• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Command Filtered Finite/Fixed-time Heading Tracking Control of Surface Vehicles

    2021-10-25 01:41:14ZhenyuGaoandGeGuo
    IEEE/CAA Journal of Automatica Sinica 2021年10期

    Zhenyu Gao and Ge Guo,

    Abstract—This paper investigates the heading tracking problem of surface vehicles with unknown model parameters.Based on finite/fixed-time control theories and in the context of command filtered control,two novel adaptive control laws are developed by which the vehicle can track the desired heading within settling time with all signals of the closed-loop system are uniformly bounded.The effectiveness and performance of the schemes are demonstrated by simulations and comparison studies.

    I.INTRODUCTION

    RECENTLY,the heading tracking problem for surface vehicles has received much interest,owing to it is directly related to the operation,economy,safety,and effectiveness of the vehicle control system.To track the desired heading,a proportional-integral-derivative (PID) controller,which greatly improves steering performance,was presented in 1920s.Later,many advanced control algorithms,such as modern optimal control [1],neural network control [2]–[4],robust control [5],[6],and fuzzy control [7],have been applied to heading control of surface vehicles.However,the control approaches in [1]–[7] can only obtain the infinite-time stability of tracking systems,where it is generally known that the finite-time stability is more practical than the infinite-time stability in a real control system.

    To handle the finite-time control of the system,many interesting results have been obtained in recent years [8]–[11].These research works are based on the theory of finite-time stability or fixed-time stability [12].In addition,the system with finite-time or fixed-time convergence usually demonstrates not only faster convergence rates,but also has better rejection features against uncertainties and disturbances.Although the idea of finite-time and fixed-time control are promising,research works so far has been solely focused on stabilization of various nonlinear system [9]–[11] and the consensus of multi-agent systems [13],[14].Here,we aim to extend the control strategies under finite/fixed-time control frameworks such that the heading tracking can be achieved with faster convergence rates and higher tracking precision.

    It is also worth mentioning that,the results mentioned above are all based on backstepping methods.As we all know,the backstepping method is subject to the problem of“explosion of complexity”caused by repeated differentiations of the virtual control signals.To eliminate this defect,the adaptive dynamic surface control method [15] was applied to address heading tracking control in [16],[17].However,since command filters are used to deal with differentiation of the virtual control signals,the control performance of this method may be affected by the filtering errors.Recently,[10],[18],[19] gave a new command-filtered control method to remove the filtering errors by introducing a compensator for each control signals.However,the filtering errors cannot be eliminated within setting time.

    Motivated by the aforementioned observations,this paper aims to give two novel adaptive control schemes,by which the desired heading can be tracked within a given settling time.The main contributions are summarized as follows:

    1) Proposing a finite-time and a fixed-time backstepping control scheme with which the vehicle can track the given heading with all the signals uniformly bounded and the tracking errors converge to a neighborhood of zeros within the settling time.Besides,under the proposed finite/fixed-time control scheme,the system has better robustness to external disturbance and uncertainty.

    2) Incorporating the compensator-based command filter technique into the proposed control scheme,by which the issue of“explosion of complexity”is eliminated,the filtering error can be compensated within finite/fixed time and the controller design procedure is much simpler and easier for implementation.

    This paper is organized as follows.Section II contains the preliminaries and problem statement.Section III presents the controller design and stability analysis.Section IV gives the simulation studies.Finally,some conclusions are drawn in Section V.

    II.PRELIMINARIES AND PROBLEM STATEMENT

    A.Preliminaries

    B.Problem Statement

    Consider the following Norrbin nonlinear model describing the steering dynamics of a surface vehicle,depicted by [17]

    where ψ ∈R is the course angle,δ ∈R is the actual rudder angle,T∈R is the time constant,K∈R is the gain constant,and γ ∈R is the Norrbin coefficient.

    For simplicity,the model (10) can be transformed into the following state space expression:

    whereris the yaw velocity of the vehicle,and θi,i=0,1,are model parameters.

    To facilitate the control design,the following assumption is made.

    Assumption 1:The parameters θi,i=0,1,in (11) are unknown yet bounded.

    Remark 1:Since the model parametersK,T,and γ are susceptible to external factors,such as velocity,shape,and load of vehicles,depth of water,etc,they are difficult to obtain accurately,but they are bounded.Hence,the Assumption 1 is reasonable.

    The objective of this paper is to design two control schemes(i.e.,a finite-time and a fixed-time control scheme) for a surface vehicle with unknown model parameters,so that the actual heading ψ tracks the desired heading ψdwithin the settling time successfully as shown in Fig.1,while guaranteeing all signals of the closed-loop system are uniformly bounded.Further,the control objective can be stated mathematically as

    Fig.1.Heading tracking of a surface vehicle.

