• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributed Order-Up-To Inventory Control in Networked Supply Systems With Delay

    2021-10-25 01:41:28PrzemysawIgnaciuk
    IEEE/CAA Journal of Automatica Sinica 2021年10期

    Przemys?aw Ignaciuk,

    Abstract—In this work,the dynamics of networked goods distribution systems subject to the control of a continuous-review order-up-to inventory policy are investigated.In the analytical study,as opposed to the earlier models constrained to the serial and arborescent interconnection structures,an arbitrary multiechelon topology is considered.This external,uncertain demand,following any distribution,may be imposed on all network nodes,not just conveniently selected contact points.As in the physical systems,stock relocation to refill the reserves is subject to nonnegligible delay,which poses a severe stability threat and may lead to cost-inefficient decisions.A state-space model is created and used as the framework for analyzing system properties.In particular,it is formally demonstrated that despite unpredictable demand fluctuations,a feasible (nonnegative and bounded)reserves replenishment signal is generated at all times,and the stock gathered at the nodes does not surpass a finite,precisely determined level.The theoretical content is illustrated with a case study of the Chinese oil supply system.

    I.INTRODUCTION

    THE challenges associated with complex connectivity architectures in current production and goods distribution systems predispose control policy selection towards numerical methods [1]–[3] and approximate solutions [4],[5].Formal studies are primarily restricted to basic configurations:singleechelon [6],serial [7],or arborescent (with separable paths of goods flow) [8]–[10].In contrast,this work aims to establish a formal framework to analyze the dynamics of modern distribution systems organize in a more complex– networked– scheme of suppliers,distribution centers,and retailers exchanging resources with a delay according to the popular order-up-to (OUT) inventory policy [11].

    Earlier studies on distribution system dynamics regulated by the OUT policy are summarized in [12].Later on,using the transfer-function approach,Hoberget al.[13] assessed the impact of delay on the stability of the periodic-review twoechelon configuration.The study was extended over perishable inventories in [14] and variability containment objectives in [15].In [16],a block-diagram manipulation was employed to give more insights into the dynamical phenomena in contemporary supply chains,albeit still limited to the localized approximation.The serial configuration in a discrete-time framework was investigated in [17] as a basis forH∞-optimal controller design,and in [18] for modelpredictive control.A continuous-time model of a similar system was developed in [7] to help in choosing suitable gains for the modified– proportional OUT policy.The works on the arborescent retarded systems continued in [19]–[21],targeting parameter selection to improve stability margin [19],reduce variability [20],or costs [21],under a given demand type.

    Approximating the presently deployed multi-echelon systems with non-trivial interconnection dependencies [22],[23] by fundamental constructs leads to cost increase,or even instability [24],[25].In this paper,as opposed to [6]–[10],[13]–[21],the networked nature of resource distribution systems is given explicit consideration.The constructed framework allows for an arbitrary interconnection topology among system elements (nodes) and uncertain,time-varying demand to be placed at any node.The excess demand is lost,which breaks the frequently applied simplification to linear stock dynamics [12],[15].The reserves,from which both the exogenous and internal demand is served,are acquired with non-zero lead-time delay.

    The contributions of this paper include providing a statespace model of networked goods distribution systems with retarded transshipments and lost sales and conducting an analytical study of OUT policy dynamical performance.It is formally shown that the policy always issues a feasible,i.e.,nonnegative and bounded,replenishment signal despite having no knowledge of demand future evolution,or a global perspective on the system interconnection structure.The stock level at the nodes is demonstrated to be nonnegative and upper-bounded.The policy can thus be safely deployed in current systems with cross-border cooperation,in a fully distributed mode.The choice of the reference stock level for high demand satisfaction rate is indicated.The inventory managers are thus equipped with explicit guidelines regarding the selection of storage space at the nodes and maximizing the response towards external actors.Consequently,the attractive image of a reliable goods provider is established,and solid,long-term business relationships may be formed.The theoretical content is illustrated via a case study of the Chinese oil supply system [9].

    II.ANALYTICAL FRAMEWORk

    In the considered class of systems,suppliers,distribution centers,and retailers interact with each other in goods exchange so that an exogenous,uncertain demand is satisfied.The controlled elements– distribution centers,retailers– will be termed“nodes.”An example setting comprising six nodes,three of which are subjected to market demand,and two external suppliers is sketched in Fig.1.Neither the statistical parameters nor the actual demand pattern is accessible beforehand.From a logistic system perspective,the demand constitutes a driving factor for ordering decisions to refill stock.Hence,there are two types of inputs:the exogenous signal– demand– that in the dynamical framework is treated as a perturbation,and the control signal– the sequence of stock refill decisions.

