• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Recessive Mutant of argonaute1b/gsnl4 Leads to Narrow Leaf, Small Grain Size and Low Seed Setting in Rice

    2021-10-18 08:28:04SongMengqiuRuanShuangPengYoulinWangZhongweiJahanNoushinZhangYuCuiYongtaoHuHaitaoJiangHongzhenDingShilinShenLanGaoZhenyuHuXingmingQianQianGuoLongbiao
    Rice Science 2021年6期

    Song Mengqiu, Ruan Shuang, Peng Youlin, Wang Zhongwei, Jahan Noushin, Zhang Yu, Cui Yongtao, Hu Haitao, Jiang Hongzhen, Ding Shilin, Shen Lan, Gao Zhenyu, Hu Xingming, Qian Qian, Guo Longbiao

    Letter

    A Recessive Mutant ofLeads to Narrow Leaf, Small Grain Size and Low Seed Setting in Rice

    Song Mengqiu1, 2, #, Ruan Shuang1, 2, #, Peng Youlin3, #, Wang Zhongwei1, Jahan Noushin1, Zhang Yu1, Cui Yongtao1, Hu Haitao1, Jiang Hongzhen1, Ding Shilin1, Shen Lan1, Gao Zhenyu1, Hu Xingming2, Qian Qian1, Guo Longbiao1

    (State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; College of Agronomy, Anhui Agricultural University, Hefei 230036, China; Rice Research Institute, Southwest University of Science and Technology, Mianyang 621010, China; These authors contributed equally to this work)

    Amutant characterized by small grain size, narrow leaf and low seed-setting rate was obtained by ethyl methane sulfonate (EMS) mutagenesis of arice variety Wuyunjing 21. Genetic analysis showed thatis a loss-of-function mutant. A single-base mutation inresulted in the substitution of Ser to Asn in the Piwi domain of OsAGO1b protein. CRISPR/Cas9-mediated editing ofyieldeda mutant phenotypically resembling. Furthermore, miRNA-Seq analysis showed that the transcript expression levels of miRNAs in the signal transduction pathways related to pollen development, leaf morphology and hormone activation were significantly different between themutant and the wild type (WT) plants. Several miRNAs were downregulated, and their target genes were upregulated inmutants. The auxin content in the root tips of themutant decreased, and the expression of most auxin-related genes was altered. In summary,not only regulates organ development by controlling cell division and expansion, but also plays an important role in regulating auxin transport in rice.

    ARGONAUTE (AGO) proteins are widely distributed in eukaryotes and are the central components of the RNA-induced silencing complex (RISC) (Baulcombe, 2004). AGO proteins bind to small non-coding RNAs, such as siRNAs and miRNAs, and play an important role in the silencing mechanism of RNAs by affecting protein synthesis and RNA stability. AGO proteins contain four conserved domains: N-terminal domain, PAZ domain, middle domain (MID) and Piwi domain (Song et al, 2004). Previous studies showed that the Piwi domain is the catalytic core of AGO, which shares structural similarity with ribonuclease H (RNase H) in the form of a conserved catalytic center of amino acid quadruple Asp-Glu-Asp-His/Asp (DEDH/D) (Song et al, 2004). The function of the catalytic center is to cut the target sequence of small RNA. Rice contains 19 AGO proteins. Among them, the mutation ofcauses the leaves to curl upwards, extends the upright time of leaves, and promotes the formation of an upright leaf crown (Shi et al, 2007).directly regulates the expression ofthrough DNA methylation and regulates the development of anthers (Zheng et al, 2019).may be a key protein in the siRNA pathway, which positively regulates rice grain size and weight, and promotes rice stem development (Zhong et al, 2020). OsAGO1 has four homologs, named OsAGO1a/b/c/d, which may be functionally redundant. RNA interference on the conservative regions ofresults in dwarfism of plants, narrowed and curled leaves, as well as low seed-setting rate (Wu et al, 2009). Recently,was reported to be a key regulator of growth and development in rice but did not participate in the establishment of leaf polarity (Li et al, 2019). However, these studies were based on reverse genetics, and the effects of individualgene mutation on development of plant organs is still unclear through forward genetics.

    In this study, a pleiotropic mutant() was isolated from arice Wuyunjing 21 after EMS-induced mutagenesis. Themutant showed narrow leaves, small grain size, low pollen fertility, low seed- setting rate and thin culm (Fig. 1-A to -F; Fig. S1). To determine the effect of thegene on the development of various tissues, histological analysis of multiple organs was performed. The transverse sections of the middle part of the second blades from top at the maturity stage showed that the total numbers of small veins and large veins were significantly reduced in theplants compared with WT (Fig. 1-G to -I; Fig. S2-A and -B). Transverse sections of internode III indicated that the distribution of vascular bundles in theplants was severely damaged, an irregular arrangement was apparent (Fig. 1-J and -K), and the number of vascular bundles and the length of epidermal cells were significantly reduced (Fig. 1-L; Fig. S2-C and -D). Additionally, the number of inner parenchyma cells as well as the average width and number of outer epidermal cells in themutant spikelet cells were lower than those in WT (Fig. 1-M to -O; Fig. S2-E and -F). In summary, these results revealed that thegene also plays an important role in regulating cell division and cell elongation.

