respectively. The solid and dotted lines indicate the oscillator in the normal LD cycle and the disturbed LD cycle respectively. (c)The corresponding circadian cycles in(a)–(b)are projected onto NP-KaiC-P-KaiC plane.(d)Phase shifts between the circadian oscillators in normal LD cycle and that in the disturbed LD cycle.

    Figures 5(a)and 5(b)show that the cyanobacterial circadian clock can be entrained by the LD cycle whenL0is set to appropriate values with or without CikA.Given the entrainment,we study the speed at which the system adjusts the phase to get reentrainment when there is a sudden shift in the phase of the LD cycle. The circadian oscillator runs for 20 days in a normal LD cycle. Then 6 h delay for light are added on the 21-th day. The dotted lines in Figs. 5(a) and 5(b) show the process of adjusting the phase of the system to reentrainment with and without CikA, respectively. Six-hour delay of light leads to phase delay of the oscillator. Comparing Figs. 5(a)and 5(b),we find that the phase shift is larger in the situation with the regulation of CikA than that without CikA. In order to see the adjustment speed more clearly, taking the peak of P-KaiC concentration as the phase of the circadian oscillator,we calculate the phase shifts between the circadian oscillator under the new LD cycle and the normal LD cycle, as shown in Fig.5(c). We can see that the presence of CikA speeds up the reentrainment of the circadian system, i.e., the regulation of CikA strengthens the adaptation of the system.

    In order to explore the dynamical mechanisms of the effect of CikA,we present the phase plane diagram in Fig.5(c).The presence of CikA weakens the inhibition of KaiB on KaiA which increases the activation of KaiA on promoting the phosphorylation of KaiC; however, the phosphorylated KaiC inhibits the transcription of KaiBC. Consequently, the regulation of CikA brings about a lower concentration of the total KaiC compared with the situation without CikA. Thus, the limit cycle is smaller in the situation with CikA than that without CikA, as shown in Fig. 5(c). On the other hand, the LD cycle directly affects the phosphorylation of KaiC.The phase changing of the LD cycle leads to the phase adjustments until the system resynchronizes with the new LD cycle. However,the amount of total KaiC that can be changed during a period is limited. Therefore, it will take longer time for the larger cycle to adjust the same amount of phase shift. This analysis explains why it is easier for the system to get reentrainment with CikA than that without CikA.

    Instead of light delay in the LD cycle, we also studied the reentrainment where the light is advanced by 6 h. We get the same conclusion that CikA increases the speed of adjusting phase shifts,which increase the system’s adaptation to the disrupted LD cycle.

    3.4. Amplitude response curve

    In addition to period, amplitude also plays an important role in the circadian clock. The degree of circadian rhythm was related to the amplitude of circadian oscillator,which can be response to external stimuli.[25]Researchers experimentally found that higher amplitude of circadian oscillator enhances fitness in cyanobacteriain silico.[26]For mammals, it was found that people with schizophrenia,depression or cancer have no circadian clock or very weak circadian clock(low amplitude). Thus, it is important to explore at what time the external stimulation added helps to increase amplitude and when stimulation inhibits amplitude which should be avoided.In clinical medicine,external stimulation is an important measure to treat related diseases.[27,28]

    Fig.6. (a)The amplitude response curve(ARC)of the circadian clock. (b)–(d)The partial enlarged details of(a)during different intervals of CT.The horizontal axis represents the circadian time when light pulse is added. Negative(positive)amplitude changes correspond to the increase(decrease)of amplitudes after stimuli.The black line indicates the situation without the regulation of CikA,and the red dotted line indicates that with[CikA]=0.6μM.The pulse duration is 1 h.

