• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of conformational change of chain unit on the intrinsic negative thermal expansion of polymers

    2021-10-14 00:55:38QingshengSunKeJinYuhuiHungJiGuoThnydRungrotmongkolPhornphimonMitrdChngchunWng
    Chinese Chemical Letters 2021年4期

    Qingsheng Sun,Ke Jin,Yuhui Hung,Ji Guo,Thnyd Rungrotmongkol,Phornphimon Mitrd*,Chngchun Wng,*

    a State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China

    b Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science and Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand

    c Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444, China

    ABSTRACT Negative thermal expansion(NTE)behavior has roused wide interest for the control of thermomechanical properties of functional materials.Although NTE behaviors have been found in kinds of compounds,it remains challenging for polymers to achieve intrinsic NTE property.In this work, we systematically studied the conformational change of dibenzocyclooctadiene(DBCOD)derivatives between chair(C)and twist-boat(TB)forms based on density-functional theory(DFT)calculations,and found clear evidence of the relationship between the structure of DBCOD units and the thermal contraction behavior of the related polymers.In order to obtain the polymer with NTE property,two conditions should be met for the thermal contracting DBCOD related units as follows:(i)the TB conformation can turn into C conformation as the temperature increases, and (ii) the volume of C conformation is smaller than that of TB conformation.This rule should offer a guidance to exploration of the new intrinsic NTE polymers in the future.

    Keywords:Negative thermal expansion Conformational change Polyarylamides Density-functional theory Dibenzocyclooctadiene

    Most materials exhibit positive thermal expansion(PTE),which may lead to deterioration and ultimately device failure due to the stress during temperature cycling[1].Negative thermal expansion(NTE),as a counterintuitive thermophysical behavior,can be used to tune the coefficient of thermal expansion(CTE)[2,3].Up to now,researchers have paid more attention to inorganic materials or small organic molecules during the design and explore of NTE materials, such as oxides [4-6], cyanides [7-10], zeolites [11,12],organic crystalline[13-15], perovskites[16,17] and metal-organic framework(MOFs)[18-20].The intrinsic NTE polymers have rarely reported,even though practical applications of polymeric materials are limited because of their high positive CTE values [21].

    In our early work, a new kind of crosslinked polyarylamide containing dibenzocyclooctadiene (DBCOD) unit was prepared,and we found it had unconventional giant NTE behavior attributed to conformational change of DBCOD[22].When the temperature is low, DBCOD units mainly present twist-boat (TB) conformation[23-25],and after absorbing energy,most of them change into the chair (C) conformation.Then, we incorporated carbon nanotubes into the polyacrylamide and reduced crystallinity to enhance the NTE behaviour [26,27].By adjusting the amount of DBCOD units,we obtained polymers with negative,zero and positive coefficients of thermal expansion (CTE) [28].

    Recently, we directly synthesized a monomer containing DBCOD unit and prepared the first linear polymer that displayed NTE behaviour[29].The successful synthesis of DBCOD monomer,which inspired us a lot, suggested that we were able to design DBCOD monomers with various functional groups to be assembled into kinds of polymeric materials,extremely expanding the range of applications of NTE materials.

    However, in the following work, we found that only a small portion of polymers showed NTE effect, while the majority of polymers did not have NTE behaviors in spite of containing DBCOD units.It was speculated that this phenomenon was due to the fact that the conformation of DBCOD units in these polymers did not undergo a large-scale transformation, and the TB conformation was still dominant after the temperature increased.Our preliminary experimental results found that the relative energy of TB and C conformations would change when substituent groups were introduced in the benzene ring of DBCOD.Here, in order to investigate the inherent law,we designed and synthesized a series of DBCOD derivatives to study the relationship between DBCOD derivative’s structure and NTE property of related polymer.After synthesis and characterization,we calculated the related thermodynamic data through density-functional theory(DFT)calculations and then predicted their temperature-dependent expansion behaviours.

