• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydrothermal synthesis of hierarchical SnO2 nanomaterials for high-efficiency detection of pesticide residue

    2021-10-14 00:55:36HijieCiXiopengQioMeilinChenDongshengFengAdulzizAlghmdiFhdAlhrthiYingjiePnYongZhoYonghengZhuYonghuiDeng
    Chinese Chemical Letters 2021年4期

    Hijie Ci,Xiopeng Qio,Meilin Chen,Dongsheng Feng,Adulziz A.Alghmdi,Fhd A.Alhrthi,Yingjie Pn,Yong Zho,Yongheng Zhu,*,Yonghui Deng

    a College of Food Science and Technology, Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai),Ministry of Agriculture and Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation Shanghai Ocean University, Shanghai 201306,China

    b Shanghai Agricultural Product Quality and Safety Center, Shanghai 201306, China

    c Department of Chemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabia

    d Department of Chemistry, Fudan University Shanghai 200433, China

    e State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050,China

    ABSTRACT Acephate pesticide contamination in agricultural production has caused serious human health problems.Metal oxide semiconductor(MOS)gas sensor can be used as a portable and promising alternative tool for efficiently detection of acephate.In this study, hierarchical assembled SnO2 nanosphere, SnO2 hollow nanosphere and SnO2 nanoflower were synthesized respectively as high efficiency sensing materials to build rapid and selective acephate pesticide residues sensors.The morphologies of different SnO2 3D nanostructures were characterized by various material characterization technology.The sensitive performance test results of the 3D SnO2 nanomaterials towards acephate show that hollow nanosphere SnO2 based sensor displayed preferable sensitivity,selectivity,and rapid response(9 s)properties toward acephate at the optimal working temperature(300。C).This SnO2 hollow nanosphere based gas sensor represents a useful tool for simple and highly effective monitoring of acephate pesticide residues in food and environment.According to the characterization results,particularly Brunauer-Emmett-Teller (BET)and Ultraviolet-Visible Spectroscopy (UV-vis), the obvious and fast response can be attributed to the mesoporous hollow nanosphere structure and appropriate band gap of SnO2 hollow nanosphere.

    Keywords:SnO2 nanomaterials Hollow nanostructures Hydrothermal methods Acephate gas sensor High-efficiency detection

    Acephate, as a substitute for methamidophos, has been one of the effective insecticides to control pests on grains, fruits and vegetables for its low toxicity and high efficiency [1,2].However,acephate preparation used in agricultural production were found to be poorly stable and bioactivation metabolized to methamidophos with extremely high selective mammalian toxicity [3].Accordingly,the production and use of acephate has been banned in some countries and regions for its potential toxicity.Therefore,the rapid and effective detection of acephate is of great significance to supervise and standardize the use of pesticides and ensure food safety.At present, a variety of analytical techniques have been applied to detect acephate insecticides, such as colorimetry,fluorescence analysis, High-performance Liquid Chromatography(HPLC) and enzyme inhibition[4-8].These conventional acephate detection methods show excellent accuracy and low detection limit.However, these methods are only applicable in laboratory analysis owing to the precondition of relatively complicated pretreatments, time-consuming operation, expensive equipment and experienced staff.Herein,it is still indispensable to develop a portable and effective detecting equipment for the on-site determination of acephate.

    Gas sensors based on metal oxide semiconductors (MOS)provide fast response, good stability, low cost and low power consumption detection methods [9].Synthesis of nanomaterials with controllable morphology is currently a hot field of gas sensor research [10,11].Among them, tin dioxide (SnO2) nanomaterials with controllable morphology have attracted extensive research on account of their favorable physical and chemical properties[12,13].So far, SnO2materials of various shapes have been successfully synthesized, such as nanoparticles, nanorods, nanobelts, nanowires, nanosheets, hierarchical nanostructures and hollow sphere[14-24].Among these,3D SnO2nanomaterials such as hierarchical nanostructures and hollow sphere possess porous structures, which attracts more studies for sensor application[25,26].Huang et al.[27] reported a simple method for rapid detection of pesticide residues based on SnO2semiconductor gas sensor, which used the rectangular temperature model to detect and distinguish acephate,trichlorfon and their mixtures.However,researches on SnO2based gas sensor for pesticide residue detection are very rare.