    Making amplitude response curves(ARCs)is an effective way to study the amplitude changes induced by environmental signals added at different circadian times(CTs).In order to see the difference between the amplitude changes clearly,we draw the ARCs corresponding the situations with and without CikA shown in Fig. 6, where 1 h light pulse is added at different CTs. A complete circadian rhythm cycle includes two parts,the phosphorylation process and the dephosphorylation process,which correspond to the increase and decrease processes of the P-KaiC concentration respectively.The time at which PKaiC reaches its peak level is defined as CT0. The periods of the circadian system are 22.77 h and 21.47 h in the situations with the regulation of CikA and without CikA, respectively.Thus, the interval from CT0 to CT11 corresponds roughly to the dephosphorylation process;and the interval from CT11 to CT22 corresponds roughly to the phosphorylation process.We measured the amplitude of P-KaiC before and after the light pulse. From Fig. 6(a), we can see that the system receiving light stimulation exhibits increase of amplitude at most CTs.However,the system receiving light stimulation at CTs(11 h–13 h) around the trough level of P-KaiC shows significant amplitude reduction (see Fig. 6(c)). This behavior should be avoided because reduction of amplitude decreases the fitness of cyanobacteria. Comparing the black line (without CikA)and the red dotted line(with CikA)in Fig.6(a),the peak and trough of the red dotted curve are slightly larger than those of the black curve. That is to say, with the regulation of CikA,the amplitude increases slightly more and decreases slightly less, which means that CikA slightly increases the fitness of cyanobacteria. Combining Figs. 6(b) and 6(d), we can see that the amplitude increases more when the light stimulation is added during the dephosphorylation process than that when the light stimulation is added during the phosphorylation process.

    4. Conclusion and discussion