    For the structures of DBCOD, the coexistence of TB and C conformations can be distinguished by temperature-dependent1H NMR.The1H NMR spectra of the methylene protons of DBCOD in the range of-105。C to 25。C in CD2Cl2-CS2(4:1)is shown in Fig.1.There is a single signal at δ 3.15 ppm between 0 and 25。C, which means the quick transform between TB and C.With temperature decrease, the single signal becomes broader, which means the transform speed decrease.When the temperature decreases to-65。C, new sets of peaks (δ 3.07 ppm,δ 3.05 ppm,δ 2.62 ppm,δ 2.60 ppm)appear.TB conformation has two enantiomers that can be distinguished as the TB signal splits into doublet below-85。C.At-105。C,there is a 83:17 ratio of the two sets of signals:a singlet for TB (δ 3.38 ppm, δ 2.89 ppm) and AA’BB’ for C (δ 3.06 ppm, δ 3.04 ppm, δ 2.60 ppm, δ 2.58 ppm), which indicates that TB conformation is the preferred conformation with lower relative energy.Assuming that the relative free energy of TB conformation is 0 kcal/mol, the free energy of C conformation is -0.1, -0.2 and-0.3 kcal/mol at temperature of 25, 100 and 200。C, respectively,which is very close to the energy of TB conformation (Fig.S1 in Supporting information).

    Fig.1.Temperature-dependent 1H NMR(MHz)spectra of the methylene protons of DBCOD for its related conformation state in twist-boat (TB) and chair (C) forms.

    Then, we designed and synthesized six DBCOD-containing molecules with different substituent groups (Molecules A-F, the detailed information was listed in Supporting information) to figure out their conformational relative energies at different temperatures.Molecule A is a cis-amide-containing DBCOD derivative, while Molecule B is a trans-amide-containing DBCOD derivative.Compared to Molecule A, the position of N-H and C=O units of amide group in Molecule C is interchanged.Instead,Molecules D, E, and F are connected with the benzene ring, azo group and ester group, respectively.

    As illustrated in Fig.2,the two conformations of Molecule A and B will undergo interconversion as the temperature rises.The relative free energy of C conformation in Molecule A at 25。C is greater than that of TB conformation(Fig.2a),so TB conformation is dominant at room temperature [29].When temperature increases to 100 or 200。C, the relative free energy of C conformation of Molecule A is less than that of TB conformation,indicating that the optimal conformation has transformed from TB to C at high temperature.With regard to Molecule B, the relative free energy of C conformation is lower than that of TB conformation at all calculated temperatures, suggesting that the C conformation is preferential conformation at room temperature.With increasing temperature, the proportion of C conformation will enhance as well.Differentially for Molecule C,the free energy of C form is equal to or higher than TB form at all studied temperatures.This data hint that TB should be the dominant form.All above results mean that the substituent groups have obviously influence on the conformer’s free energy and the dominant form.

    Fig.2.DFTcalculations to illustrate the structures and energy differences between twist boat(TB)and chair(C)conformers in(a)Molecule A,(b)Molecule B and(c)Molecule C.

    In according with this research line, we further synthesized another series of DBCOD derivatives,and their structure information could be found in Fig.3.From this figure, interestingly the relative free energy of C form is always much higher than that of TB form at 25, 100, 200。C, respectively, which suggests that the remarkable conformational change from TB to C cannot be taken place as temperature goes up.

    The detailed relevant theoretical thermodynamic data and volumes of the two conformations of DBCOD and its derivatives were listed in Table 1.The volumes of the two conformations were calculated in terms of the smallest cube that could be inserted according to DFTcalculations.It can be seen from volume change in the last two columns that C conformations of Molecule A and Molecule F have smaller volume than their TB conformations.It can be speculated that,for thermal contracting DBCOD derivatives,two conditions should be met, TB conformation turns into C conformation and the volume of C conformation is smaller than that of TB conformation as the temperature increases.For Molecule B,although conformational transformation is able to proceed,the volume of C form is bigger than that of TB form,which is not good for the thermal contraction.For Molecule F,the volume of C form is smaller than that of TB form, but the free energy prohibits the conformational transformation from TB to C.Only Molecule A,which can undergo conformation change and its C form has a smaller volume than TB form, has a negative thermal expansion characteristic.From the above experimental results, we can find that the conformational change of DBCOD unit and the conformational volume are closely related to the type of substituent in the benzene ring of DBCOD.