    Fig.2.Schematic of heading tracking control of a surface vehicle.

    and

    whereT0,ε are positive constants,andT0∈[0,∞).

    III.CONTROLLER DESIGN AND STABILITY ANALYSIS

    In this section,two adaptive control schemes combining the adaptive technique with the command filter-backstepping design procedure,as shown in Fig.2,will be given.

    Define the heading tracking errorz1and yaw angle velocity tracking errorz2as follows:

    A.Adaptive Finite-time Controller Design

    In this subsection,a finite-time control scheme is proposed,and the controller design contains the following two steps.

    whereki,i=1,2,3,and α are positive gain constants withk1>k3/2,0<α<1,and ξ1is a compensating signal which will be given later.

    To generate the stabilizing functionand it is derivativethe nominal stabilizing function is then passed through the following finite-time command filter

    where λ1and λ2are positive constants,φ1,1is the estimate of αr,ι is the derivative of φ1,1,φ1,1(0)=αr(0) and ι(0)=0.

    Remark 2:If λ1and λ2are properly chosen,then we haveafter a finite time of transient process and the corresponding solutions of the dynamic systems are finite time stable in the absence of input noises.

    In practice,the input noise is inevitable,and to compensate for the filtering error,defines the filtering errorand then the compensating signal is defined as

    where ?1,k4,k5are positive constants withk4>(k3+1)/2 and ξ1(0)=0.

    Remark 3:Compared with the compensator-based command filter technique in [10],[18],[19],the proposed command filter technique (18) and (19) can not only eliminated the problem of“explosion of complexity”,but also can compensate the filtering error within finite time.

    Here,the candidate Lyapunov function is selected as

    According to Lemma 2,it can be concluded that the systemz2is practically finite-time stable.

    Consider the following candidate Lyapunov function for the whole system

    Therefore,there is the following theorem.

    Theorem 1:Consider the nonlinear heading dynamics of surface vehicles in (11) under Assumption 1,the heading tracking can be achieved by the proposed actual input (24)with virtual input (17),command filter (18),the compensating signal (19) and adaptive laws (25),(26),while guarantee that all signals of the closed-loop system are uniformly bounded and all tracking errors will convergence to a region near neighborhood of zeros in finite time.

    Proof:Based on (31) and Lemma 5,one can obtain

    According to Lemma 2,it is easy to obtain that the system is practically finite-time stable,and the residual set of the system(30) is given by

    Remark 4:Although the proposed control scheme above can ensure that the desired heading can be tracked in finite time,the convergence time cannot be determined beforehand,since it depends on the initial states of the system which is usually unknown.

    With the above finite-time control scheme,the convergence time depends on the initial states of the system and the heading tracking objective cannot be achieved within a given time.Therefore,in the next subsection,we will give a fixedtime control scheme.

    B.Adaptive Fixed-time Controller Design

    Here,a fixed-time control scheme is developed for the heading tracking of surface vehicles.

    Step 1:Here,the virtual input is chosen as follows:

    where φ2,1is the estimated value of αr,ι1,1is the derivative of φ2,1, λ1,i,i=1,2,3,4,are positive constants,andm1,1=α,n

    1,1=β,m1,2=α/(2?α),n1,2=2β?1, φ2,1(0)=αr(0),and ι1,1(0)=0.

    Remark 5:For the command filter (36),if the parameters λ1,1, λ1,2,λ1,3,and λ1,4are properly chosen,the following equalities φ2,1=αr,andare true in the absence of input noises after a fixed time of transient process,and the corresponding solutions of the dynamic systems are fixedtime stable.

    Here,the compensating signal is generated by the following system:

    where ?2and λi,i=4,5,6,are positive constants with

    Remark 6:Compared with the compensator-based command filter technique in [10],[18],[19] and the command filter technique (18) and (19),the proposed filter (36) and (37)can avert repeated differentiations of the virtual control signals which reduced the computation greatly.Meanwhile,the filter proposed here can compensate the filtering error within fixed time.

    Here,consider the same Lyapunov function as (20),and taking the time derivative ofV1along (35) and (37),one can obtain

    Therefore,there is the following theorem.

    Theorem 2:Consider the nonlinear heading dynamics of surface vehicles in (11) under Assumption 1,the heading tracking can be achieved by the proposed actual input (40)with virtual input (35),command filter (36),the compensating signal (37),and adaptive laws (41),(42),while guaranteeing all signals of the closed-loop system are bounded and all tracking errors converge to a neighborhood of zeros within the settling time regardless of the initial states of the system.

    Proof:In view of (45),one can easy obtain

    Remark 7:According to (48),we can see the maximum convergence time only depends on the controller parameters and ?1.Therefore,the presented method allows one to arbitrarily choose the convergence rate of the heading tracking control of surface vehicles,which makes it feasible for us to meet strict settling time requirements in practical applications.Moreover,the fixed-time algorithm can ensure a fixed settling time regardless of the initial states of surface vehicles.