    To determine whether thegene is responsible for thepleiotropic phenotypes, theplant was crossed with TN1 (anrice). The F1progenies exhibited normal phenotype.In the F2population, the separation ratio was 3:1 (normal: pleiotropic = 2297:720; χ2= 2.07,> 0.05), indicating that thephenotype was controlled by a single recessive gene. Map-based cloning documented that themutant contained a single-nucleotide G to A mutation in thegene (), resulting in the substitution of Ser to Asn in the Piwi domain (Fig. 1-P). Intriguingly, we found the mutational site ofin theplants was the same as the mutational site ofin themutant(Cuperus et al, 2010; Poulsen et al, 2013). The amino acid sequence alignment confirmed that the residue S810N in the Piwi domain was very conserved between rice and(Fig. S3). Although the exact functional position ofis unknown, their common mutation sites provided genetic evidence to further dissect its biochemical function, and the mutant provided good materials for further research on the function ofin the future. To further verify the function of thegene, the non-mutatedgene of WT was knocked out in WT rice using a CRISPR/Cas9 system. Eight different types of homozygous mutant lines were obtained (Fig. 1-Q), and all of which showed narrower leaves and smaller grains (Fig. 1-R to -T). Taken together, these results confirmed thatis the candidate gene of. The expression of thegene was measured by qRT-PCR, and the expression of thegene in themutant, F1(obtained by crossing WT and) and three-knockout lines increased significantly in comparison with WT (Fig. 1-U). These results indicated that the loss-of- function ofin the mutant may lead to negative feedback regulation, thus promoting the transcription of thegene.

    Fig. 1. Phenotype analysis, histological analysis, genetic analysis and transcription analysis of wild type (WT) andplants.

    A, Gross morphology at the heading stage. Scale bar, 10 cm. B, Leaf morphology of the uppermost three leaves at the maturity stage. Scale bar, 5 cm. C andD, Phenotypes of seeds. Scale bars, 1 cm.E, Leaf width of the uppermost three leaves. F, Seed-setting rate. G, Transverse sections of the middle part of the second leaf blades from the top at the maturity stage. Scale bars, 500 μm. H, Regions between two large veins in G. lv, Large vein; sv, Small vein. Scale bars, 100 μm. I, Scanning electron microscopy analysis of mature flag leaves. Scale bars, 100 μm. J, Transverse sections of the middle part of internode III at the maturity stage. Scale bars, 500 μm. K, Regions between two vascular bundles in J. Scale bars, 100 μm. L, Longitudinal sections of the middle part of internode III at the maturity stage. Scale bars, 50 μm. M, Spikelet hulls. The dashed lines indicate the sites of the transverse sections. Scale bar, 2 mm. N, Cross-sections of spikelet hulls. Scale bars are 1 mm in the left and 200 μm in the right close-up views of the boxed regions. O, Scanning electron microscopy analysis of spikelet hulls of the outer glume. Scale bars, 200 μm. P,Fine mapping of the gene on chromosome (Chr) 4, and the structure and mutation site of thegene. Red arrow indicates the mutation site.Q, Mutations in the T1generation ofby CRISPR/Cas9. Red letters and dashed lines indicate inserted and deleted bases, respectively. R, Morphology of WT and three-knockout lines. Scale bar, 10 cm. S, Phenotypes of seed embryos of WT,and-knockout lines. Scale bar, 0.5 cm. T, Flag leaf morphology of WT and a-knockoutline. Scale bar, 5 cm. U, Expression ofgene inWT,, F1(obtained by crossing WT and) and three-knockout lines. V,Relative expression of eight miRNAs related to leaf development. W, Relative expression of OsHB family genes. X, Relative expression ofandinvolved in leafdevelopment. Data are Mean ± SD (= 3). * and **, Significant differences at< 0.05 and< 0.01 compared with WT by the Student’stest, respectively.

    To understand the function of, we analyzed its expression pattern in different tissues of WT.expressed in every organ but predominantly in young panicles (Fig. S4-A). Additionally, rice leaf sheath protoplasts were transformed with the pCA1301-35S-s65T-vector to detect the subcellular localization ofGSNL4. The green fluorescent signal of GFP- GSNL4 protein was localized in the nucleus and cytoplasm, while the signal of an empty GFP vector was distributed in the entire cell (Fig. S4-B).