    Table 1 DFT calculations on TB and C conformers at different temperatures for Molecules A-F and DBCOD.

    Fig.3.DFTcalculations to illustrate the structures and energy differences between twist boat(TB)and chair(C)conformers in(a)Molecule D,(b)Molecule E and(c)Molecule F.

    To verify above theoretical results,the related polymers of PAcis-DBCOD, PA-trans-DBCOD and PU-cis-DBCOD were prepared based on the structures of Molecules A,B and F(Fig.4).According to the theoretical calculation, the polymer containing Molecule A units (PA-cis-DBCOD) should be thermal shrinkage, while the polymer containing Molecule B(PA-trans-DBCOD)and Molecule F(PU-cis-DBCOD) structure units should show normal thermal expansion.In our experiments,the related polymer powders were dissolved in NMP, and then dripped them onto the silicon wafer substrates.After the solution evaporated, the polymer films were peeled off for thermomechanical analyzer (TMA) test.The TMA curves of three polymers were shown in Fig.4.The polyacrylamide of PA-cis-DBCOD was obtained by condensation of cis-diacid DBCOD derivative and diamine monomer(Supporting information,4.1).From the TMA curve, the average thermal expansion coefficient was -319.2 ppm/K within the range of 30~150。C,showing the significant negative thermal expansion(Fig.4a)[29].The polyarylamide of PA-trans-DBCOD was synthesized by condensation polymerization of trans-diacid DBCOD derivative and diamine monomer(Supporting information,4.1),and its TMA curve showed that the average thermal expansion coefficient was 67.3 ppm/K within the same temperature range, indicating the normal thermal expansion (Fig.4b).For the polyurethane of PUcis-DBCOD obtained by dihydroxymethyl derivative from Molecule F and diisocyanate (Supporting information, 4.2), the average thermal expansion coefficient derived from its TMA curve was 84.2 ppm/K within the range of 0~100。C(Fig.4c),showing normal thermal expansion as prediction.

    Fig.4.TMA plot of (a) PA-cis-DBCOD film, (b) PA-trans-DBCOD and (c) PU-cis-DBCOD with a heating rate of 2。C/min.

    In summary,we have calculated the relative energy and volume for the C and TB conformers of DBCOD molecule and its derivatives based on DFT.Our experimental results suggested that two conditions should be met for the thermal contracting DBCOD derivatives as follows: (i) the TB conformation can turn into C conformation as the temperature increases,and(ii)the volume of C conformation is smaller than that of TB conformation.The TMA curves of the related polymers have proven our calculated results.PA-cis-DBCOD displayed thermal contraction, whilst PA-trans-DBCOD and PU-cis-DBCOD showed normal thermal expansion.The thermal expansion properties of the three polymers are in line with the DFT predicted results,which further verifies the positive role of the theoretical calculation, i.e., DFT calculation can give us more information about the thermal behaviour of the polymers.In other words,the calculations enable us to predict and explore new NTE polymers for the specific applications.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or person relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.51633001, 51721002 and 51873040),National Key R&D Program of China (No.2016YFC1100300) and Shanxi Yanchang Petroleum Group.P.Maitarad thanks the Center of Excellence in Computational Chemistry for facility and computing resources.

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version, at doi:https://doi.org/10.1016/j.cclet.2020.09.046.