    As an input pathway component, CikA plays essential roles in the cyanobacterial circadian clock by regulating the phosphorylation state of KaiC. However, to our knowledge,the current mathematical models of the cyanobacterial circadian clock have been made only considering interactions between the Kai proteins. In the present paper,to investigate the dynamical potential of CikA in regulating the cyanobacterial circadian clock, a more accurate model of introducing CikA into the cyanobacterial circadian clock is built based in part on the model proposed by Takigawaimamuraet al.[7]A detailed study of the model is carried out and the uncovered dynamic mechanism fits the biological observations on the roles of CikA in regulating circadian clock. Therefore, the model captures the main features of CikA regulation, which can be used to study other biological problems associated with CikA as an input component.

    With the model, we get some interesting results about CikA, which affects both the period and amplitude of the cyanobacterial circadian clock. The presence of CikA expands the range of parameters that make the system produce oscillators, which indicates stronger robustness of circadian oscillator. Sensitivity analysis shows that CikA also strengthens the central role of the PTO as a core loop. At the same time, CikA improves the adaptability of the system. In other words,with the regulation of CikA,it is easier for the system to adapt the change of environment. The ARCs tell us that CikA enhances the fitness of cyanobacterial. These findings may help us understand the mechanism of CikA-regulated circadian clock more deeply, which also provides a theoretical clue for biological researchers.

    Besides input functionality of CikA as an input pathway component, it also acts to deipnosophist the output pathway transcription factor RpaA.[12]The technique used is also helpful to analyze the output functionality of CikA. In the near future, with the help of mathematical model and dynamical analysis, we will further explore the dynamical mechanisms of CikA as an output pathway component in the cyanobacterial circadian clock.