    In this study,variant hierarchical assembled SnO2nanosphere,SnO2hollow nanosphere and SnO2nanoflower were synthesized successfully via simple hydrothermal technique and subsequent calcination [28], and made into gas sensors for sensitively and selectively detection of acephate pesticide residues.The SnO2hollow nanospheres were synthesized successfully after a classical Ostwald ripening process in the absence of any template [29].Then, SnO2nanosphere and SnO2nanoflower were successfully synthesized by changing tin source, hydrothermal reaction conditions, and adding surfactant.By comparing the acephate gas sensing performance among the three SnO23D nanostructures,it is found that the SnO2hollow nanosphere not only got the highest response value,but also exhibited excellent selectivity and stability,as while as faster response speeds than that of the other two materials (SnO2nanosphere and SnO2nanoflower) [30].In addition, the sensing reaction process was also discussed in this study to help explain the effect of hollow nanosphere structure of high sensing performance.

    The main evolving process of synthesizing SnO2nanomaterials are shown in Fig.1.As Fig.1 shown, the sphere-like SnO2nanomaterial was synthesized by taken SnCl4·5H2O as the precursor without any surfactant in the reaction system.In the specific synthesis process, the complex Sn[(OH)6]2-first rapidly decomposed to form large number of SnO2nuclei,and then these nuclei spontaneously aggregate to form nanoparticles.As the continuation of the hydrothermal reaction, tiny SnO2crystals gradually grow to form a unique SnO2nanosphere [31].SnO2hollow nanosphere was controlled synthesis by taking potassium Stannate as tin source based on the Ostwald-ripening reaction[29].The SnO2nanoflower was prepared by choosing SnCl2·2H2O as reactant and Na3C6H5O7as surfactant.In the presence of Na3C6H5O7, the rapid precipitation of Sn(OH)2was inhibited,resulting in anisotropic growth of SnO2crystals in [101] direction and the formation of SnO2single nanosheet.However,the surface energy of a single nanosheet is quite high and needs to be reduced by reducing the exposed area[32,33].Herein,the SnO2nanoflower was synthesized successfully through the self-assemble of single nanosheet.

    Fig.1.Schematic diagram of the control synthesis of SnO2 nanosphere,SnO2 hollow nanosphere and SnO2 nanoflower via a simple template-free process.

    As shown in Fig.2, SEM and TEM observations were taken to illustrate the microstructures of SnO2nanosphere, SnO2hollow nanosphere and SnO2nanoflower firstly.Figs.2a-c show the SEM and TEM images of SnO2nanospheres.Obviously, SnO2nanospheres have a clear morphology and microstructure,with a size of about 250-400 nm.Figs.2d-f show the morphological structure images of SnO2hollow nanosphere.The particle diameter SnO2hollow nanosphere is about 350-450 nm, and the shell thickness is about 30-50 nm.SnO2nanoflower structure consists of 20 nm thick nanosheets were also clearly observed in Figs.2g-i.The HRTEM images of the as-synthesized three SnO2nanomaterials are also displayed in the inset images of Figs.2c, f and i.The lattice spacings of SnO2nanosphere, SnO2hollow nanosphere and SnO2nanoflower nanomaterials were estimated to be 0.335 nm,0.336 nm and 0.335 nm, respectively, and all corresponding to[101] reflections of rutile SnO2[34].

    Fig.2.SEM,TEM and HRTEM of SnO2 nanomaterials in different morphologies:(ac) SnO2 nanosphere, (d-f) SnO2 hollow nanosphere and (g-i) SnO2 nanoflower.