    Fig.1.Chinese oil supply system:1–6 controlled nodes,7,8 external sources.Demand is placed at nodes 1–3.The numbers at the links signify:(supplier contribution,delivery delay).

    As opposed to [6]–[10],[13]–[21],an arbitrary system topology in which a unidirectional path connecting each controlled node with at least one supplier exists is considered.In the proposed model,the topology encompassesnnodes whose indices are taken from the setXn={1,2,…,n}.The stock gathered at the nodes,used to answer the demand,is refilled frommexternal suppliers.The set of indices of all nodes and suppliers isX={1,2,…,m+n}.

    The evolution of time will be tracked by the continuous variablet.Letxi(t) denote the stock level at nodei,i∈Xn,at instantt,anddi(t) be the intensity of external demand placed at that node.The operations performed at the node proceed according to the following sequence:

    1) Determine the current stock levelxi(t),received shipmentsand external demanddi(t).

    2) Fulfill the demand up to the volume of available resources.In the case of a deficit,the surplus demand is realized elsewhere– a lost-sales system.

    3) Record the (internal) replenishment requests from neighbors in the network.

    4) Respond to internal requests using leftover resources.In the case of deficit,the requested quantity is proportionally reduced,i.e.,the shortage at timetat nodei,sayεi(t),implies the reduction of the lot sent towards nodej,uj(t),touj(t)[1–– the set of node indices for which nodeisupplies goods.

    The reserves gathered at a node are used to fulfill both external market demand and internal requests from the neighbors,with external demand given priority to achieve a better company image.Unlike previous similar approaches to the analysis of inventory system dynamics,e.g.,[9],in the presented model,the demand may be placed at any node.Although substantially complicates the design framework,this premise allows one to relate to the phenomena occurring in the currently deployed physical systems more closely.

    The demand is represented by an a priori unknown,timevarying function

    The request issued by nodeiat timetfor its suppliers(external sources and neighbors in the system) will be denoted byui(t),i∈Xn,and the lot to be retrieved from supplierj,j∈X,via partitioning coefficientφji(t) ∈ [0,1].Consequently,the quantity of the goods sent by nodeito the neighbors

    If the nominal order partitioning:is not possible because of a goods shortage,the coefficients are reduced as dictated by rule 4.More specifically,if nodejhas gathered enough resources to respond to the request from node i immediately,thenotherwiseand

    The external suppliers are assumed to be uncapacitated(they do not experience shortage).Coefficientsφijreflect the connection structure.Without losing generality,it is assumed that no node is isolated,i.e.,a path exists from each node to at least one external source,and the network is directed,i.e.,φji(t) ≠ 0 impliesφij(t)=0,andφii(t)=0,to preclude selfsupply.

    The order realization takes a non-negligible amount of time.The delay in goods provision from nodejtoiwill be denoted byhji,hji∈H,H– the set of all delay values at the internode links.With this notation,the quantity of the goods received by nodeiat instanttis

    In order to perform a detailed,formalanalysis,a state-space description of the system dynamics will be introduced.The following representation is proposed

    where,

    1)x(t)=[x1(t) ···xn(t)]Tis the state vector (stock level at the nodes),

    2)u(t)=[u1(t) ···un(t)]Tis the controlled input (replenishment quantity requested by the nodes),

    3)s(t)=[s1(t) ···sn(t)]Tis the perturbing input which expresses the uncertainty in demand realization at the nodes;withone has from (1)

    For the sake of further analysis,a matrix,grouping the topological information,will be defined as

    The time reference has been dropped in (11) to emphasize the nominal– no-goods-shortage– conditions.

    Lemma 1:Matrix Φ given by (11) has a positive inverse.

    Proof:One needs to show that all the entries of Φ–1are nonnegative.In the nominal case,for eachi,one has from (4),

    III.ORDER-UP-TO INVENTORY CONTROL

    The OUT policy states that the stock should be refilled to a reference level whenever it falls below this level.In systems with non-negligible delivery delays,the quantity of the goods in transit needs to be incorporated into the replenishment request,usually through the inventory position [11,ch.3].

    The order quantity at nodeiat instanttis determined as(forecasts ignored)

    is the inventory position,which holds information about the on-hand stockxi(t) and the transported goods Ωi(t),i.e.,the shipments already requested but not yet procured due to delays.The open-order quantity Ωi(t) is calculated by tracking the difference between the requested and retrieved resources as

    For notational convenience,the summation in (17) is taken over allj∈X.However,coefficientsφji(·) are non-zero only for the nodeisuppliers.