    Remark 8:By selecting the controller parametersand ? to satisfy corresponding constraints as mentioned in the above discussions,we can guarantee a bound of the settling time as given in (48),which determines a certain convergence rate.Generally,the relation between the convergence rate and these parameters are shown in Table I.

    Remark 9:From the stability analysis and the definition of convergence time (48),we can see that the values of controller parameters do not affect the stability of the closed-loop system,although they may influence the convergence time.

    TABLEI RELATIONSHIP BETWEEN PARAMETERS AND CONVERGENCE RATE

    For a practical tracking control problem,the desired convergence time cannot be too short,otherwise,the closedloop system may be instable due to saturation constraint of the thruster.In addition,a feasible convergence time should also take the transient performance into consideration in the design procedure according to the maximum maneuver capability.

    Remark 10:The Lyapunov function (20) in the paper is in general a non-quadratic,and according the result in [22] and[23],the non-quadratic Lyapunov functions usually result in better performance compared with quadratic functions.In this paper,the usage of non-quadratic Lyapunov function and finite/fixed-time theory leads to improved convergence of the system error signal to zero.

    IV.SIMULATION STUDIES

    In this section,we do the high-fidelity simulations using the module MSS/control/autopilots/heading autopilot model from the marine system simulator (MSS) toolbox [24] developed by the Department of Marine Technology,Norwegian University of Science and Technology,Norwegian.An autopilot with the following parametersT=21 s,K=0.23 s?1, γ=0.3 s2are taken as the simulation example.The design parameters of finite-time controller arek1=k6=2,k2=k7=5/7,k3=k4=3/2, γ1=γ2=0.1,ι0=3, ι1=5, α=5/7,and the parameters of fixed-time controller are λ1=λ7=2,λ2=λ5=λ8=5/7, λ3=λ6=λ9=3/5, λ4=2, γ3=γ4=0.1,ι2=3,ι3=3,α=5/7, β=5/3 and ?1=?2=0.2.To show the relation between convergence time and initial states,the following initial states are chosen(ψ1(0)=0,r1(0)=0) and(ψ2(0)=?10,r2(0)=10).

    In this simulation,the reference heading of the vehicle is given as

    A.Performance of Proposed Heading Tracking Control Schemes

    In this subsection,the simulations are carried out using the proposed control schemes.

    Case 1:Adaptive finite-time (FinT) controller;

    Case 2:Adaptive fixed-time (FixT) controller.

    Fig.3.Desired heading and actual heading with different initial states under adaptive FinT/PID controller.

    Fig.4.Heading tracking error z1.

    Fig.5.Paramet er estimat es and

    Simulation results are shown in Figs.3–14.The results of the heading tracking control with different initial conditions under FinT controller and PID controller are shown in Figs.3 and 4.Here,the PID controller is chosen as δPID=From these figures we can see,under the same FinT controller parameters,different initial states have different convergence time that means the settling time depend on the initial states of the system.Furthermore,the FinT controller has faster convergence speed than PID controller.Fig.5 shows the estimate result of θ0and θ1,which will converge to their true values under the proposed adaptive law.Fig.6 shows the filtering errorin FinT control scheme,by which we can see the filter with compensator has smaller filtering error.Fig.7 shows the filtering errorwith the command filter in[19] and the finite-time command filter proposed in this paper.From the result in Fig.3,it is shown that the proposed finitetime command filter not only has faster convergence rate but also achieves better tracking effect.Fig.8 shows the actual control input δ in FinT control scheme,by which the heading tracking control can be achieved.

    Fig.6.Filtering err or αr ?with/without compensator.

    Fig.7.Filtering errorαr ?with different command filter.

    Fig.8.The actual control i nput δ under the FinT controller.

    Fig.9.Desired heading and actual heading with different initial states under adaptive FixT/FinT controller.

    Fig.10.Heading tracking error z1.

    Fig.11.Para meter esti matesand

    Figs.9 and 10 show the results of the heading tracking control under the proposed FixT controller and FinT controller.From these two figures we can see,with the same parameters of FixT controller,the vehicle will track the desired heading within the same settling time regardless of the initial condition.Besides,under the proposed adaptive law,the unknown parameters θ0and θ1can be estimated as shown in Fig.11.Filtering error with/without compensator is shown in Fig.12,which implies that the filter with compensator has better performance.Fig.13 shows the result of filtering errorunder the command filter in [19],the finite-time command filter,and the fixed-time command filter proposed in this paper.The simulation results indicate that the fixedtime command filter has the best performance,that is,faster tracking speed and higher tracking accuracy.Fig.14 shows the actual control input δ in FixT control scheme,by which the heading tracking control can be achieved within settling time.