    欧美成人免费av一区二区三区| 亚洲成a人片在线一区二区| www日本黄色视频网| 亚洲最大成人中文| 免费在线观看日本一区| 别揉我奶头 嗯啊视频| 精品久久久久久成人av| 首页视频小说图片口味搜索| 国产人妻一区二区三区在| 一本一本综合久久| 最近最新免费中文字幕在线| 久久久久久国产a免费观看| 亚洲av免费在线观看| 精品久久久久久久久亚洲 | 国产成人啪精品午夜网站| 两人在一起打扑克的视频| 欧美中文日本在线观看视频| 欧美乱色亚洲激情| 久久国产乱子伦精品免费另类| 久久人人爽人人爽人人片va | 91九色精品人成在线观看| 永久网站在线| 国产av在哪里看| 激情在线观看视频在线高清| 亚洲av第一区精品v没综合| av在线蜜桃| 中文在线观看免费www的网站| 99精品久久久久人妻精品| 国产国拍精品亚洲av在线观看| 九九在线视频观看精品| 窝窝影院91人妻| 1024手机看黄色片| 欧美乱妇无乱码| 成年人黄色毛片网站| 国产成人影院久久av| 最近最新免费中文字幕在线| 99riav亚洲国产免费| 亚洲成人久久爱视频| 在线免费观看不下载黄p国产 | 亚洲精华国产精华精| 亚洲最大成人av| 久久久久久国产a免费观看| 狠狠狠狠99中文字幕| 亚洲精品色激情综合| 久久婷婷人人爽人人干人人爱| 草草在线视频免费看| 欧美日本亚洲视频在线播放| 国产真实伦视频高清在线观看 | 舔av片在线| 可以在线观看的亚洲视频| 夜夜躁狠狠躁天天躁| 国产精品久久久久久久电影| 久久人人爽人人爽人人片va | 免费无遮挡裸体视频| www日本黄色视频网| 有码 亚洲区| 免费观看人在逋| 亚洲美女视频黄频| 国产精品一区二区免费欧美| 美女cb高潮喷水在线观看| avwww免费| 亚洲最大成人中文| 午夜精品一区二区三区免费看| 国产真实乱freesex| 嫩草影院入口| 国产一级毛片七仙女欲春2| 国产v大片淫在线免费观看| 日本撒尿小便嘘嘘汇集6| 欧美成人免费av一区二区三区| 老女人水多毛片| 麻豆一二三区av精品| 国产精品不卡视频一区二区 | 久99久视频精品免费| 国产成人aa在线观看| 国产精品美女特级片免费视频播放器| 三级毛片av免费| 如何舔出高潮| 国产高清三级在线| 一个人看视频在线观看www免费| 成年版毛片免费区| 日韩中文字幕欧美一区二区| 91午夜精品亚洲一区二区三区 | 在线免费观看的www视频| 欧美日韩中文字幕国产精品一区二区三区| 啪啪无遮挡十八禁网站| 免费无遮挡裸体视频| 欧美+日韩+精品| 麻豆成人午夜福利视频| 男插女下体视频免费在线播放| 精品国产三级普通话版| 亚洲,欧美,日韩| 又爽又黄无遮挡网站| a级毛片免费高清观看在线播放| 日韩欧美一区二区三区在线观看| 国产精品综合久久久久久久免费| 精品人妻1区二区| 欧美一区二区精品小视频在线| 国产视频一区二区在线看| 国产极品精品免费视频能看的| 两个人的视频大全免费| 日本免费一区二区三区高清不卡| 大型黄色视频在线免费观看| 在线观看免费视频日本深夜| 亚洲av五月六月丁香网| 国产精品亚洲一级av第二区| 悠悠久久av| 成人三级黄色视频| 亚洲18禁久久av| 嫩草影院新地址| 一级作爱视频免费观看| 脱女人内裤的视频| 日本黄大片高清| 久久婷婷人人爽人人干人人爱| 国产精品三级大全| 99国产综合亚洲精品| 69av精品久久久久久| 国产精品久久久久久亚洲av鲁大| 亚洲天堂国产精品一区在线| 中国美女看黄片| 国产精品自产拍在线观看55亚洲| 国产一区二区在线观看日韩| 国产老妇女一区| 