    Looking at (17) from the perspective of a control system,the calculation of the replenishment quantity– the input signal–proceeds according to proportional control (with unity gain)with dead-time compensation.Since resource accumulation at the nodes is an integrating process,the controlled plant is an integrator.In turn,tracking the open-order quantity may be interpreted as an operation of the Smith predictor.The presence of multiple channels in the network,however,requires extending the classical predictor structure over multiple loops modulated by time-varying weighting coefficients.The block diagram of control structure (17) is illustrated in Fig.2.The weightsφji(t) change with time with respect to the resource state at the upstream nodes.If the delay undergoes uncertain variations,to uphold the information about the open-order quantity,the delay compensator may be complemented by a corrective term,as in [26].The continuous-time systems,however,require separate treatment,possibly using recent advancements [27],[28].

    Fig.2.OUT policy in a time-delay system perspective.

    In order to establish a replenishment order,the OUT policy needs no explicit information from other nodes– it can be conveniently deployed in a distributed fashion.However,the ordering decisions will impact the entire system state owing to a non-trivial interconnection topology.To examine the control system properties as a whole,a state-space policy representation,consistent with (6),will be introduced.

    First,the information about reference levels is grouped into the vectorWith this notation,using(6)–(9),the OUT policy (17),implemented independently at the nodes,can be synthesized into a vector form as

    IV.OUT POLICY PROPERTY ANALYSIS

    It follows from (18) thatu(0)=xref–x(0).Consequently,for a feasible (nonnegative and upper-bounded) replenishment signal,one needs to choose the reference asxref≥x(0).The theorem below demonstrates thaturemains feasible for anyt>0 despite a priori unknown demand fluctuations.

    Theorem 2:The input signalu(t) in system (6),generated according to (18),is nonnegative and upper-bounded for anyt>0.

    The control process commences withu(0)=xref–x(0) ≥ 0.Hence,it follows from (20) and (21) that the components ofudecrease as long as they are bigger than the corresponding components of vector s,which are nonnegative by definition.Consequently,they may not drop below zero.In turn,to establish the maximum value of the replenishment signal,it is necessary to investigate the case whenIn those circumstances,onceui(·) reaches the corresponding level of vector(constraint (7)),uimay never grow beyond that level again,andu(t) ≤ Φ–1dmax.■

    The derivations presented so far prove that to ensure a realizable– non-negative– stock replenishment signal,the reference level cannot be set lower than the initial reserves.Equivalently,only such set of the initial states is permitted,which conform to the inequalityx(0) ≤xref.The theorem formulated in a later part of the text demonstrates that the stock never grows beyond the reference level,which thus designates the storage space to be reserved at the nodes.

    Theorem 3:If control (18) is applied in system (6) to regulate the goods distribution process,then the stock accumulated at the nodes is nonnegative and does not exceed the reference level,i.e.,

    Proof:Rules 2 and 4 implyxi(t) ≥ 0 at any node.Consequently,x(t) ≥ 0,and it remains to show that for anyt≥0 the upper bound dictated by (22) is also satisfied.

    The reference stock level is chosen so thatx(0) ≤xref.Applying (19) to (6),yields

    By definition,Φh≥ 0 and s(t) ≥ 0.In turn,it follows from Lemma 1 that the inverse of Φ is a positive matrix (it contains only nonnegative entries).Hence,using (25),x(t) ≤xref.■

    Theorem 3 shows that the warehouse space equal to the stock reference level is sufficient to store all goods transported to each node.Thus (costly) emergency storage is never required.Another desirable property is being able to obtain a high service level,i.e.,to satisfy as much of the demand as possible from the immediately available resources.The sequel demonstrates how to achieve full demand satisfaction by selecting a single design parameter– the stock reference level.

    V.NUMERICAL ExAMPLE

    The characteristics of the resource distribution process will be illustrated for the example setting depicted in Fig.1,which reflects the China oil supply system [9].The oil for market contact points 1–3,responding to demandsd1–d3,is delivered through intermediate nodes 4–6 using channels with different parameters (φij– lot partitioning,hij– delay),originating at two external sources 7 and 8.The demand,depicted in Fig.3,experiences seasonal variations with abrupt,unanticipated intensity shifts.The stock replenishment in the controlled network (nodes 1–6) is regulated by the OUT policy (18).AssumingMbpd (millions of barrels per day),the reference level is selected according to(27) asxref=[20.5 15 63 21.5 52 113.5]TMb to maximize the service rate.The initial conditionx(0)=xref.