    Fig.12.Filteringerror αr ?with/without compensator.

    Fig.13.Filtering error αr ?withdifferent command filter.

    Fig.14.The act ual control input δ under the FixT controller.

    B.Performance of Proposed Heading Tracking Control Schemes Under Disturbance

    The time-varying external disturbance is taken asd(t) with the Gaussian random process.

    The simulation results are depicted in Figs.15 and 16 and the performance indices are also summarized in Table II.It is observed from Figs.15 and 16 and Table II that the proposed heading tracking control law exhibits almost identical control performance in presence of disturbance,which shows that the proposed control law has better rejection feature against disturbance.

    Fig.15.Desired heading and actual heading with disturbance under adaptive FixT/FinT and PID controller.

    Fig.16.Heading t racking error z1 under disturbance.

    V.CONCLUSION

    The paper presents two novel control schemes of heading tracking control of surface vehicles with model parameter uncertainties.Firstly,a novel finite-time control scheme is proposed by which the vehicle can tracks the desired heading in finite-time that depends on the initial states of the system.In order to solve the drawback of convergence time related to the initial states,then,a fixed-time control scheme is developed,with which the control objective can be achieved within the settling time independent of the initial conditions,while guaranteeing all signals of the closed-loop system are uniformly bounded and the tracking errors converge to a neighborhood of zeros within the settling time.In addition,to eliminate the problem of“explosion of complexity”in backstepping method,compensator-based command filter technique is introduced to obtain the derivative of virtual input.Simulation results demonstrate the effectiveness of the proposed control method.In future work,we plan to extend the finite/fixed-time control theory to trajectory tracking or formation control of surface vehicles,and investigate the possibility of heading control of surface vehicle within settling time in the presence of actuator saturation.