精品一区二区三区av网在线观看| av在线老鸭窝| 九色国产91popny在线| 波多野结衣巨乳人妻| 国产免费男女视频| 欧美最新免费一区二区三区 | www日本黄色视频网| 久久精品国产清高在天天线| 欧美日韩中文字幕国产精品一区二区三区| 午夜福利在线观看吧| 免费搜索国产男女视频| 老鸭窝网址在线观看| 最新在线观看一区二区三区| 欧美最黄视频在线播放免费| 夜夜看夜夜爽夜夜摸| 亚洲国产欧洲综合997久久,| 成年免费大片在线观看| 国产老妇女一区| 一二三四社区在线视频社区8| 国产麻豆成人av免费视频| 看黄色毛片网站| 日韩欧美 国产精品| av天堂在线播放| 少妇人妻一区二区三区视频| 波野结衣二区三区在线| 在线播放国产精品三级| 1024手机看黄色片| 最近中文字幕高清免费大全6 | 国产一区二区三区视频了| 久久香蕉精品热| 日韩欧美国产一区二区入口| av国产免费在线观看| 中文字幕人成人乱码亚洲影| 国产黄a三级三级三级人| 桃红色精品国产亚洲av| 久久伊人香网站| 中文字幕av在线有码专区| 小蜜桃在线观看免费完整版高清| 午夜精品一区二区三区免费看| 亚洲午夜理论影院| 亚洲av不卡在线观看| 成人一区二区视频在线观看| netflix在线观看网站| av天堂中文字幕网| 亚洲国产精品999在线| 亚洲最大成人av| 亚洲精品一卡2卡三卡4卡5卡| 香蕉av资源在线| 免费av毛片视频| 久久人人爽人人爽人人片va | a在线观看视频网站| 国产色爽女视频免费观看| 在线a可以看的网站| 搡老岳熟女国产| 永久网站在线| 精品久久久久久久久久久久久| 国产精品永久免费网站| 免费av观看视频| 精品国产亚洲在线| 日韩欧美 国产精品| 成人三级黄色视频| 日韩欧美一区二区三区在线观看| 男女之事视频高清在线观看| 十八禁人妻一区二区| 真人一进一出gif抽搐免费| 色综合欧美亚洲国产小说| 18+在线观看网站| 成人三级黄色视频| 嫁个100分男人电影在线观看| 亚洲中文日韩欧美视频| 日韩欧美三级三区| 非洲黑人性xxxx精品又粗又长| 搞女人的毛片| 国产一区二区亚洲精品在线观看| 黄色丝袜av网址大全| 国产高清视频在线播放一区| 在线观看午夜福利视频| 国产精品99久久久久久久久| 国产一区二区在线av高清观看| 一级av片app| 精品福利观看| 国产精品爽爽va在线观看网站| 蜜桃久久精品国产亚洲av| 色哟哟哟哟哟哟| 国产伦人伦偷精品视频| 国产精品一区二区免费欧美| av欧美777| 国产人妻一区二区三区在| 成人国产综合亚洲| 亚洲熟妇中文字幕五十中出| 丰满人妻熟妇乱又伦精品不卡| 免费在线观看影片大全网站| 久久午夜福利片| 亚洲av中文字字幕乱码综合| 最新中文字幕久久久久| 中文字幕精品亚洲无线码一区| 亚洲av五月六月丁香网| 欧美性猛交黑人性爽| 99热这里只有精品一区| 好男人电影高清在线观看| 男女视频在线观看网站免费| 国产午夜精品论理片| 在线免费观看的www视频| xxxwww97欧美| 一区二区三区激情视频| 啪啪无遮挡十八禁网站| 成人永久免费在线观看视频| 欧美一区二区国产精品久久精品| 精品久久久久久久久久免费视频| 国内揄拍国产精品人妻在线| 国产精品亚洲av一区麻豆| 亚洲精品在线美女| 欧美黑人巨大hd| 免费av观看视频| 宅男免费午夜| 日韩欧美在线二视频| 大型黄色视频在线免费观看| 中国美女看黄片| 国产午夜精品论理片| 精品午夜福利在线看| 亚洲精品456在线播放app | 午夜免费成人在线视频| 国产人妻一区二区三区在| 国产白丝娇喘喷水9色精品| 国产欧美日韩精品亚洲av| 国产精品久久久久久久久免 | 午夜老司机福利剧场| 韩国av一区二区三区四区| 亚洲,欧美精品.