    The analytical findings from Section IV regarding the OUT policy performance are verified in relation to another common policy– (r,Q) one– that states that one must refill the stock byQunits when the level of reserves drops belowr,which is useful when the trading agreements favor shipments of a predetermined quantity.Here,Qis set equal to the large crude oil tanker capacity of 2.0 Mb.The stock evolution under the OUT policy is sketched in Fig.4 and under the (r,Q) one in Fig.5.One can learn from Fig.4 that,precisely as dictated by Theorem 3,the OUT policy keeps the stock within the allocated storage space set asxref.The stock stays positive even when the demand is at its maximum,which means a full service rate and uninterrupted oil supply despite a priori unknown demand changes.Although the (r,Q) policy generates smaller holding costs at intermediate nodes 4–6,it leads to unfulfilled demand at the end-points.As evidenced in Fig.5,the reserves drop to zero in response to a demand surge(at node 2:days 18–25,at node 3:days 33–40),which implies inconsistent supplies.

    Fig.3.Daily demand.

    Fig.4.Stock level evolution under OUT policy.

    Fig.5.Stock level evolution under (r,Q) policy.

    VI.SUMMARY AND CONCLUSIONS

    In the paper,a framework to conduct a formal analysis of inventory policy dynamics in systems with complex,networked structures has been provided.It was proved that irrespective of the demand pattern imposed onto the system,the OUT policy generates a nonnegative and upper-bounded stock replenishment signal,even though it has access to local information only.It was also shown that the stock of goods accumulating at the nodes does not grow beyond the reference level.Thus,it was formally demonstrated that this popularamong-practitioners strategy could be safely deployed in modern,multi-dimensional distribution systems.Moreover,guidelines for tuning policy performance to maximize the service level have been provided.As a result,the image towards external actors of a reliable goods distributor can be preserved,even in the uncertain lost-sales setting.While the analytical study emphasizes the OUT policy,the framework is flexible to investigate the performance of other inventory control strategies,e.g.,a nonlinear (r,Q) policy.It is a subject of the current work to be reported in future publications.