    猜你喜歡
    李瑩
    李瑩:為雷達(dá)焊“心臟”的“軍工繡娘”
    李瑩:為雷達(dá)焊“心臟”的“軍工繡娘”
    基于投資者保護(hù)的公平與效率關(guān)系
    智富時代(2019年3期)2019-04-30 11:11:14
    “盈之寶”創(chuàng)業(yè)之道:用藝術(shù)尋找客戶
    大學(xué)生(2018年2期)2018-02-02 00:41:19
    習(xí)近平文藝思想淺析
    和“母親”一起懷孕,房東租客演繹大愛親情
    “小丈夫” 屢屢玩失蹤, 浪漫姐弟戀一地狼煙
    分憂(2016年7期)2016-07-14 02:52:14
    一位公益律師的反家暴情結(jié)
    民主與法制(2016年7期)2016-05-14 10:25:11
    “走教”也精彩
    湖南教育(2016年8期)2016-04-16 03:20:28
    Enoch Emery and His‘Wise Blood’
    久久性视频一级片| 日日撸夜夜添| 9色porny在线观看| 国产精品免费视频内射| 久热这里只有精品99| 国产在线免费精品| 最黄视频免费看| 欧美另类一区| 国产亚洲av高清不卡| 欧美日韩亚洲高清精品| 国产在线免费精品| 日韩人妻精品一区2区三区| 欧美日韩成人在线一区二区| 91老司机精品| 黄色 视频免费看| 18禁观看日本| 国产成人系列免费观看| 亚洲国产看品久久| 精品少妇久久久久久888优播| 午夜福利网站1000一区二区三区| 欧美最新免费一区二区三区| 亚洲欧美一区二区三区黑人| 男女免费视频国产| 麻豆av在线久日| 99精品久久久久人妻精品| 少妇人妻久久综合中文| 中文精品一卡2卡3卡4更新| www.熟女人妻精品国产| 国产99久久九九免费精品| 女人爽到高潮嗷嗷叫在线视频| 中文乱码字字幕精品一区二区三区| 亚洲欧美中文字幕日韩二区| 日韩欧美一区视频在线观看| 交换朋友夫妻互换小说| 国产精品人妻久久久影院| 日韩免费高清中文字幕av| 精品亚洲乱码少妇综合久久| 亚洲欧美精品自产自拍| svipshipincom国产片| 亚洲精品日本国产第一区| 丝袜喷水一区| 欧美在线一区亚洲| 亚洲av电影在线观看一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品中文字幕在线视频| 国产在线视频一区二区| av免费观看日本| 天堂8中文在线网| 黄网站色视频无遮挡免费观看| 日韩视频在线欧美| 在线看a的网站| 大码成人一级视频| 侵犯人妻中文字幕一二三四区| 国产亚洲精品第一综合不卡| 在线看a的网站| 成人三级做爰电影| 一级黄片播放器| 日韩电影二区| 久久99精品国语久久久| 免费观看性生交大片5| 国产一级毛片在线| 夫妻性生交免费视频一级片| 亚洲免费av在线视频| 99久久99久久久精品蜜桃| 黑人巨大精品欧美一区二区蜜桃| 黑丝袜美女国产一区| 色婷婷av一区二区三区视频| 丝袜脚勾引网站| 久久精品熟女亚洲av麻豆精品| 香蕉丝袜av| 日日撸夜夜添| 色婷婷久久久亚洲欧美| 国产不卡av网站在线观看| 亚洲精品,欧美精品| 欧美久久黑人一区二区| 午夜精品国产一区二区电影| 日韩熟女老妇一区二区性免费视频| 国产精品成人在线| 热re99久久国产66热| 三上悠亚av全集在线观看| 九草在线视频观看| 一级毛片 在线播放| 女人爽到高潮嗷嗷叫在线视频| 悠悠久久av| 黄色一级大片看看| 国产一区亚洲一区在线观看| 国产 精品1| 免费少妇av软件| 国产成人精品久久二区二区91 | 久久综合国产亚洲精品| 午夜精品国产一区二区电影| 亚洲欧美精品自产自拍| 9色porny在线观看| 新久久久久国产一级毛片| 免费观看人在逋| 777米奇影视久久| 黄色视频在线播放观看不卡| 亚洲欧美成人精品一区二区| 午夜老司机福利片| 超碰成人久久| kizo精华| 亚洲一卡2卡3卡4卡5卡精品中文| 高清不卡的av网站| 亚洲少妇的诱惑av| 婷婷色麻豆天堂久久| 青春草亚洲视频在线观看| 国产日韩欧美视频二区| 日韩熟女老妇一区二区性免费视频| 成人国产麻豆网| 天天躁日日躁夜夜躁夜夜| 国产精品麻豆人妻色哟哟久久| 国产熟女欧美一区二区| 国产亚洲欧美精品永久| 亚洲成人一二三区av| 19禁男女啪啪无遮挡网站| 精品久久久久久电影网| 老司机在亚洲福利影院| 亚洲国产日韩一区二区| 久久久久视频综合| 少妇 在线观看| 男女床上黄色一级片免费看| 日日撸夜夜添| 亚洲熟女毛片儿| 