| 国产精品久久久久久久久免 | 男人的好看免费观看在线视频| 久久久久久久久久成人| 淫秽高清视频在线观看| 九色国产91popny在线| 97人妻精品一区二区三区麻豆| 午夜精品在线福利| 变态另类成人亚洲欧美熟女| 欧美在线一区亚洲| 搡老熟女国产l中国老女人| www.999成人在线观看| 成人亚洲精品av一区二区| 久久热精品热| 国产欧美日韩一区二区精品| 激情在线观看视频在线高清| 51午夜福利影视在线观看| 99精品在免费线老司机午夜| 国产精品,欧美在线| 成年女人毛片免费观看观看9| 亚洲成人久久性| 免费搜索国产男女视频| 在线十欧美十亚洲十日本专区| 国产一区二区激情短视频| 亚洲第一电影网av| 少妇被粗大猛烈的视频| 97超级碰碰碰精品色视频在线观看| 国内精品美女久久久久久| 亚洲av熟女| 在线播放无遮挡| 免费高清视频大片| 久久人妻av系列| 日韩中字成人| 老司机午夜福利在线观看视频| 91字幕亚洲| 久久九九热精品免费| 少妇高潮的动态图| 亚洲av熟女| 韩国av一区二区三区四区| 天堂√8在线中文| 丰满人妻熟妇乱又伦精品不卡| 精品久久久久久,| 简卡轻食公司| 悠悠久久av| 十八禁人妻一区二区| 少妇高潮的动态图| 欧美日韩乱码在线| 在线观看舔阴道视频| 精品久久久久久久久av| 国产探花在线观看一区二区| 久久久久久久久久黄片| 精品久久久久久久久久久久久| 久久国产乱子免费精品| 麻豆av噜噜一区二区三区| 亚洲成人久久性| 日韩成人在线观看一区二区三区| 亚洲18禁久久av| 国产精品影院久久| 国产亚洲欧美在线一区二区| 国产真实乱freesex| 在线国产一区二区在线| 少妇人妻一区二区三区视频| 亚洲黑人精品在线| 欧美日韩亚洲国产一区二区在线观看| 国产毛片a区久久久久| 婷婷六月久久综合丁香| 亚洲精华国产精华精| 啦啦啦韩国在线观看视频| 国产极品精品免费视频能看的| 成年女人永久免费观看视频| 国产淫片久久久久久久久 | 又黄又爽又免费观看的视频| 一a级毛片在线观看| 色精品久久人妻99蜜桃| 97超级碰碰碰精品色视频在线观看| 中文资源天堂在线| 五月伊人婷婷丁香| 国产精品伦人一区二区| 91av网一区二区| 国产亚洲欧美98| 久久久久久九九精品二区国产| 免费看美女性在线毛片视频| 欧美日韩福利视频一区二区| 日韩欧美免费精品| 麻豆成人午夜福利视频| 91在线观看av| 成人特级黄色片久久久久久久| 一级黄色大片毛片| 日本五十路高清| 国产高清视频在线观看网站| 免费搜索国产男女视频| 精品久久久久久成人av| 久久久久久久久中文| 欧美日韩综合久久久久久 | 校园春色视频在线观看| 免费人成在线观看视频色| 精品人妻偷拍中文字幕| 免费高清视频大片| 高清毛片免费观看视频网站| 久久国产精品人妻蜜桃| 久久国产乱子伦精品免费另类| 91在线精品国自产拍蜜月| 欧美日韩亚洲国产一区二区在线观看| 国产白丝娇喘喷水9色精品| 久久99热这里只有精品18| 成年人黄色毛片网站| 国产激情偷乱视频一区二区| 午夜福利在线在线| 一边摸一边抽搐一进一小说| 国产aⅴ精品一区二区三区波| 国产高清视频在线播放一区| 久久久久久久精品吃奶| 人妻丰满熟妇av一区二区三区| 18禁黄网站禁片免费观看直播| 国产精品嫩草影院av在线观看 | 国产又黄又爽又无遮挡在线| 搡老岳熟女国产| 狂野欧美白嫩少妇大欣赏| 又紧又爽又黄一区二区| 