    欧美在线黄色| 午夜福利在线观看吧| 午夜福利影视在线免费观看| 人妻久久中文字幕网| 成人三级做爰电影| 国产欧美日韩一区二区精品| 欧美日韩成人在线一区二区| 69av精品久久久久久 | 黄色怎么调成土黄色| 一夜夜www| 50天的宝宝边吃奶边哭怎么回事| 国产成人免费观看mmmm| 成人黄色视频免费在线看| 嫁个100分男人电影在线观看| 亚洲熟妇熟女久久| 国产av一区二区精品久久| 少妇精品久久久久久久| 12—13女人毛片做爰片一| 亚洲色图av天堂| 91九色精品人成在线观看| 人人妻人人添人人爽欧美一区卜| 欧美一级毛片孕妇| 老司机午夜福利在线观看视频 | 亚洲人成伊人成综合网2020| 丝袜人妻中文字幕| 国产伦人伦偷精品视频| 一本一本久久a久久精品综合妖精| 搡老岳熟女国产| 丰满饥渴人妻一区二区三| 国产精品久久久久成人av| 脱女人内裤的视频| 黄色怎么调成土黄色| 看免费av毛片| 黄色a级毛片大全视频| 精品国产乱子伦一区二区三区| 国产97色在线日韩免费| 国产欧美日韩一区二区精品| 久久九九热精品免费| 母亲3免费完整高清在线观看| 黄频高清免费视频| 狠狠婷婷综合久久久久久88av| 高清视频免费观看一区二区| 久久婷婷成人综合色麻豆| 精品国产亚洲在线| 欧美 日韩 精品 国产| 久久婷婷成人综合色麻豆| 久久久久久免费高清国产稀缺| 王馨瑶露胸无遮挡在线观看| 国产男女内射视频| 国产福利在线免费观看视频| 人人妻人人爽人人添夜夜欢视频| h视频一区二区三区| 亚洲欧美色中文字幕在线| 免费在线观看影片大全网站| 亚洲中文字幕日韩| 水蜜桃什么品种好| 麻豆成人av在线观看| 亚洲色图av天堂| 亚洲欧美精品综合一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 我的亚洲天堂| 中文字幕高清在线视频| 一本大道久久a久久精品| 激情在线观看视频在线高清 | 麻豆av在线久日| 高清毛片免费观看视频网站 | 99久久99久久久精品蜜桃| 亚洲国产欧美网| 99国产精品99久久久久| 99国产精品一区二区三区| 不卡av一区二区三区| 下体分泌物呈黄色| 麻豆成人av在线观看| 12—13女人毛片做爰片一| 欧美+亚洲+日韩+国产| 美女午夜性视频免费| kizo精华| 欧美日韩中文字幕国产精品一区二区三区 | 一区在线观看完整版| 99热国产这里只有精品6| 亚洲国产av新网站| 熟女少妇亚洲综合色aaa.| 50天的宝宝边吃奶边哭怎么回事| 怎么达到女性高潮| 午夜日韩欧美国产| av免费在线观看网站| 久久久久久人人人人人| 久久精品aⅴ一区二区三区四区| 一区二区日韩欧美中文字幕| 黄色视频不卡| 高清黄色对白视频在线免费看| 丝袜人妻中文字幕| 国产麻豆69| 老司机福利观看| 免费在线观看日本一区| 午夜日韩欧美国产| 欧美性长视频在线观看| 亚洲五月色婷婷综合| 新久久久久国产一级毛片| 天天躁狠狠躁夜夜躁狠狠躁| 80岁老熟妇乱子伦牲交| 99在线人妻在线中文字幕 | a级片在线免费高清观看视频| 国产不卡av网站在线观看| 岛国毛片在线播放| 久久人妻福利社区极品人妻图片| 69av精品久久久久久 | 曰老女人黄片| 美女视频免费永久观看网站| 免费看a级黄色片| 亚洲精品久久成人aⅴ小说| 叶爱在线成人免费视频播放| 国产精品av久久久久免费| 这个男人来自地球电影免费观看| tocl精华| 国产男女内射视频| 成人18禁高潮啪啪吃奶动态图| 一级毛片女人18水好多| 精品高清国产在线一区| 五月天丁香电影| 久热爱精品视频在线9| 午夜视频精品福利| 国产一卡二卡三卡精品| 国产精品免费一区二区三区在线 | 亚洲av成人一区二区三| 亚洲午夜精品一区,二区,三区| 欧美日韩国产mv在线观看视频| 一级毛片女人18水好多| 午夜福利影视在线免费观看| 国产精品免费视频内射| 999久久久国产精品视频| 国产又色又爽无遮挡免费看| 国产一卡二卡三卡精品| 亚洲久久久国产精品| 午夜福利在线免费观看网站| 久久精品国产亚洲av高清一级| 国产成人精品无人区| 亚洲av日韩在线播放| 精品免费久久久久久久清纯 | 男女床上黄色一级片免费看| 精品免费久久久久久久清纯 | 高清av免费在线| 国产高清国产精品国产三级| 夜夜骑夜夜射夜夜干| 999精品在线视频| 国产高清激情床上av| 丝袜美腿诱惑在线| 国产国语露脸激情在线看| 黑人欧美特级aaaaaa片| 欧美激情久久久久久爽电影 | 久久毛片免费看一区二区三区| 久久久水蜜桃国产精品网| 