    TABLEII PERFORMANCE COMPARISON OF THE PROPOSED CONTROL SCHEME AND PID SCHEME

    久久精品国产清高在天天线| 看黄色毛片网站| 1024香蕉在线观看| 正在播放国产对白刺激| 国产精品香港三级国产av潘金莲| 亚洲成a人片在线一区二区| 此物有八面人人有两片| 中文字幕人妻熟女乱码| 黑人欧美特级aaaaaa片| 动漫黄色视频在线观看| 午夜福利视频1000在线观看| 亚洲专区国产一区二区| 又大又爽又粗| 国产亚洲精品久久久久久毛片| 麻豆国产av国片精品| 午夜福利视频1000在线观看| 日韩三级视频一区二区三区| 欧美一区二区精品小视频在线| 色综合婷婷激情| 老司机福利观看| 久久99热这里只有精品18| 欧美久久黑人一区二区| 啦啦啦 在线观看视频| 国产亚洲精品综合一区在线观看 | 一区二区三区激情视频| 真人一进一出gif抽搐免费| 老熟妇仑乱视频hdxx| 免费在线观看亚洲国产| 一卡2卡三卡四卡精品乱码亚洲| 高潮久久久久久久久久久不卡| 国产伦在线观看视频一区| 亚洲精品一卡2卡三卡4卡5卡| 亚洲全国av大片| 中文字幕人成人乱码亚洲影| 欧美激情 高清一区二区三区| 女生性感内裤真人,穿戴方法视频| 久久中文字幕人妻熟女| 国内毛片毛片毛片毛片毛片| 最近最新免费中文字幕在线| 香蕉国产在线看| 精品一区二区三区四区五区乱码| 欧美一级毛片孕妇| 国产精品电影一区二区三区| 真人做人爱边吃奶动态| 搞女人的毛片| 国产精品免费视频内射| 一进一出抽搐gif免费好疼| 国产三级在线视频| 久久婷婷人人爽人人干人人爱| 亚洲av日韩精品久久久久久密| 免费搜索国产男女视频| 久99久视频精品免费| 狂野欧美激情性xxxx| 91大片在线观看| 亚洲国产日韩欧美精品在线观看 | 亚洲欧美精品综合一区二区三区| 9191精品国产免费久久| 国产精品国产高清国产av| 国产精品综合久久久久久久免费| 成人特级黄色片久久久久久久| 韩国精品一区二区三区| 搡老岳熟女国产| 国产欧美日韩精品亚洲av| 国产精品,欧美在线| 久久久久久国产a免费观看| 国产伦人伦偷精品视频| 桃红色精品国产亚洲av| 国产v大片淫在线免费观看| 中文字幕最新亚洲高清| 91老司机精品| 国产精品亚洲美女久久久| 亚洲午夜精品一区,二区,三区| 可以在线观看毛片的网站| 国产伦一二天堂av在线观看| 在线观看免费视频日本深夜| 国产亚洲精品久久久久久毛片| 成人av一区二区三区在线看| av中文乱码字幕在线| 午夜影院日韩av| 18禁黄网站禁片免费观看直播| 国产精品香港三级国产av潘金莲| 免费搜索国产男女视频| 人妻丰满熟妇av一区二区三区| 老汉色∧v一级毛片| 99在线人妻在线中文字幕| av福利片在线| 国产激情偷乱视频一区二区| 男女午夜视频在线观看| av超薄肉色丝袜交足视频| 国产精品 欧美亚洲| 一级a爱视频在线免费观看| 香蕉av资源在线| 亚洲成av人片免费观看| 久久国产亚洲av麻豆专区| 嫩草影视91久久| 黄色视频,在线免费观看| 久久久久久亚洲精品国产蜜桃av| 国产黄片美女视频| 十八禁网站免费在线| 麻豆成人午夜福利视频| 好看av亚洲va欧美ⅴa在| 美女大奶头视频| 狠狠狠狠99中文字幕| www.精华液| 国产亚洲精品久久久久久毛片| 男女床上黄色一级片免费看| 日本撒尿小便嘘嘘汇集6| 国产伦一二天堂av在线观看| 中文字幕人成人乱码亚洲影| 真人一进一出gif抽搐免费| 久久国产亚洲av麻豆专区| 女人高潮潮喷娇喘18禁视频| 午夜福利在线观看吧| 中文在线观看免费www的网站 | 久久国产乱子伦精品免费另类| 一夜夜www| 99热这里只有精品一区 | 精品久久久久久久久久久久久 | 最近最新免费中文字幕在线| 亚洲精品av麻豆狂野| 99国产极品粉嫩在线观看| 制服丝袜大香蕉在线| 成人亚洲精品av一区二区| 一二三四在线观看免费中文在| 99热只有精品国产| av片东京热男人的天堂| 美女国产高潮福利片在线看| 十八禁网站免费在线| 午夜激情福利司机影院| 欧美日韩精品网址| 成人免费观看视频高清| 国产精品久久电影中文字幕| 国产午夜福利久久久久久| 欧美性猛交黑人性爽| 成年女人毛片免费观看观看9| 成年版毛片免费区| 亚洲久久久国产精品| 热99re8久久精品国产| 欧美乱色亚洲激情| 岛国视频午夜一区免费看| 操出白浆在线播放| 一级a爱视频在线免费观看| 亚洲精品美女久久久久99蜜臀| 一进一出抽搐动态| 