    To study the regulation mechanism of, we performed miRNA-Seq to analyze the effect ofon miRNA expression. Transcriptome sequencing was performed in triplicates using young panicles of WT and. Compared with WT, there were approximately 29 upregulated and 23 downregulated miRNAs in theplants (Fig. S5-A and Table S1). The enrichment analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes identified that the target genes of miRNAs expressed differently between the WT andplants were related to the signal transduction pathways involved in pollen development, leaf morphology, chlorophyll and carotenoid synthesis as well as hormone activation (Fig. S5-B to -E). In addition, the accumulation of eight miRNAs in leaves at the tillering stage was assessed by qRT-PCR. The results showed that the levels of,,andinwere markedly lower than those in WT (Fig. 1-V). Sincegene negatively regulates the expression of HD-ZIP III family genes by combining withto regulate leaf differentiation (Liu et al, 2009). The expression of five members of this family,to, in leaves at the tillering stage was evaluated. The results showed that the expression of the five OsHB genes was significantly higher in theleaves than in WT (Fig. 1-W). We also measured the expression of 11 OsARF genes in theleaves at the tillering stage. Except for thegene, the expression of the other 10 OsARF genes was increased compared to WT (Fig. S6-A). Among them,andare related to, implying that the mutation ofmay affect the expression of, thus affecting the expression of OsARF genes. In addition,() is homologous toin.not only regulates leaf development and maintains apical meristem characteristics, but also plays an important role in vascular bundle development and leaf formation (Nishimura et al, 2002).can be regulated by the feedback from miR168, which binds to AGO10, to maintain the homeostasis of small RNA and AGO protein (Vaucheret et al, 2004). AtAGO7 binds miR390 to form RISC, and cleaves the transcript of() to produce ta-siRNA (trans-acting small interfering RNA), which targetsgenes to regulate leaf development (Hunter et al, 2003). Therefore, their expression was determinedin leaves at the tillering stage. In compared with WT, the expression ofinwas significantly increased, while the expression ofwas significantly decreased (Fig. 1-X). These findings indicated that the mutation ofmay, to a certain extent, disrupt the regulatory pathways of miRNAs, increase the expression of their target genes and induce pleiotropic effects ofmutation in rice.

    Endogenous hormones play an important role in regulating leaf and root development and differentiation (Tsiantis et al, 1999). Therefore, the content of endogenous IAA (indole-3- acetic acid) in 1 cm of the root tip of WT andseedlings was measured. The IAA content inwas significantly lower than that in WT (Fig. S6-B). Thegene plays an important role in the development of auxin-dependent adventitious roots (Xu et al, 2005). The expression ofwas significantly downregulated, but the expression ofandwas significantly upregulated in theplants (Fig. S6-C). In addition, the YUCCA and YABBY family genes play important roles in the development of various plant organs (Sarojam et al, 2010). We documented that the expression of,,,andwas decreased (Fig. S6-D and -E). These findings indicated thatmay indirectly regulate the expression of auxin pathway genes, thereby affecting the transport or accumulation of IAA in rice, thus controlling cell expansion and division in various organs.

    In this study, a pleiotropic mutant,, was isolated,which showed narrow leaves, small grains, low seed-setting rate and thin culm. Genetic analysis showed that a single-base mutation inresulted in the substitution of Ser to Asn in the Piwi domain of OsAGO1b protein. This study reported thatplays an essential function in regulating the development of multiple organs and plant growth in rice through forward genetics research.

    Acknowledgements

    This study was supported by the National Natural Science Foundation of China (Grant Nos. 31771887, 31671761 and 32001491).

    SUPPLEMENTAL DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/journal/rice-science; http://www.ricescience.org.

    File S1. Methods.

    Fig. S1. Comparison of agronomic traits of wild type (WT) andplants.

    Fig. S2. Comparison of histology statistics between wild type (WT) andplants.

    Fig. S3. Structural mapping of AGO mutations.

    Fig. S4. Expression pattern and subcellular localization of GSNL4.

    Fig. S5.RNA-Seq analysis of wild type (WT) andplants.

    Fig. S6. Determination of indole acetic acid (IAA) content and relative expression of auxin-related genes.

    Table S1. Differentially expressed miRNAs in wild type (WT) and.

    Baulcombe D. 2004. RNA silencing in plants., 431: 356?363.

    Cuperus J T, Montgomery T A, Fahlgren N, Burke R T, Townsend T, Sullivan C M, Carrington J C.2010. Identification ofprecursor processing-defective mutants in Arabidopsis by direct genome sequencing., 107(1):466?471.

    Hunter C, Sun H, Poethig R S. 2003. Theheterochronic geneis anfamily member., 13(19):1734?1739.