最近最新免费中文字幕在线| 免费不卡黄色视频| 男男h啪啪无遮挡| 不卡一级毛片| 欧美黑人欧美精品刺激| 99香蕉大伊视频| 91精品国产国语对白视频| 水蜜桃什么品种好| 日韩熟女老妇一区二区性免费视频| av福利片在线| 超碰成人久久| 亚洲精品美女久久av网站| 亚洲成a人片在线一区二区| 亚洲色图av天堂| 日本精品一区二区三区蜜桃| av片东京热男人的天堂| 亚洲精品在线美女| 狠狠婷婷综合久久久久久88av| 91麻豆av在线| 妹子高潮喷水视频| 老司机影院毛片| 国产精品免费大片| 乱人伦中国视频| 久久99一区二区三区| 久久人妻av系列| 大型黄色视频在线免费观看| cao死你这个sao货| 精品高清国产在线一区| 18禁国产床啪视频网站| 成年女人毛片免费观看观看9 | 国产日韩欧美视频二区| 日韩视频一区二区在线观看| 中文字幕最新亚洲高清| 丝袜喷水一区| 中文字幕人妻熟女乱码| 久热爱精品视频在线9| 亚洲中文av在线| 大码成人一级视频| 妹子高潮喷水视频| 欧美精品人与动牲交sv欧美| 久久国产亚洲av麻豆专区| 亚洲欧美色中文字幕在线| 免费人妻精品一区二区三区视频| 亚洲av成人一区二区三| 深夜精品福利| 亚洲精品国产一区二区精华液| 老熟妇乱子伦视频在线观看| 欧美黑人欧美精品刺激| 欧美成人免费av一区二区三区 | 成人特级黄色片久久久久久久 | 成人影院久久| 男女午夜视频在线观看| 99riav亚洲国产免费| 精品少妇内射三级| 欧美黑人欧美精品刺激| 美女扒开内裤让男人捅视频| 国产野战对白在线观看| 免费观看a级毛片全部| 不卡av一区二区三区| 人人妻人人爽人人添夜夜欢视频| 中文字幕色久视频| 亚洲专区中文字幕在线| 丝袜人妻中文字幕| 国产老妇伦熟女老妇高清| 美女高潮喷水抽搐中文字幕| 国产精品久久电影中文字幕 | 乱人伦中国视频| 欧美精品人与动牲交sv欧美| 亚洲欧美一区二区三区久久| 国产在线视频一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品98久久久久久宅男小说| 国产精品九九99| 亚洲avbb在线观看| 亚洲精品在线观看二区| 久久久国产成人免费| 欧美 亚洲 国产 日韩一| 久久久欧美国产精品| 午夜精品久久久久久毛片777| 搡老熟女国产l中国老女人| 国产不卡av网站在线观看| 国产区一区二久久| 成人av一区二区三区在线看| 国产精品 国内视频| 国产成人免费无遮挡视频| av欧美777| 视频区图区小说| 在线观看66精品国产| 久久国产精品大桥未久av| 国产高清国产精品国产三级| 精品视频人人做人人爽| 菩萨蛮人人尽说江南好唐韦庄| 欧美国产精品va在线观看不卡| 另类亚洲欧美激情| 性少妇av在线| 久久久久久久国产电影| 91国产中文字幕| 超碰成人久久| 精品久久久久久久毛片微露脸| 大片电影免费在线观看免费| 精品人妻1区二区| 久久精品亚洲av国产电影网| 国产精品国产高清国产av | 汤姆久久久久久久影院中文字幕| 精品少妇内射三级| 久久久水蜜桃国产精品网| 法律面前人人平等表现在哪些方面| 超碰97精品在线观看| 肉色欧美久久久久久久蜜桃| 王馨瑶露胸无遮挡在线观看| 国产精品.久久久| 国产高清videossex| 国产男靠女视频免费网站| 成年人黄色毛片网站| 老司机在亚洲福利影院| 男女免费视频国产| 一区二区三区乱码不卡18| 99re6热这里在线精品视频| 午夜成年电影在线免费观看| 国产成人系列免费观看| 精品久久久久久电影网| 999精品在线视频| 大型av网站在线播放| 啦啦啦在线免费观看视频4| 成年动漫av网址| 日本撒尿小便嘘嘘汇集6| 国产精品一区二区精品视频观看| 五月开心婷婷网| 亚洲欧洲精品一区二区精品久久久| 韩国精品一区二区三区| 国产欧美日韩一区二区精品| 久久久精品区二区三区| 国产黄色免费在线视频| 性高湖久久久久久久久免费观看| 国产亚洲午夜精品一区二区久久| videos熟女内射| 在线观看免费午夜福利视频| 国产成人欧美| 18在线观看网站| 一边摸一边抽搐一进一出视频| 精品一品国产午夜福利视频| 男女之事视频高清在线观看| 一边摸一边抽搐一进一出视频| 亚洲伊人色综图| 99精国产麻豆久久婷婷| 精品国产一区二区久久| 无限看片的www在线观看| 久久中文看片网| 欧美日韩福利视频一区二区| 久久精品国产综合久久久| 99久久人妻综合| 男女之事视频高清在线观看| 高清av免费在线| 亚洲三区欧美一区| 一个人免费在线观看的高清视频| 