岛国在线观看网站| 久久精品影院6| 国产区一区二久久| 麻豆成人av在线观看| 十八禁网站免费在线| 在线看三级毛片| 国产精品亚洲美女久久久| 男人舔女人下体高潮全视频| 一区二区三区精品91| 波多野结衣巨乳人妻| 美女免费视频网站| 欧美人与性动交α欧美精品济南到| 中文资源天堂在线| 国产一卡二卡三卡精品| 老司机午夜十八禁免费视频| 亚洲中文字幕日韩| 欧美激情高清一区二区三区| 国产av一区在线观看免费| 亚洲国产欧美日韩在线播放| 香蕉丝袜av| 国产高清videossex| 久久久久久人人人人人| 色播亚洲综合网| 亚洲人成网站高清观看| 亚洲av成人不卡在线观看播放网| 两个人视频免费观看高清| 最近最新中文字幕大全电影3 | 在线观看免费日韩欧美大片| 女人爽到高潮嗷嗷叫在线视频| 一区二区日韩欧美中文字幕| 日韩一卡2卡3卡4卡2021年| 欧美日韩精品网址| 成在线人永久免费视频| 国产高清videossex| 91字幕亚洲| 久久久久久久精品吃奶| 中文字幕高清在线视频| 国产欧美日韩一区二区三| 黄色片一级片一级黄色片| 老熟妇乱子伦视频在线观看| 美女 人体艺术 gogo| 女人爽到高潮嗷嗷叫在线视频| 男女做爰动态图高潮gif福利片| 国产av又大| 香蕉久久夜色| 天堂√8在线中文| 最新在线观看一区二区三区| 亚洲一区二区三区色噜噜| 俄罗斯特黄特色一大片| 夜夜躁狠狠躁天天躁| 在线视频色国产色| 国产国语露脸激情在线看| 亚洲色图av天堂| 日韩欧美三级三区| 久久久久国产一级毛片高清牌| 亚洲中文字幕日韩| 日韩av在线大香蕉| 怎么达到女性高潮| avwww免费| 久久久国产成人免费| 亚洲va日本ⅴa欧美va伊人久久| 美女高潮喷水抽搐中文字幕| 午夜成年电影在线免费观看| 精品人妻1区二区| 精品久久久久久久末码| 人人妻人人看人人澡| 久久精品夜夜夜夜夜久久蜜豆 | 久久久国产成人精品二区| 成人特级黄色片久久久久久久| 国产精品av久久久久免费| 日本在线视频免费播放| 成人三级黄色视频| 秋霞在线观看毛片| 不卡一级毛片| 欧美xxxx黑人xx丫x性爽| 真人做人爱边吃奶动态| 免费不卡的大黄色大毛片视频在线观看 | 久久久久免费精品人妻一区二区| 变态另类丝袜制服| 国产精品久久电影中文字幕| 午夜福利18| 给我免费播放毛片高清在线观看| 伦理电影大哥的女人| 欧美一区二区国产精品久久精品| 99热这里只有是精品50| 菩萨蛮人人尽说江南好唐韦庄 | 免费观看人在逋| 黄色欧美视频在线观看| 亚洲综合色惰| 免费黄网站久久成人精品| 日韩av不卡免费在线播放| 一区二区三区免费毛片| 少妇熟女aⅴ在线视频| 天堂√8在线中文| 蜜桃久久精品国产亚洲av| 日韩一本色道免费dvd| 精品久久久久久久末码| 亚洲精华国产精华液的使用体验 | 久久精品综合一区二区三区| 国产单亲对白刺激| 在线a可以看的网站| 免费大片18禁| 亚洲精华国产精华液的使用体验 | 国产欧美日韩一区二区精品| 熟女电影av网| 99久久无色码亚洲精品果冻| 欧美绝顶高潮抽搐喷水| 综合色av麻豆| a级一级毛片免费在线观看| 欧美bdsm另类| 狂野欧美白嫩少妇大欣赏| 国产亚洲精品久久久久久毛片| 校园人妻丝袜中文字幕| 国产亚洲精品综合一区在线观看| 国产精品三级大全| 老女人水多毛片| 婷婷色综合大香蕉| 99热6这里只有精品| 亚洲人成网站在线播放欧美日韩| 女人十人毛片免费观看3o分钟| 成人精品一区二区免费| 国产欧美日韩精品亚洲av| 久久久久久久久久久丰满| 日本与韩国留学比较| 精品一区二区三区视频在线| 成人亚洲欧美一区二区av| 深爱激情五月婷婷| 97超碰精品成人国产| 亚洲国产欧洲综合997久久,| 国产又黄又爽又无遮挡在线| 亚洲美女视频黄频| 99热这里只有精品一区| 少妇被粗大猛烈的视频| 国产视频内射| 国产爱豆传媒在线观看| 国产亚洲av嫩草精品影院| 黄色配什么色好看| 嫩草影院新地址| 国产精品野战在线观看| 精品午夜福利在线看| 亚洲国产精品久久男人天堂| eeuss影院久久| 99热6这里只有精品| 精品一区二区三区人妻视频| 一本一本综合久久| 亚洲中文字幕日韩| 欧美xxxx黑人xx丫x性爽| 亚洲欧美日韩东京热| a级毛片免费高清观看在线播放| 国产色爽女视频免费观看| 色噜噜av男人的天堂激情| 乱系列少妇在线播放| 欧美日韩一区二区视频在线观看视频在线 | 国产精品三级大全| 成人一区二区视频在线观看| 国产精品一区二区三区四区久久| 