    Li Y H, Yang Y Q, Liu Y, Li D X, Zhao Y H, Li Z J, Liu Y, Jiang D G, Li J, Zhou H, Chen J H, Zhuang C X, Liu Z L. 2019. Overexpression ofinduces adaxially rolled leaves by affecting leaf abaxial sclerenchymatous cell development in rice., 12(1): 60.

    Liu Q L, Yao X Z, Pi L M, Wang H, Cui X F, Huang H. 2009. Thegene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 inArabidopsis., 58(1):27?40.

    Nishimura A, Ito M, Kamiya N, Sato Y, Matsuoka M. 2002.regulates leaf development and maintenance of the shoot apical meristem in rice., 30(2):189?201.

    Poulsen C, Vaucheret H, Brodersen P. 2013. Lessons on RNA silencing mechanisms in plants from eukaryotic argonaute structures., 25(1): 22?37.

    Sarojam R, Sappl P G, Goldshmidt A, Efroni I, Floyd S K, Eshed Y, Bowman J L. 2010. Differentiating Arabidopsis shoots from leaves by combined YABBY activities., 22(7): 2113?2130.

    Shi Z Y, Wang J, Wan X S, Shen G Z, Wang X Q, Zhang J L. 2007. Over-expression of ricegene induces upward curling of the leaf blade that enhanced erect-leaf habit., 226(1): 99?108.

    Song J J, Smith S K, Hannon G J, Joshua-Tor L. 2004. Crystal structure of argonaute and its implications for RISC slicer activity., 305: 1434?1437.

    Tsiantis M, Brown M I, Skibinski G, Langdale J A. 1999. Disruption of auxin transport is associated with aberrant leaf development in maize., 121(4): 1163?1168.

    Vaucheret H, Vazquez F, Crété P, Bartel DP. 2004. The action ofin the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development., 18(10):1187?1197.

    Wu L, Zhang Q Q, Zhou H Y, Ni F R, Wu X Y, Qi Y J. 2009. Rice microRNA effector complexes and targets., 21(11): 3421?3435.

    Xu M, Zhu L, Shou H X, Wu P. 2005. Afamily gene,, involved in auxin-dependent adventitious root emergence and tillering in rice., 46(10):1674?1681.

    Zheng S Y, Li J, Ma L, Wang H L, Zhou H, Ni E, Jiang D G, Liu Z L, Zhuang C X. 2019.controls ROS production and the initiation of tapetal PCD by epigenetically regulatingexpression in rice anthers., 116(15): 7549?7558.

    Zhong J, He W J, Peng Z, Zhang H, Li F, Yao J L. 2020. A putative AGO protein, OsAGO17, positively regulates grain size and grain weight through OsmiR397b in rice., 18(4): 916?928.

    Guo Longbiao (guolongbiao@caas.cn); Qian Qian (qianqian188@hotmail.com); Hu Xingming (huxingmingx@126.com)

    5 February 2021;

    13 May 2021

    Copyright ? 2021, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2021.05.012