国产熟女午夜一区二区三区| 99九九在线精品视频| 精品一区二区三卡| 交换朋友夫妻互换小说| 制服人妻中文乱码| 欧美日韩黄片免| 91成年电影在线观看| 女人精品久久久久毛片| 成年人午夜在线观看视频| 欧美黑人欧美精品刺激| 女警被强在线播放| 精品国产国语对白av| 国产精品麻豆人妻色哟哟久久| 露出奶头的视频| 成年女人毛片免费观看观看9 | 久久久久久亚洲精品国产蜜桃av| 少妇猛男粗大的猛烈进出视频| 人人妻,人人澡人人爽秒播| 天天操日日干夜夜撸| 久久99热这里只频精品6学生| 91成年电影在线观看| 国产老妇伦熟女老妇高清| 日韩精品免费视频一区二区三区| 12—13女人毛片做爰片一| 亚洲成国产人片在线观看| 嫁个100分男人电影在线观看| 两人在一起打扑克的视频| 亚洲精品成人av观看孕妇| 久久国产精品男人的天堂亚洲| 久久国产精品大桥未久av| 美女扒开内裤让男人捅视频| 欧美国产精品va在线观看不卡| 亚洲第一av免费看| 欧美激情高清一区二区三区| 国产精品免费大片| 999精品在线视频| 肉色欧美久久久久久久蜜桃| 国产单亲对白刺激| 亚洲午夜精品一区,二区,三区| 成年版毛片免费区| 国产亚洲av高清不卡| 日韩欧美三级三区| 亚洲精华国产精华精| 黄色怎么调成土黄色| 久久精品国产a三级三级三级| 岛国毛片在线播放| 一区在线观看完整版| 91九色精品人成在线观看| 两个人免费观看高清视频| tocl精华| 不卡av一区二区三区| 成年人免费黄色播放视频| 日韩一卡2卡3卡4卡2021年| 超碰成人久久| 人人妻人人爽人人添夜夜欢视频| 国产欧美日韩综合在线一区二区| 午夜日韩欧美国产| 国产精品二区激情视频| 午夜成年电影在线免费观看| 黑人巨大精品欧美一区二区蜜桃| 久久精品国产亚洲av高清一级| 首页视频小说图片口味搜索| 国产精品1区2区在线观看. | 高清在线国产一区| 国产亚洲av高清不卡| 日韩熟女老妇一区二区性免费视频| 日本一区二区免费在线视频| 国产精品1区2区在线观看. | 老汉色∧v一级毛片| 最近最新免费中文字幕在线| 久久精品国产综合久久久| 亚洲成av片中文字幕在线观看| e午夜精品久久久久久久| 一二三四在线观看免费中文在| 97在线人人人人妻| 国产黄频视频在线观看| 欧美激情久久久久久爽电影 | 国产精品成人在线| 亚洲欧美一区二区三区久久| avwww免费| 黄色片一级片一级黄色片| 欧美性长视频在线观看| 亚洲成av片中文字幕在线观看| 免费不卡黄色视频| 成人特级黄色片久久久久久久 | 午夜成年电影在线免费观看| 涩涩av久久男人的天堂| 国产黄频视频在线观看| 亚洲国产欧美网| 一区二区日韩欧美中文字幕| 日韩有码中文字幕| 一二三四在线观看免费中文在| 久久av网站| 国产成人免费观看mmmm| 欧美日韩黄片免| 老汉色av国产亚洲站长工具| 午夜精品久久久久久毛片777| 色综合婷婷激情| 777久久人妻少妇嫩草av网站| 美女高潮喷水抽搐中文字幕| 三级毛片av免费| 久久久久久免费高清国产稀缺| 国产在线一区二区三区精| 久久av网站| 69精品国产乱码久久久| 国产精品免费视频内射| 亚洲精品粉嫩美女一区| 久久精品国产99精品国产亚洲性色 | 日日夜夜操网爽| 国产精品久久久av美女十八| 一区二区av电影网| 97人妻天天添夜夜摸| 女人久久www免费人成看片| 日本撒尿小便嘘嘘汇集6| 国产精品一区二区精品视频观看| 国产在线一区二区三区精| 99精国产麻豆久久婷婷| 人妻久久中文字幕网| 国产成人欧美| 男女免费视频国产| 精品午夜福利视频在线观看一区 | 亚洲自偷自拍图片 自拍| 国产深夜福利视频在线观看| 久久99一区二区三区| 9色porny在线观看| 手机成人av网站| 啦啦啦 在线观看视频| 99久久精品国产亚洲精品| 免费在线观看视频国产中文字幕亚洲| 丁香六月欧美| 午夜福利视频精品| 国产成人欧美| 日韩视频一区二区在线观看| 久久精品国产99精品国产亚洲性色 | 国产99久久九九免费精品| 亚洲精品久久成人aⅴ小说| 中国美女看黄片| 日韩成人在线观看一区二区三区| 午夜福利乱码中文字幕| 一本—道久久a久久精品蜜桃钙片| 动漫黄色视频在线观看| 一边摸一边抽搐一进一小说 | 久久精品国产99精品国产亚洲性色 | 成人av一区二区三区在线看| 久久国产精品大桥未久av| 十八禁人妻一区二区| 亚洲午夜理论影院| h视频一区二区三区| 91麻豆av在线| 大型黄色视频在线免费观看| 99精品久久久久人妻精品| 精品少妇久久久久久888优播| 超碰成人久久| 