男女那种视频在线观看| 久久久久久久久久黄片| 国产在线精品亚洲第一网站| 亚洲欧美成人综合另类久久久 | 免费在线观看成人毛片| 日韩精品青青久久久久久| 99久国产av精品国产电影| 波野结衣二区三区在线| 久久午夜福利片| 久久精品国产亚洲av涩爱 | 99热这里只有是精品在线观看| 12—13女人毛片做爰片一| 欧美xxxx黑人xx丫x性爽| 国产精品乱码一区二三区的特点| 少妇裸体淫交视频免费看高清| 午夜日韩欧美国产| 久久久精品94久久精品| 赤兔流量卡办理| 精品久久久久久久久av| 久久人妻av系列| 搡女人真爽免费视频火全软件 | 波多野结衣高清无吗| 国产精华一区二区三区| 亚洲人成网站在线播放欧美日韩| 欧美成人一区二区免费高清观看| 小说图片视频综合网站| 欧美成人a在线观看| 日韩国内少妇激情av| 久久久精品欧美日韩精品| 欧美潮喷喷水| 国产一区二区亚洲精品在线观看| 国产探花在线观看一区二区| 精品久久国产蜜桃| 免费一级毛片在线播放高清视频| 久久久久久国产a免费观看| 国产色婷婷99| 亚洲国产欧洲综合997久久,| 欧美最黄视频在线播放免费| 有码 亚洲区| 免费观看精品视频网站| 国产亚洲91精品色在线| 啦啦啦观看免费观看视频高清| 亚洲av美国av| 亚洲av成人精品一区久久| 一区二区三区高清视频在线| 久久午夜福利片| 国语自产精品视频在线第100页| 欧美zozozo另类| 两性午夜刺激爽爽歪歪视频在线观看| 午夜亚洲福利在线播放| 日韩国内少妇激情av| 亚洲av一区综合| 免费av观看视频| 久久久久久大精品| 亚洲欧美成人精品一区二区| 在线观看美女被高潮喷水网站| av在线亚洲专区| 99九九线精品视频在线观看视频| 国产精品亚洲美女久久久| 偷拍熟女少妇极品色| 亚洲成av人片在线播放无| 中文字幕熟女人妻在线| 欧美激情国产日韩精品一区| 成人午夜高清在线视频| 亚洲色图av天堂| 国产精品久久久久久av不卡| 九九在线视频观看精品| 久久久色成人| 中文字幕av成人在线电影| 午夜福利视频1000在线观看| 免费在线观看影片大全网站| 51国产日韩欧美| 男人舔奶头视频| 51国产日韩欧美| 97碰自拍视频| 成人二区视频| 日韩精品有码人妻一区| 尤物成人国产欧美一区二区三区| 亚洲精品色激情综合| 亚洲欧美日韩高清在线视频| 久久精品影院6| 亚洲丝袜综合中文字幕| 嫩草影院精品99| 搡老熟女国产l中国老女人| 18禁在线播放成人免费| 欧美激情久久久久久爽电影| 成人无遮挡网站| 你懂的网址亚洲精品在线观看 | 欧美成人a在线观看| 婷婷精品国产亚洲av| 在线观看午夜福利视频| 成年女人看的毛片在线观看| 亚洲国产精品成人久久小说 | 中文字幕熟女人妻在线| 不卡视频在线观看欧美| 久久天躁狠狠躁夜夜2o2o| 女同久久另类99精品国产91| 最近在线观看免费完整版| 国产女主播在线喷水免费视频网站 | 白带黄色成豆腐渣| 久久久久九九精品影院| 成人毛片a级毛片在线播放| 久99久视频精品免费| 亚洲精品日韩在线中文字幕 | 国产精品亚洲美女久久久| 男女之事视频高清在线观看| 国语自产精品视频在线第100页| 日韩欧美精品免费久久| 亚洲一区二区三区色噜噜| 成人性生交大片免费视频hd| 国产三级在线视频| 99热这里只有精品一区| 日韩欧美三级三区| 看片在线看免费视频| 乱人视频在线观看| 婷婷亚洲欧美| 国产成人影院久久av| 色哟哟哟哟哟哟| 国产成人aa在线观看| 91午夜精品亚洲一区二区三区| 99热这里只有是精品在线观看| 亚洲精品日韩av片在线观看| 日本三级黄在线观看| 亚洲一级一片aⅴ在线观看| 淫妇啪啪啪对白视频| 国产精品三级大全| 搞女人的毛片| 午夜老司机福利剧场| 三级国产精品欧美在线观看| 99热这里只有精品一区| 免费av不卡在线播放| 最近视频中文字幕2019在线8| 亚洲av成人精品一区久久| 久久精品久久久久久噜噜老黄 | 自拍偷自拍亚洲精品老妇| 97热精品久久久久久| 午夜视频国产福利| 国产精品一及| 久久精品国产亚洲网站| 成人av一区二区三区在线看| 狂野欧美激情性xxxx在线观看| 午夜久久久久精精品| av天堂在线播放| 一边摸一边抽搐一进一小说| 特级一级黄色大片| av免费在线看不卡| 一级av片app| 欧美一区二区精品小视频在线| 亚洲精品国产av成人精品 | 六月丁香七月| 国产毛片a区久久久久| 观看美女的网站| 亚洲av五月六月丁香网| 美女cb高潮喷水在线观看| 国产爱豆传媒在线观看| 