    国产亚洲av高清不卡| 国产国语露脸激情在线看| 一本—道久久a久久精品蜜桃钙片| 欧美少妇被猛烈插入视频| 黑人猛操日本美女一级片| 午夜91福利影院| 国产一级毛片在线| 男女床上黄色一级片免费看| 一区二区三区精品91| 免费不卡黄色视频| 国产高清国产精品国产三级| 老司机亚洲免费影院| 天天躁夜夜躁狠狠躁躁| 高清视频免费观看一区二区| 日韩一本色道免费dvd| 最近最新中文字幕免费大全7| 看免费av毛片| 热re99久久精品国产66热6| 成年动漫av网址| 女性生殖器流出的白浆| 国产熟女午夜一区二区三区| 国产一区二区 视频在线| 欧美日韩av久久| 高清在线视频一区二区三区| 黄色一级大片看看| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品av麻豆av| 一边摸一边做爽爽视频免费| 成人午夜精彩视频在线观看| 国产女主播在线喷水免费视频网站| 性少妇av在线| 亚洲综合精品二区| tube8黄色片| 天天添夜夜摸| 日日撸夜夜添| 女人爽到高潮嗷嗷叫在线视频| 飞空精品影院首页| 成年人免费黄色播放视频| av在线观看视频网站免费| 高清av免费在线| 亚洲自偷自拍图片 自拍| 自线自在国产av| 黄色视频不卡| 亚洲欧美成人综合另类久久久| 青春草亚洲视频在线观看| 97人妻天天添夜夜摸| 免费黄频网站在线观看国产| 免费观看av网站的网址| av又黄又爽大尺度在线免费看| 大片免费播放器 马上看| 丝袜在线中文字幕| 久久av网站| 天天躁夜夜躁狠狠久久av| 日韩中文字幕视频在线看片| 亚洲欧美清纯卡通| 97在线人人人人妻| videosex国产| 国产成人免费观看mmmm| 亚洲国产中文字幕在线视频| 色婷婷久久久亚洲欧美| 蜜桃在线观看..| 老鸭窝网址在线观看| 成年女人毛片免费观看观看9 | a级毛片在线看网站| 99热网站在线观看| 丁香六月欧美| 国产爽快片一区二区三区| 国产在线视频一区二区| 日本wwww免费看| 少妇猛男粗大的猛烈进出视频| 女人被躁到高潮嗷嗷叫费观| 夫妻性生交免费视频一级片| 亚洲av男天堂| 中文字幕精品免费在线观看视频| 巨乳人妻的诱惑在线观看| 最近中文字幕2019免费版| 亚洲国产av新网站| 超碰成人久久| 日韩 欧美 亚洲 中文字幕| 肉色欧美久久久久久久蜜桃| 日韩大片免费观看网站| 水蜜桃什么品种好| 男女床上黄色一级片免费看| 久久久久精品久久久久真实原创| 高清不卡的av网站| 十八禁高潮呻吟视频| 精品国产一区二区三区久久久樱花| 亚洲国产av新网站| 国语对白做爰xxxⅹ性视频网站| 乱人伦中国视频| 伦理电影大哥的女人| 免费在线观看黄色视频的| 久久精品久久精品一区二区三区| 黄色 视频免费看| 中文字幕人妻丝袜一区二区 | 久久久久久久国产电影| 老汉色av国产亚洲站长工具| 精品国产乱码久久久久久小说| 天美传媒精品一区二区| 乱人伦中国视频| 色网站视频免费| 国产97色在线日韩免费| 欧美日韩av久久| 欧美变态另类bdsm刘玥| 青草久久国产| 中文字幕av电影在线播放| 悠悠久久av| 性高湖久久久久久久久免费观看| 一区二区av电影网| 又黄又粗又硬又大视频| 另类亚洲欧美激情| 大香蕉久久成人网| 国产成人免费无遮挡视频| 男人舔女人的私密视频| 欧美激情高清一区二区三区 | 1024香蕉在线观看| 国产国语露脸激情在线看| 精品久久久精品久久久| 国产xxxxx性猛交| a级毛片在线看网站| 两个人看的免费小视频| av线在线观看网站| 欧美日韩综合久久久久久| 桃花免费在线播放| 一区二区三区乱码不卡18| 中文字幕亚洲精品专区| 亚洲欧美成人精品一区二区| 欧美黑人精品巨大| 男女边摸边吃奶| 黄片播放在线免费| 狂野欧美激情性bbbbbb| 国产不卡av网站在线观看| 精品免费久久久久久久清纯 | 一区在线观看完整版| www.