日本免费a在线| 日韩大尺度精品在线看网址| 丁香欧美五月| 成人性生交大片免费视频hd| 亚洲人成网站在线播放欧美日韩| 免费看美女性在线毛片视频| 窝窝影院91人妻| 香蕉av资源在线| 国产精品伦人一区二区| 免费在线观看影片大全网站| 精品免费久久久久久久清纯| 亚洲欧美日韩高清在线视频| 午夜影院日韩av| 国模一区二区三区四区视频| 国产激情偷乱视频一区二区| 国产欧美日韩一区二区三| 国产成人av教育| 国产伦一二天堂av在线观看| 精品一区二区免费观看| 99热6这里只有精品| 在线a可以看的网站| 床上黄色一级片| 一级黄片播放器| 熟女电影av网| 少妇裸体淫交视频免费看高清| 国产精品久久电影中文字幕| 日韩欧美 国产精品| 我要看日韩黄色一级片| 亚洲第一电影网av| 日本五十路高清| 男人的好看免费观看在线视频| 老司机深夜福利视频在线观看| 亚洲av成人av| 国产精品永久免费网站| 村上凉子中文字幕在线| 国产精品嫩草影院av在线观看 | 久久久久久久亚洲中文字幕 | 午夜福利成人在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 嫩草影院入口| 国产伦在线观看视频一区| 亚洲国产欧洲综合997久久,| 久久精品国产亚洲av天美| 亚洲自拍偷在线| 51国产日韩欧美| 精品不卡国产一区二区三区| 欧美一区二区亚洲| 国产在线精品亚洲第一网站| 丁香欧美五月| 能在线免费观看的黄片| 国语自产精品视频在线第100页| 国产三级黄色录像| 色尼玛亚洲综合影院| 2021天堂中文幕一二区在线观| 给我免费播放毛片高清在线观看| 日本熟妇午夜| or卡值多少钱| 成人美女网站在线观看视频| 久久精品夜夜夜夜夜久久蜜豆| 最新在线观看一区二区三区| 一进一出抽搐gif免费好疼| 成人无遮挡网站| 一个人看视频在线观看www免费| 国产精品日韩av在线免费观看| 男女那种视频在线观看| 最新中文字幕久久久久| 久久99热6这里只有精品| 成人毛片a级毛片在线播放| 午夜免费激情av| 黄色日韩在线| а√天堂www在线а√下载| 午夜免费男女啪啪视频观看 | 久久久久久久久中文| 黄片小视频在线播放| 亚洲第一欧美日韩一区二区三区| 老熟妇仑乱视频hdxx| 毛片一级片免费看久久久久 | 简卡轻食公司| 成人鲁丝片一二三区免费| 老熟妇仑乱视频hdxx| 一区二区三区免费毛片| 一本综合久久免费| a级毛片a级免费在线| 成人美女网站在线观看视频| a级毛片a级免费在线| 一个人看视频在线观看www免费| 毛片一级片免费看久久久久 | 欧美+亚洲+日韩+国产| 欧美中文日本在线观看视频| 亚洲真实伦在线观看| 狂野欧美白嫩少妇大欣赏| 亚洲一区二区三区色噜噜| 99久久无色码亚洲精品果冻| 亚洲午夜理论影院| 麻豆国产97在线/欧美| 国产高清三级在线| 午夜a级毛片| 首页视频小说图片口味搜索| 在线观看av片永久免费下载| 亚洲五月婷婷丁香| 国产老妇女一区| 毛片一级片免费看久久久久 | 色av中文字幕| 日韩欧美精品v在线| 国产中年淑女户外野战色| 国内少妇人妻偷人精品xxx网站| 好男人在线观看高清免费视频| 精品国产亚洲在线| 男人的好看免费观看在线视频| 老熟妇仑乱视频hdxx| 国产成人欧美在线观看| 国产91精品成人一区二区三区| 免费一级毛片在线播放高清视频| 性色av乱码一区二区三区2| 麻豆成人av在线观看| 99精品久久久久人妻精品| 精品久久久久久,| 国产av一区在线观看免费| 九色成人免费人妻av| 国产精品99久久久久久久久| 