日韩,欧美,国产一区二区三区| 免费观看a级毛片全部| 在线观看免费高清a一片| 亚洲少妇的诱惑av| 亚洲av中文av极速乱| 欧美日韩视频高清一区二区三区二| 亚洲精品中文字幕在线视频| 国产av码专区亚洲av| 少妇的丰满在线观看| 丝袜脚勾引网站| 国产伦理片在线播放av一区| 桃花免费在线播放| 亚洲五月色婷婷综合| 在线精品无人区一区二区三| 女人精品久久久久毛片| 亚洲熟女毛片儿| av有码第一页| 日本猛色少妇xxxxx猛交久久| 久久久久国产精品人妻一区二区| 午夜免费男女啪啪视频观看| 视频区图区小说| 色精品久久人妻99蜜桃| 国产免费视频播放在线视频| 在线观看免费视频网站a站| 国产黄频视频在线观看| 亚洲综合精品二区| 国产不卡av网站在线观看| 中文字幕人妻熟女乱码| 天天躁日日躁夜夜躁夜夜| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美精品自产自拍| 久久青草综合色| 新久久久久国产一级毛片| 母亲3免费完整高清在线观看| 欧美国产精品一级二级三级| 天天躁夜夜躁狠狠躁躁| 亚洲av国产av综合av卡| 午夜福利视频精品| 国产精品久久久av美女十八| 国产极品天堂在线| 一区二区三区乱码不卡18| 精品视频人人做人人爽| 少妇被粗大猛烈的视频| a 毛片基地| 久久久久精品人妻al黑| 一级片'在线观看视频| 国产精品国产三级国产专区5o| a级片在线免费高清观看视频| 日本av免费视频播放| 精品国产国语对白av| 成年动漫av网址| 国产一区二区三区av在线| av国产久精品久网站免费入址| av在线app专区| 视频在线观看一区二区三区| 亚洲欧美一区二区三区久久| 中文字幕人妻丝袜一区二区 | 国产野战对白在线观看| 91aial.com中文字幕在线观看| 一区二区三区四区激情视频| 午夜免费观看性视频| 如日韩欧美国产精品一区二区三区| 在线观看国产h片| 九九爱精品视频在线观看| 亚洲国产精品一区二区三区在线| 天堂8中文在线网| 丁香六月天网| 欧美日韩成人在线一区二区| 欧美日韩一级在线毛片| 97人妻天天添夜夜摸| 老汉色av国产亚洲站长工具| 亚洲国产中文字幕在线视频| 国产乱人偷精品视频| 老鸭窝网址在线观看| 啦啦啦中文免费视频观看日本| 国产在线一区二区三区精| 亚洲av欧美aⅴ国产| xxxhd国产人妻xxx| 两个人免费观看高清视频| 最黄视频免费看| 国产片特级美女逼逼视频| 精品人妻熟女毛片av久久网站| 亚洲美女视频黄频| 久久久久久免费高清国产稀缺| 女性生殖器流出的白浆| 久久久久人妻精品一区果冻| 日韩电影二区| 最近最新中文字幕免费大全7| 国产片特级美女逼逼视频| 在线精品无人区一区二区三| 777米奇影视久久| 国产精品蜜桃在线观看| 国产女主播在线喷水免费视频网站| 国产日韩一区二区三区精品不卡| 国产日韩欧美亚洲二区| 91国产中文字幕| 老司机深夜福利视频在线观看 | 少妇精品久久久久久久| 在线观看免费午夜福利视频| 97人妻天天添夜夜摸| 国产免费现黄频在线看| 成人影院久久| 国产又爽黄色视频| 日韩一卡2卡3卡4卡2021年| 国产精品国产三级国产专区5o| 久久精品人人爽人人爽视色| 日本av手机在线免费观看| av在线老鸭窝| av免费观看日本| 欧美日韩精品网址| av.在线天堂| 久久青草综合色| 日韩一区二区视频免费看| 日韩不卡一区二区三区视频在线| 成年人午夜在线观看视频| 大香蕉久久网| 久久久久久久久免费视频了| 另类亚洲欧美激情| 日本猛色少妇xxxxx猛交久久| 飞空精品影院首页| av在线观看视频网站免费| 中文字幕精品免费在线观看视频| 99国产精品免费福利视频| 亚洲成国产人片在线观看| 老司机靠b影院| 交换朋友夫妻互换小说| 丝袜美足系列| 大香蕉久久网| 日韩成人av中文字幕在线观看| 久久久国产欧美日韩av| 日韩精品有码人妻一区| 亚洲五月色婷婷综合| 免费观看av网站的网址| 国产免费一区二区三区四区乱码| 看十八女毛片水多多多| 国产成人啪精品午夜网站| 人人妻,人人澡人人爽秒播 | 丝袜人妻中文字幕| 女性被躁到高潮视频| 大香蕉久久网| 日本爱情动作片www.