熟女人妻精品国产| 亚洲国产成人一精品久久久| 国产探花极品一区二区| 精品久久久久久电影网| 精品一区二区三区av网在线观看 | 亚洲av日韩精品久久久久久密 | 大陆偷拍与自拍| 又大又爽又粗| 久久久久国产一级毛片高清牌| 啦啦啦中文免费视频观看日本| 熟妇人妻不卡中文字幕| 欧美激情极品国产一区二区三区| 视频区图区小说| 99九九在线精品视频| 99热全是精品| 99国产精品免费福利视频| 久久久久精品久久久久真实原创| 黄色怎么调成土黄色| a级毛片黄视频| kizo精华| 欧美日韩成人在线一区二区| 一本—道久久a久久精品蜜桃钙片| 9191精品国产免费久久| 777久久人妻少妇嫩草av网站| 人妻 亚洲 视频| 国产熟女欧美一区二区| 亚洲熟女精品中文字幕| 亚洲av电影在线观看一区二区三区| 久久久久视频综合| 久久精品久久精品一区二区三区| 国产日韩欧美亚洲二区| 欧美日韩一区二区视频在线观看视频在线| 精品免费久久久久久久清纯 | 色吧在线观看| a 毛片基地| 精品亚洲乱码少妇综合久久| 人人妻人人澡人人爽人人夜夜| 日本午夜av视频| 2018国产大陆天天弄谢| 女性被躁到高潮视频| 国产成人欧美| 亚洲四区av| 美女视频免费永久观看网站| 18禁动态无遮挡网站| 亚洲人成77777在线视频| av.在线天堂| 国产亚洲最大av| 欧美日韩国产mv在线观看视频| 国产在视频线精品| 十八禁高潮呻吟视频| 午夜福利在线免费观看网站| 亚洲av男天堂| 国产在视频线精品| 美女视频免费永久观看网站| 热99久久久久精品小说推荐| 男的添女的下面高潮视频| 91老司机精品| 亚洲精品在线美女| 国产毛片在线视频| 国产熟女午夜一区二区三区| 日本欧美国产在线视频| 亚洲精品久久成人aⅴ小说| 丝袜人妻中文字幕| 丰满乱子伦码专区| 老司机在亚洲福利影院| 少妇人妻精品综合一区二区| 亚洲一区中文字幕在线| 中文字幕精品免费在线观看视频| 中文字幕精品免费在线观看视频| 精品一区二区三区av网在线观看 | 久久精品国产亚洲av高清一级| 亚洲欧美一区二区三区黑人| 天堂中文最新版在线下载| 久久天躁狠狠躁夜夜2o2o | 免费在线观看视频国产中文字幕亚洲 | 亚洲天堂av无毛| 99精品久久久久人妻精品| 国产亚洲欧美精品永久| 国产精品嫩草影院av在线观看| 新久久久久国产一级毛片| 久久久久久人人人人人| 亚洲成人av在线免费| av免费观看日本| 色视频在线一区二区三区| 久久久久久免费高清国产稀缺| 久久鲁丝午夜福利片| 日本色播在线视频| 五月天丁香电影| 国产色婷婷99| 国产女主播在线喷水免费视频网站| 午夜久久久在线观看| 免费在线观看视频国产中文字幕亚洲 | 国产精品女同一区二区软件| 老司机靠b影院| 尾随美女入室| 色网站视频免费| 中国三级夫妇交换| 色视频在线一区二区三区| 婷婷色av中文字幕| 色94色欧美一区二区| 人人妻人人澡人人看| 男女边吃奶边做爰视频| 最近的中文字幕免费完整| 亚洲精华国产精华液的使用体验| 亚洲久久久国产精品| 国产极品天堂在线| 久久午夜综合久久蜜桃| 97精品久久久久久久久久精品| 久久久久久人妻| 亚洲一码二码三码区别大吗| 狂野欧美激情性xxxx| 国产精品三级大全| 国产黄色视频一区二区在线观看| 性色av一级| 精品人妻熟女毛片av久久网站| 日本午夜av视频| 毛片一级片免费看久久久久| 精品国产超薄肉色丝袜足j| 国产精品久久久av美女十八| 欧美激情高清一区二区三区 | 又黄又粗又硬又大视频| 欧美黑人精品巨大| 母亲3免费完整高清在线观看| 尾随美女入室| 国产不卡av网站在线观看| netflix在线观看网站| 9191精品国产免费久久| h视频一区二区三区| 97在线人人人人妻| 亚洲成人国产一区在线观看 | 在线观看免费高清a一片| 在线观看免费日韩欧美大片| 大陆偷拍与自拍| 日韩大码丰满熟妇| 久久热在线av| 亚洲精品在线美女| 国产乱人偷精品视频| 18禁动态无遮挡网站| a 毛片基地| 一区二区三区四区激情视频| 久久精品国产综合久久久| 夜夜骑夜夜射夜夜干| 悠悠久久av| 另类亚洲欧美激情| 欧美日韩综合久久久久久| 中文欧美无线码| 亚洲精品国产一区二区精华液| 国产免费视频播放在线视频| 欧美国产精品va在线观看不卡| 亚洲国产欧美日韩在线播放| 日韩欧美一区视频在线观看| 国产深夜福利视频在线观看| 国产在视频线精品| 久久精品aⅴ一区二区三区四区| 天天躁夜夜躁狠狠久久av| 久久久国产一区二区| a 毛片基地| 欧美黑人欧美精品刺激| 日本午夜av视频| 欧美成人午夜精品| 九草在线视频观看| e午夜精品久久久久久久| 在线 av 中文字幕| 亚洲第一青青草原| 又大又黄又爽视频免费| 97精品久久久久久久久久精品| 亚洲,欧美,日韩| 伊人久久国产一区二区| 亚洲成av片中文字幕在线观看| 国产精品无大码| 久久精品国产综合久久久| 亚洲av综合色区一区| 18禁观看日本| 免费看不卡的av| 日本色播在线视频| 最近手机中文字幕大全| 精品人妻在线不人妻| 