俺也久久电影网| 男人舔奶头视频| 亚洲avbb在线观看| 欧美精品国产亚洲| 熟妇人妻久久中文字幕3abv| 日韩欧美精品免费久久 | 午夜福利成人在线免费观看| 天堂动漫精品| 久久精品国产亚洲av涩爱 | 日韩人妻高清精品专区| 色av中文字幕| АⅤ资源中文在线天堂| 久久久久久久久久成人| 亚洲欧美清纯卡通| 午夜免费成人在线视频| 黄色丝袜av网址大全| 久久久久久国产a免费观看| 人妻制服诱惑在线中文字幕| 久久午夜亚洲精品久久| 自拍偷自拍亚洲精品老妇| 丰满人妻熟妇乱又伦精品不卡| 精品久久久久久久久av| 久久久久国产精品人妻aⅴ院| 午夜福利在线观看吧| 九九在线视频观看精品| 国产成人影院久久av| 在线天堂最新版资源| 久久天躁狠狠躁夜夜2o2o| 免费无遮挡裸体视频| 男女视频在线观看网站免费| 欧美不卡视频在线免费观看| 99久久无色码亚洲精品果冻| 国产乱人伦免费视频| 亚洲精华国产精华精| 免费无遮挡裸体视频| 丝袜美腿在线中文| 老司机深夜福利视频在线观看| 亚洲最大成人av| 在线播放无遮挡| 极品教师在线免费播放| 国产精品99久久久久久久久| 亚洲av第一区精品v没综合| 欧美激情国产日韩精品一区| 性色av乱码一区二区三区2| 天天一区二区日本电影三级| 丝袜美腿在线中文| 三级男女做爰猛烈吃奶摸视频| 国产精华一区二区三区| 免费在线观看影片大全网站| 国产精品美女特级片免费视频播放器| 国产精品综合久久久久久久免费| 亚洲最大成人手机在线| 日本黄大片高清| 欧美色视频一区免费| 悠悠久久av| 麻豆成人午夜福利视频| 日韩人妻高清精品专区| 精品无人区乱码1区二区| 午夜福利18| 色综合欧美亚洲国产小说| 国内揄拍国产精品人妻在线| 校园春色视频在线观看| 国内揄拍国产精品人妻在线| 国产av一区在线观看免费| 99热只有精品国产| 国产成人a区在线观看| 99在线人妻在线中文字幕| 波多野结衣巨乳人妻| 九九热线精品视视频播放| 中文字幕av在线有码专区| 久久久久久大精品| 欧美高清成人免费视频www| 九九热线精品视视频播放| 久久久久免费精品人妻一区二区| 亚洲无线在线观看| 日韩欧美在线乱码| 精品免费久久久久久久清纯| 激情在线观看视频在线高清| 亚洲五月天丁香| 日韩中文字幕欧美一区二区| 午夜精品在线福利| 亚洲成人久久性| 51国产日韩欧美| 日韩欧美精品v在线| 欧美另类亚洲清纯唯美| 亚洲av.av天堂| 看免费av毛片| 久久久久久国产a免费观看| 国产亚洲精品综合一区在线观看| 黄色视频,在线免费观看| 免费看光身美女| 欧美成人一区二区免费高清观看| 午夜福利在线观看免费完整高清在 | 色综合亚洲欧美另类图片| 久久6这里有精品| 在线播放无遮挡| 久久国产乱子伦精品免费另类| 国产成人欧美在线观看| 国产乱人视频| 少妇人妻精品综合一区二区 | 成人av一区二区三区在线看| 日本黄色片子视频| 亚洲美女视频黄频| 国产伦精品一区二区三区四那| 狠狠狠狠99中文字幕| 全区人妻精品视频| 国产成人av教育| 亚洲精品成人久久久久久| 观看免费一级毛片| 欧美午夜高清在线| 脱女人内裤的视频| 欧美一区二区亚洲| 黄色一级大片看看| 18美女黄网站色大片免费观看| 国产午夜福利久久久久久| 好男人在线观看高清免费视频| 99国产极品粉嫩在线观看| 校园春色视频在线观看| 88av欧美| 韩国av一区二区三区四区| 免费搜索国产男女视频| 精品一区二区三区视频在线观看免费| 99精品久久久久人妻精品| 午夜福利欧美成人| 久久久久久久久中文| 成年人黄色毛片网站|