老司机午夜福利在线观看视频| 婷婷六月久久综合丁香| 亚洲在线观看片| 欧美性猛交黑人性爽| 亚洲欧美日韩东京热| 日韩高清综合在线| 亚洲精品亚洲一区二区| 精品99又大又爽又粗少妇毛片| 一进一出好大好爽视频| 成人欧美大片| а√天堂www在线а√下载| 小说图片视频综合网站| 狂野欧美白嫩少妇大欣赏| 97人妻精品一区二区三区麻豆| 久久久久精品国产欧美久久久| 长腿黑丝高跟| 国产免费男女视频| 最近手机中文字幕大全| 亚洲精品在线观看二区| 欧洲精品卡2卡3卡4卡5卡区| 少妇的逼好多水| 日日摸夜夜添夜夜添av毛片| 天天躁日日操中文字幕| 91久久精品电影网| 国产精品伦人一区二区| 久久久久久久久久黄片| 亚洲无线观看免费| 日韩欧美精品免费久久| 此物有八面人人有两片| 高清毛片免费看| 99在线人妻在线中文字幕| 中文资源天堂在线| 日韩欧美精品免费久久| 亚洲av中文av极速乱| 成年av动漫网址| 亚洲自偷自拍三级| 久久久久久久久久成人| 久久久久九九精品影院| 国产av在哪里看| 久久久久久久久久久丰满| 女生性感内裤真人,穿戴方法视频| 日韩国内少妇激情av| 日本一二三区视频观看| 国产男靠女视频免费网站| 色尼玛亚洲综合影院| 国产国拍精品亚洲av在线观看| 久久久久免费精品人妻一区二区| 日韩欧美精品免费久久| 亚洲精品在线观看二区| 久久久久精品国产欧美久久久| 久久久久久久午夜电影| 少妇高潮的动态图| 国产人妻一区二区三区在| 深夜a级毛片| 又黄又爽又刺激的免费视频.| 国产精品精品国产色婷婷| 一个人看的www免费观看视频| 人妻少妇偷人精品九色| 看非洲黑人一级黄片| 日韩大尺度精品在线看网址| 国产高清有码在线观看视频| 免费在线观看影片大全网站| 亚洲欧美精品综合久久99| 亚洲精品色激情综合| 欧美人与善性xxx| 男人的好看免费观看在线视频| 亚洲av中文av极速乱| 日本在线视频免费播放| 成年女人永久免费观看视频| 网址你懂的国产日韩在线| 亚洲成人久久爱视频| 日本 av在线| 真人做人爱边吃奶动态| 精品久久久久久久末码| 久久久午夜欧美精品| 国产精品永久免费网站| 91久久精品国产一区二区三区| 波野结衣二区三区在线| 99热全是精品| 一进一出好大好爽视频| 亚洲无线观看免费| 亚洲最大成人手机在线| 精华霜和精华液先用哪个| 啦啦啦观看免费观看视频高清| 亚洲七黄色美女视频| av天堂中文字幕网| 国产中年淑女户外野战色| 丰满的人妻完整版| 亚洲国产日韩欧美精品在线观看| 成人无遮挡网站| 国产极品精品免费视频能看的| av女优亚洲男人天堂| 亚洲自拍偷在线| 久久久精品大字幕| 俄罗斯特黄特色一大片| 黄色配什么色好看| 一级毛片我不卡| 日日啪夜夜撸| 国产色爽女视频免费观看| 一个人免费在线观看电影| av在线蜜桃| 中文字幕免费在线视频6| 欧美一区二区国产精品久久精品| 国产高清不卡午夜福利| 美女高潮的动态| 亚洲18禁久久av| 又黄又爽又免费观看的视频| 国产黄色视频一区二区在线观看 | 亚洲精品一区av在线观看| 精品日产1卡2卡| 色哟哟·www| 亚洲专区国产一区二区| 夜夜夜夜夜久久久久| 天堂动漫精品| 老熟妇乱子伦视频在线观看| 国产中年淑女户外野战色| 免费电影在线观看免费观看| 久久精品国产亚洲av涩爱 | 波多野结衣巨乳人妻| 久久久久国内视频| 国产真实伦视频高清在线观看| 啦啦啦韩国在线观看视频| 少妇猛男粗大的猛烈进出视频 | 亚洲精品国产成人久久av| 插逼视频在线观看| 国产v大片淫在线免费观看| 亚洲国产欧美人成| 插逼视频在线观看| 国产v大片淫在线免费观看| 国国产精品蜜臀av免费| 国产熟女欧美一区二区| 亚洲欧美精品综合久久99| 色综合站精品国产| 你懂的网址亚洲精品在线观看 | 啦啦啦啦在线视频资源| 国产精品一区二区三区四区久久| 看十八女毛片水多多多| 亚洲成a人片在线一区二区| 亚洲国产欧洲综合997久久,| 网址你懂的国产日韩在线| 夜夜夜夜夜久久久久| 国产av不卡久久| 网址你懂的国产日韩在线| 日本黄色片子视频| 国产黄a三级三级三级人| 欧美日韩综合久久久久久| 蜜桃亚洲精品一区二区三区| 欧美一区二区国产精品久久精品| 国产精品久久久久久久电影| 老司机福利观看| 激情 狠狠 欧美| 身体一侧抽搐| 在线播放国产精品三级| 少妇裸体淫交视频免费看高清| 午夜福利高清视频| 99久久成人亚洲精品观看| 最近中文字幕高清免费大全6| 精品人妻偷拍中文字幕| 久久久a久久爽久久v久久| 丝袜美腿在线中文|