久久av网站| 首页视频小说图片口味搜索| 欧美日韩黄片免| 久久性视频一级片| 高清欧美精品videossex| 高清视频免费观看一区二区| 777米奇影视久久| 老司机靠b影院| 久久香蕉激情| 亚洲国产欧美网| 欧美黄色片欧美黄色片| 一本色道久久久久久精品综合| 午夜激情av网站| 国产精品av久久久久免费| 久久久久视频综合| 纯流量卡能插随身wifi吗| 欧美日本中文国产一区发布| 久久久精品国产亚洲av高清涩受| 高潮久久久久久久久久久不卡| 女人高潮潮喷娇喘18禁视频| 国产精品偷伦视频观看了| 老司机在亚洲福利影院| 亚洲精品一二三| 精品欧美一区二区三区在线| 纯流量卡能插随身wifi吗| 满18在线观看网站| 美女福利国产在线| 免费在线观看完整版高清| 老司机午夜福利在线观看视频 | 激情在线观看视频在线高清 | 麻豆乱淫一区二区| 精品国产乱码久久久久久男人| 亚洲国产av新网站| 亚洲精品成人av观看孕妇| 嫁个100分男人电影在线观看| 女人爽到高潮嗷嗷叫在线视频| 国产精品香港三级国产av潘金莲| tocl精华| 国产精品国产高清国产av | 成年版毛片免费区| 国产在线视频一区二区| 18禁黄网站禁片午夜丰满| 在线观看免费视频日本深夜| 国内毛片毛片毛片毛片毛片| 日日夜夜操网爽| 亚洲熟妇熟女久久| √禁漫天堂资源中文www| 国产精品香港三级国产av潘金莲| 一区二区三区精品91| 又黄又粗又硬又大视频| 99re在线观看精品视频| 成人三级做爰电影| 成人国产一区最新在线观看| 黄片大片在线免费观看| 少妇 在线观看| 免费观看人在逋| 日日爽夜夜爽网站| 热99久久久久精品小说推荐| 一进一出抽搐动态| 午夜91福利影院| 一二三四社区在线视频社区8| 久久久精品94久久精品| 一进一出好大好爽视频| 少妇的丰满在线观看| 欧美在线黄色| 日韩中文字幕视频在线看片| 精品亚洲乱码少妇综合久久| 男女边摸边吃奶| 一边摸一边抽搐一进一出视频| 狠狠狠狠99中文字幕| 在线观看舔阴道视频| av有码第一页| 久久 成人 亚洲| 女性生殖器流出的白浆| 午夜老司机福利片| 欧美 日韩 精品 国产| 久久精品成人免费网站| 中文字幕精品免费在线观看视频| 久久精品熟女亚洲av麻豆精品| 别揉我奶头~嗯~啊~动态视频| 久久久久久免费高清国产稀缺| 欧美在线一区亚洲| 亚洲欧美一区二区三区久久| 国产亚洲欧美在线一区二区| 日日爽夜夜爽网站| 97在线人人人人妻| 国产成人av教育| 国产成人欧美| 精品国产一区二区久久| 欧美av亚洲av综合av国产av| 中文字幕人妻熟女乱码| av天堂在线播放| 亚洲一区二区三区欧美精品| 久久午夜综合久久蜜桃| 亚洲精品美女久久av网站| 脱女人内裤的视频| 露出奶头的视频| 99国产精品99久久久久| 香蕉丝袜av| 99九九在线精品视频| 国产成人精品久久二区二区91| 久久精品国产综合久久久| 亚洲欧美一区二区三区黑人| 一本—道久久a久久精品蜜桃钙片| 老司机靠b影院| 一级片免费观看大全| 国产视频一区二区在线看| 中亚洲国语对白在线视频| 99国产精品一区二区三区| 麻豆av在线久日| 97人妻天天添夜夜摸| 精品免费久久久久久久清纯 | 天堂中文最新版在线下载| 国产成人精品久久二区二区免费| a级片在线免费高清观看视频| 91av网站免费观看| 国产亚洲午夜精品一区二区久久| 一二三四在线观看免费中文在| 交换朋友夫妻互换小说| 老司机深夜福利视频在线观看| 天天添夜夜摸| 精品一区二区三区av网在线观看 | 一区福利在线观看| 日韩中文字幕视频在线看片| 热99久久久久精品小说推荐| 成人18禁在线播放| 宅男免费午夜| 亚洲欧洲精品一区二区精品久久久| 免费黄频网站在线观看国产| 亚洲一码二码三码区别大吗| 中文字幕高清在线视频| 欧美激情高清一区二区三区| 免费看十八禁软件| 女同久久另类99精品国产91| 十八禁人妻一区二区| 欧美激情久久久久久爽电影 | 男女无遮挡免费网站观看| 久久久久精品人妻al黑| 女警被强在线播放| 9热在线视频观看99| 精品少妇黑人巨大在线播放| 脱女人内裤的视频| 99在线人妻在线中文字幕 | 嫁个100分男人电影在线观看| 不卡av一区二区三区| 少妇裸体淫交视频免费看高清 | 国产精品美女特级片免费视频播放器 | 久久国产精品男人的天堂亚洲| 国产极品粉嫩免费观看在线| 欧美+亚洲+日韩+国产| av网站在线播放免费| 涩涩av久久男人的天堂| 国产亚洲午夜精品一区二区久久| 亚洲成人免费av在线播放| 久久久精品94久久精品|