在线观看| 涩涩av久久男人的天堂| 亚洲欧美成人综合另类久久久| 亚洲欧美一区二区三区国产| 亚洲七黄色美女视频| 日日摸夜夜添夜夜爱| 国产又色又爽无遮挡免| 国产精品免费大片| 在线观看一区二区三区激情| 精品一区二区免费观看| 性色av一级| 99精国产麻豆久久婷婷| 在线观看免费日韩欧美大片| 亚洲五月色婷婷综合| 大话2 男鬼变身卡| 午夜福利影视在线免费观看| 欧美最新免费一区二区三区| 毛片一级片免费看久久久久| av有码第一页| 亚洲,一卡二卡三卡| 欧美精品高潮呻吟av久久| 欧美日韩福利视频一区二区| 亚洲国产欧美日韩在线播放| 两性夫妻黄色片| 最近2019中文字幕mv第一页| 精品国产乱码久久久久久男人| 高清不卡的av网站| 亚洲男人天堂网一区| 夫妻午夜视频| h视频一区二区三区| 国产97色在线日韩免费| av在线app专区| 免费在线观看黄色视频的| 激情视频va一区二区三区| 老鸭窝网址在线观看| 不卡av一区二区三区| 成人亚洲精品一区在线观看| √禁漫天堂资源中文www| 亚洲少妇的诱惑av| 亚洲欧洲国产日韩| 自线自在国产av| 亚洲色图 男人天堂 中文字幕| a级毛片黄视频| 90打野战视频偷拍视频| 男男h啪啪无遮挡| 亚洲久久久国产精品| 男女高潮啪啪啪动态图| avwww免费| 一本色道久久久久久精品综合| 一本色道久久久久久精品综合| 亚洲国产成人一精品久久久| 波多野结衣一区麻豆| 麻豆精品久久久久久蜜桃| 在线看a的网站| 最近手机中文字幕大全| 国产伦人伦偷精品视频| 亚洲四区av| 欧美日韩综合久久久久久| 国产av国产精品国产| 免费在线观看完整版高清| www.熟女人妻精品国产| 伊人久久大香线蕉亚洲五| 欧美日韩视频精品一区| 欧美 日韩 精品 国产| 欧美精品一区二区免费开放| 在线观看www视频免费| 麻豆av在线久日| a 毛片基地| 成人毛片60女人毛片免费| 亚洲欧美清纯卡通| 你懂的网址亚洲精品在线观看| 精品国产国语对白av| 久久久久久久久久久免费av| 99久久99久久久精品蜜桃| 伦理电影大哥的女人| 黄色怎么调成土黄色| 欧美激情 高清一区二区三区| 亚洲欧洲日产国产| 久久久欧美国产精品| 2018国产大陆天天弄谢| 日韩精品免费视频一区二区三区| 一边亲一边摸免费视频| 国产成人系列免费观看| 亚洲天堂av无毛| www日本在线高清视频| 日本猛色少妇xxxxx猛交久久| 亚洲精品第二区| 国产在线免费精品| 欧美国产精品一级二级三级| 精品亚洲乱码少妇综合久久| 亚洲国产精品一区二区三区在线| 久久久久久久精品精品| 亚洲第一av免费看| 国产极品天堂在线| 最近手机中文字幕大全| 高清视频免费观看一区二区| 日本wwww免费看| 水蜜桃什么品种好| 欧美日本中文国产一区发布| 成人国语在线视频| 久久久精品区二区三区| 欧美日韩综合久久久久久| 伦理电影免费视频| 精品人妻一区二区三区麻豆| 免费人妻精品一区二区三区视频| 美国免费a级毛片| 人人妻人人爽人人添夜夜欢视频| 中国三级夫妇交换| 晚上一个人看的免费电影| av网站免费在线观看视频| 一二三四中文在线观看免费高清| 日韩欧美一区视频在线观看| 亚洲国产av新网站| 亚洲精品第二区| 亚洲第一区二区三区不卡| 久久精品久久精品一区二区三区| 久久婷婷青草| 99久久精品国产亚洲精品| 麻豆精品久久久久久蜜桃| 伊人亚洲综合成人网| 美女国产高潮福利片在线看| a级毛片在线看网站| 九色亚洲精品在线播放| 国产精品国产三级专区第一集| 麻豆精品久久久久久蜜桃| 国产精品偷伦视频观看了| 超碰97精品在线观看| 欧美人与性动交α欧美精品济南到| 欧美日韩亚洲高清精品| 日本vs欧美在线观看视频| 老熟女久久久| 精品久久蜜臀av无| 一区二区日韩欧美中文字幕| 黑人欧美特级aaaaaa片| 亚洲国产日韩一区二区| 日韩欧美精品免费久久| 国产伦人伦偷精品视频| 亚洲欧美一区二区三区国产| 街头女战士在线观看网站| 另类精品久久| 久久久久精品久久久久真实原创| 国产亚洲av片在线观看秒播厂| 亚洲精品乱久久久久久| 午夜福利一区二区在线看| 久久久久精品国产欧美久久久 | 亚洲综合精品二区| 精品福利永久在线观看| 免费黄色在线免费观看| 黄片无遮挡物在线观看| 18禁观看日本| 爱豆传媒免费全集在线观看| 80岁老熟妇乱子伦牲交| 校园人妻丝袜中文字幕| 午夜福利免费观看在线| 欧美 亚洲 国产 日韩一| 国产福利在线免费观看视频| 秋霞在线观看毛片| 免费观看a级毛片全部| 久久久久久人人人人人| 免费人妻精品一区二区三区视频| a 毛片基地| 久久久国产精品麻豆| 日本猛色少妇xxxxx猛交久久| 国产一级毛片在线| 国产福利在线免费观看视频| 日日爽夜夜爽网站| 国产又色又爽无遮挡免| 日韩中文字幕视频在线看片| 天天躁夜夜躁狠狠躁躁| 国产精品成人在线| 亚洲欧美日韩另类电影网站| 成人毛片60女人毛片免费| 女人爽到高潮嗷嗷叫在线视频| 欧美变态另类bdsm刘玥| 啦啦啦 在线观看视频| 国产免费现黄频在线看| 亚洲综合色网址| 新久久久久国产一级毛片| 午夜老司机福利片| 亚洲精品国产av蜜桃| 日韩伦理黄色片| 久久久久久久大尺度免费视频| 久久天躁狠狠躁夜夜2o2o | 亚洲 欧美一区二区三区| 91精品三级在线观看| 亚洲三区欧美一区| 国产精品二区激情视频| 9色porny在线观看| 