两性夫妻黄色片| 嫩草影院入口| 国产精品麻豆人妻色哟哟久久| 国产精品麻豆人妻色哟哟久久| 18在线观看网站| 亚洲精品久久午夜乱码| 国产精品久久久av美女十八| 大香蕉久久成人网| 精品午夜福利在线看| 亚洲精品成人av观看孕妇| 日本黄色日本黄色录像| 久久久国产一区二区| 建设人人有责人人尽责人人享有的| 女性生殖器流出的白浆| 操美女的视频在线观看| 丁香六月天网| 日本色播在线视频| 男女高潮啪啪啪动态图| 九九爱精品视频在线观看| 人妻一区二区av| 人人妻人人澡人人看| 99久国产av精品国产电影| 久久av网站| 少妇被粗大猛烈的视频| 老司机深夜福利视频在线观看 | 韩国高清视频一区二区三区| avwww免费| 一区二区三区乱码不卡18| 丝袜美足系列| 精品亚洲乱码少妇综合久久| 亚洲av日韩精品久久久久久密 | 亚洲中文av在线| kizo精华| 天天躁夜夜躁狠狠久久av| 桃花免费在线播放| 一本—道久久a久久精品蜜桃钙片| 黑人欧美特级aaaaaa片| 一级毛片我不卡| 亚洲精品成人av观看孕妇| 国产免费视频播放在线视频| 国产无遮挡羞羞视频在线观看| 亚洲精华国产精华液的使用体验| 国产伦理片在线播放av一区| 久久天躁狠狠躁夜夜2o2o | 久久人人97超碰香蕉20202| 亚洲精品一二三| 最近最新中文字幕大全免费视频 | 欧美成人午夜精品| 日韩视频在线欧美| 啦啦啦 在线观看视频| 欧美亚洲 丝袜 人妻 在线| 黑人猛操日本美女一级片| 美女国产高潮福利片在线看| 免费少妇av软件| 亚洲成人av在线免费| 久久国产精品大桥未久av| 国产成人精品福利久久| 免费高清在线观看日韩| 国产成人精品福利久久| 日韩av在线免费看完整版不卡| 免费人妻精品一区二区三区视频| 亚洲av福利一区| 欧美日韩国产mv在线观看视频| 色婷婷久久久亚洲欧美| 欧美成人午夜精品| 亚洲国产精品国产精品| 日韩成人av中文字幕在线观看| 高清欧美精品videossex| av在线app专区| 99精国产麻豆久久婷婷| 又大又爽又粗| 一级片免费观看大全| 亚洲av电影在线进入| 免费观看a级毛片全部| 黑人欧美特级aaaaaa片| 欧美另类一区| a 毛片基地| 亚洲国产精品999| 国产伦人伦偷精品视频| 各种免费的搞黄视频| 各种免费的搞黄视频| 亚洲精品,欧美精品| 久久久久国产一级毛片高清牌| 久久韩国三级中文字幕| 欧美少妇被猛烈插入视频| 久久久久久久久免费视频了| 国产日韩欧美视频二区| 亚洲成av片中文字幕在线观看| 国产女主播在线喷水免费视频网站| 久久久精品94久久精品| 精品少妇一区二区三区视频日本电影 | a 毛片基地| 婷婷成人精品国产| 国产亚洲av片在线观看秒播厂| 欧美日韩亚洲综合一区二区三区_| 亚洲精品,欧美精品| 亚洲综合色网址| 一二三四中文在线观看免费高清| 天天躁夜夜躁狠狠躁躁| 亚洲精品中文字幕在线视频| 亚洲av综合色区一区| 色婷婷久久久亚洲欧美| 国产乱来视频区| 99热全是精品| 亚洲综合精品二区| 麻豆精品久久久久久蜜桃| 伊人久久国产一区二区| 亚洲精品美女久久av网站| 亚洲精品aⅴ在线观看| av网站免费在线观看视频| 各种免费的搞黄视频| av电影中文网址| 国产淫语在线视频| 丝袜美腿诱惑在线| xxx大片免费视频| 亚洲一区中文字幕在线| 久久天堂一区二区三区四区| av视频免费观看在线观看| 另类亚洲欧美激情| 国产伦人伦偷精品视频| 亚洲欧美成人综合另类久久久| 久久 成人 亚洲| 黑人巨大精品欧美一区二区蜜桃| 人人妻人人澡人人爽人人夜夜| 欧美日韩一级在线毛片| 国产成人啪精品午夜网站| 国产精品久久久久久久久免| 免费高清在线观看视频在线观看| 一区二区三区四区激情视频| 久久久久网色| 夫妻性生交免费视频一级片| 十分钟在线观看高清视频www| 丝袜在线中文字幕| 十八禁人妻一区二区| 亚洲一区中文字幕在线| 高清在线视频一区二区三区| 国产精品一国产av| 在线观看免费午夜福利视频| 女性被躁到高潮视频| 少妇猛男粗大的猛烈进出视频| 免费高清在线观看日韩| 观看美女的网站| 日本欧美视频一区| 国产成人免费观看mmmm| 国产精品久久久久久精品古装| 日韩熟女老妇一区二区性免费视频| 国产又爽黄色视频| 日本午夜av视频| 丰满少妇做爰视频| 国产伦理片在线播放av一区| 你懂的网址亚洲精品在线观看| 亚洲,一卡二卡三卡| 亚洲成人国产一区在线观看 | 午夜精品国产一区二区电影| 