欧美激情 高清一区二区三区| 搡老乐熟女国产| 国产xxxxx性猛交| 操美女的视频在线观看| 伊人久久大香线蕉亚洲五| 国产熟女午夜一区二区三区| 青春草国产在线视频| 国产精品久久久久久人妻精品电影 | 亚洲视频免费观看视频| 少妇人妻久久综合中文| 国产欧美日韩一区二区三区在线| 天天躁夜夜躁狠狠久久av| 亚洲综合精品二区| 波野结衣二区三区在线| 最近中文字幕高清免费大全6| 欧美黄色片欧美黄色片| 欧美少妇被猛烈插入视频| 美女午夜性视频免费| 狂野欧美激情性xxxx| 亚洲精品国产av蜜桃| 午夜av观看不卡| 国产无遮挡羞羞视频在线观看| 1024视频免费在线观看| 9热在线视频观看99| 最近最新中文字幕大全免费视频 | 老司机在亚洲福利影院| 欧美精品一区二区大全| 国产精品嫩草影院av在线观看| 大陆偷拍与自拍| 色播在线永久视频| 国产在线视频一区二区| 久久久久久久精品精品| 在线精品无人区一区二区三| 中文字幕最新亚洲高清| 老司机深夜福利视频在线观看 | 亚洲精品国产av成人精品| 叶爱在线成人免费视频播放| 午夜福利影视在线免费观看| 老司机影院毛片| 午夜日韩欧美国产| 美女高潮到喷水免费观看| 久久韩国三级中文字幕| 黑丝袜美女国产一区| 2021少妇久久久久久久久久久| 午夜福利网站1000一区二区三区| 狂野欧美激情性bbbbbb| 最新的欧美精品一区二区| 久久久精品区二区三区| 亚洲熟女精品中文字幕| 美女视频免费永久观看网站| 亚洲天堂av无毛| 女的被弄到高潮叫床怎么办| 亚洲色图 男人天堂 中文字幕| 国产亚洲av高清不卡| 18在线观看网站| 黄网站色视频无遮挡免费观看| 亚洲人成电影观看| 久久人人爽人人片av| 一级,二级,三级黄色视频| 最近2019中文字幕mv第一页| 亚洲激情五月婷婷啪啪| 免费黄色在线免费观看| 18在线观看网站| 国产精品一二三区在线看| 免费人妻精品一区二区三区视频| 日韩中文字幕欧美一区二区 | 日韩伦理黄色片| 成年av动漫网址| 国产一区二区在线观看av| 男女午夜视频在线观看| 精品久久蜜臀av无| 亚洲精品久久成人aⅴ小说| 久久ye,这里只有精品| 亚洲国产日韩一区二区| 大片免费播放器 马上看| 90打野战视频偷拍视频| 亚洲四区av| 欧美日韩视频精品一区| 欧美97在线视频| 国精品久久久久久国模美| 亚洲一码二码三码区别大吗| 中文字幕亚洲精品专区| 国产亚洲欧美精品永久| av有码第一页| 最近的中文字幕免费完整| 久久久精品国产亚洲av高清涩受| 久久精品aⅴ一区二区三区四区| 国产成人免费无遮挡视频| 伊人亚洲综合成人网| 伊人久久大香线蕉亚洲五| 免费av中文字幕在线| 女人久久www免费人成看片| 国产精品一区二区精品视频观看| 日本wwww免费看| kizo精华| 一本大道久久a久久精品| 制服诱惑二区| 日韩 欧美 亚洲 中文字幕| 亚洲精品av麻豆狂野| 母亲3免费完整高清在线观看| 自线自在国产av| 亚洲精品国产色婷婷电影| 老司机影院毛片| 国产精品一二三区在线看| 爱豆传媒免费全集在线观看| 国产在线视频一区二区| 午夜激情av网站| 精品久久久久久电影网| 久久av网站| 热99国产精品久久久久久7| 国产 一区精品| 美女中出高潮动态图| 卡戴珊不雅视频在线播放| 美女大奶头黄色视频| 久久久久久人妻| 黑人猛操日本美女一级片| 色94色欧美一区二区| 亚洲熟女毛片儿| 可以免费在线观看a视频的电影网站 | 免费人妻精品一区二区三区视频| 极品少妇高潮喷水抽搐| 国产成人av激情在线播放| 高清黄色对白视频在线免费看| 蜜桃国产av成人99| 亚洲国产av新网站| 国产xxxxx性猛交| 国产片内射在线| 亚洲国产日韩一区二区| 亚洲精品av麻豆狂野| 一级毛片黄色毛片免费观看视频| 老司机影院成人| 亚洲精品自拍成人| 免费黄网站久久成人精品| 啦啦啦在线观看免费高清www| 人妻一区二区av| 热re99久久国产66热| 免费观看av网站的网址| 国产老妇伦熟女老妇高清| 麻豆av在线久日| 国产精品久久久久久精品古装| 日韩不卡一区二区三区视频在线| 午夜福利视频在线观看免费| 午夜久久久在线观看| 国产毛片在线视频| 毛片一级片免费看久久久久| 肉色欧美久久久久久久蜜桃| 欧美精品亚洲一区二区| 亚洲美女黄色视频免费看| 日韩制服丝袜自拍偷拍| 亚洲av福利一区| 国产伦理片在线播放av一区| 美女福利国产在线| 久久人妻熟女aⅴ| 国产乱来视频区| 亚洲美女视频黄频| 青春草视频在线免费观看| 欧美日韩视频高清一区二区三区二| 人人妻人人澡人人爽人人夜夜| 色婷婷久久久亚洲欧美| 街头女战士在线观看网站| 亚洲精品一区蜜桃| 国产精品欧美亚洲77777| 亚洲国产日韩一区二区| 国产精品久久久久成人av|