精品亚洲成国产av| 国产亚洲午夜精品一区二区久久| 丝袜喷水一区| 精品国产一区二区久久| 日韩一区二区三区影片| 大话2 男鬼变身卡| 在线观看免费日韩欧美大片| 自线自在国产av| 色精品久久人妻99蜜桃| 亚洲精品日本国产第一区| 亚洲人成网站在线观看播放| 精品午夜福利在线看| 精品亚洲乱码少妇综合久久| 如日韩欧美国产精品一区二区三区| 欧美日韩视频精品一区| 午夜av观看不卡| 免费黄色在线免费观看| 久久精品国产亚洲av涩爱| 国产av码专区亚洲av| 在现免费观看毛片| 丝袜美腿诱惑在线| 欧美乱码精品一区二区三区| www.av在线官网国产| 久久人人爽av亚洲精品天堂| 美女中出高潮动态图| 99热网站在线观看| 亚洲少妇的诱惑av| 精品久久久久久电影网| 校园人妻丝袜中文字幕| 国产高清国产精品国产三级| 欧美成人精品欧美一级黄| 亚洲成av片中文字幕在线观看| 国产精品国产三级国产专区5o| 色视频在线一区二区三区| 久久精品久久久久久久性| 好男人电影高清在线观看| or卡值多少钱| 久久午夜综合久久蜜桃| 自线自在国产av| а√天堂www在线а√下载| 亚洲国产中文字幕在线视频| 久久人人爽av亚洲精品天堂| 国产精品国产高清国产av| 99国产精品免费福利视频| 免费不卡黄色视频| 精品国内亚洲2022精品成人| 少妇粗大呻吟视频| av视频免费观看在线观看| 视频在线观看一区二区三区| 一级毛片女人18水好多| 国产男靠女视频免费网站| 一进一出好大好爽视频| 99久久国产精品久久久| 日韩国内少妇激情av| 国产精品久久久久久精品电影 | 成人特级黄色片久久久久久久| 啦啦啦 在线观看视频| 88av欧美| 午夜免费激情av| 首页视频小说图片口味搜索| 免费在线观看影片大全网站| 欧美日韩亚洲综合一区二区三区_| 久久午夜综合久久蜜桃| 婷婷精品国产亚洲av在线| 欧美色欧美亚洲另类二区 | 亚洲天堂国产精品一区在线| 97碰自拍视频| 黄频高清免费视频| 国产激情欧美一区二区| 久久狼人影院| 色尼玛亚洲综合影院| 老司机靠b影院| 午夜精品国产一区二区电影| 18禁裸乳无遮挡免费网站照片 | 成年女人毛片免费观看观看9| 女同久久另类99精品国产91| 久久中文看片网| 国产精品亚洲av一区麻豆| 91老司机精品| 成人三级黄色视频| 久久午夜亚洲精品久久| 国产精品乱码一区二三区的特点 | 欧美中文综合在线视频| 亚洲欧美精品综合一区二区三区| 国产三级黄色录像| 精品日产1卡2卡| 国产成人欧美在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产成人精品在线电影| 满18在线观看网站| 精品久久久久久久久久免费视频| 免费在线观看影片大全网站| 母亲3免费完整高清在线观看| 国产片内射在线| 伊人久久大香线蕉亚洲五| 狠狠狠狠99中文字幕| 国产麻豆69| 色尼玛亚洲综合影院| ponron亚洲| 国产高清有码在线观看视频 | 99re在线观看精品视频| 露出奶头的视频| 美国免费a级毛片| 国产精品一区二区三区四区久久 | 国产精品自产拍在线观看55亚洲| 国产私拍福利视频在线观看| 级片在线观看| 天堂动漫精品| 9热在线视频观看99| 99国产精品免费福利视频| 久久热在线av| 侵犯人妻中文字幕一二三四区| 午夜福利在线观看吧| 欧美色欧美亚洲另类二区 | 久久中文看片网| 成人18禁在线播放| 亚洲 欧美 日韩 在线 免费| 自拍欧美九色日韩亚洲蝌蚪91| 欧美在线黄色| 精品高清国产在线一区| 欧美成人午夜精品| 亚洲aⅴ乱码一区二区在线播放 | 国产精品免费视频内射| 亚洲七黄色美女视频| 亚洲精品国产一区二区精华液| 村上凉子中文字幕在线| 午夜福利视频1000在线观看 | 亚洲五月色婷婷综合| 嫁个100分男人电影在线观看| 亚洲电影在线观看av| 日韩视频一区二区在线观看| 国产精品国产高清国产av| 色精品久久人妻99蜜桃| 丝袜在线中文字幕| 日韩有码中文字幕| 精品人妻1区二区| 国产精品久久视频播放| 三级毛片av免费| 亚洲中文日韩欧美视频| 国产又爽黄色视频| 精品无人区乱码1区二区| 国产精品亚洲美女久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 9色porny在线观看| 国产一区在线观看成人免费| bbb黄色大片| 亚洲精品国产区一区二| 免费高清在线观看日韩| 久久久国产成人免费| 手机成人av网站|