    The crystal structures of the as synthesized SnO2nanosphere,SnO2hollow nanosphere and SnO2nanoflower nanomaterials were studied by XRD analysis.Typical diffraction patterns were illustrated in Fig.3a.All diffraction peaks of the three materials correspond well to the JCPDS No.41-1445 card,which confirm the tetragonal rutile phase of the synthesized SnO2nanosphere,SnO2hollow nanosphere and SnO2nanoflower.No extra characteristic peaks were found, showing that the excellent purity of the SnO2nanomaterials [35-37].What worth motioning is that the [101]crystal surface diffraction peak of SnO2nanoflower is relative stronger than that of the standard card.This is mainly due to the adsorption of Sn(OH)2-growth on the surface [101], which may conducive to the anisotropic growth of SnO2crystals along the direction [101].

    XPS was employed to analyze the chemical states of the SnO2nanosphere, SnO2hollow nanosphere, and SnO2nanoflower.The complete spectra are shown in Fig.3b.The peaks completely in accordance to Sn and O are exactly the only peaks observed in the as-prepared SnO2nanosphere,hollow nanosphere and nanoflower materials, indicating the excellent monodispersity of the three samples.Sn 3d in high-resolution XPS spectra(Fig.3c)shows that the typical characteristics of Sn4+in tetragonal SnO2.It is clearly shown in Fig.3d that the lower binding energy of corresponds to the absorbed oxygens (O-: 531.2 eV) of SnO2, whereas the other binding energy corresponds to the lattice oxygen (O2-: 530.3 eV)chemical states of oxygen in the three SnO2nanomaterials,respectively[38,39].Obviously,there are no significant differences in the valence states of tin and oxygen in the materials with different morphologies.

    Fig.3.(a) XRD patterns of as-synthesized SnO2 nanosphere, SnO2 hollow nanosphere and SnO2 nanoflower.(b) Survey, (c) Sn 3d, (d) O 1s high resolution XPS spectrum of as-synthesized SnO2 nanomaterials.

    The results of nitrogen adsorption-desorption isotherms test(Fig.S1 in Supporting information) and Barrett-Joyner-Halenda(BJH) analysis (Table S1 in Supporting information) clearly show the surface adsorption property of the above sensing nanomaterial.The Brunauer-Emmett-Teller (BET) tests of the SnO2nanosphere,SnO2hollow nanosphere, and SnO2nanoflower all have a hysteresis loop (Fig.S1), which is consistent with typical type-IV[40], showing the mesoporous structure of as-synthesized 3D nanomaterials [41].SnO2with hollow nanosphere structure possess the largest surface area (28.3 m2/g STP), while, SnO2nanosphere (14.8 m2/g STP) and SnO2nanoflower (19.6 m2/g STP)show lower surface area, respectively.

    Based on the synthesized SnO2nanomaterials with different morphologies,we further prepared SnO2nanosphere,SnO2hollow nanosphere, and SnO2nanoflower based gas sensors, for the systematic analysis of the gas sensitivity of SnO2nanostructures in the rapid detection of acephate.The operating temperature tests(200-400。C) of sensors based on SnO2nanosphere, SnO2hollow nanosphere, and SnO2nanoflower were proceed in 20 ppm acephate.As Fig.4a shown,all gas sensors display the crest value at an operating temperature of 300。C.The acephate response value increases before the working temperature reach up to 300。C,and dramatic decreases as operating temperature continue to rise.Furthermore, it can be clearly seen from Fig.3a that the SnO2hollow nanosphere has the highest sensitivity (Rair/Rgas=11.87),followed by the SnO2nanoflower (Rair/Rgas=9.23), and the SnO2nanosphere (Rair/Rgas=3.95) shows the lowest gas sensing response.This mainly on account of hollow structure has larger specific surface area than solid spherical structure,which is more conducive to the redox reaction of the gas, so that it has a higher sensitivity [42].Gas sensor based on nanoflower structure shows better sensitivity than that of nanospheres mainly due to its interlaced thin nanostructures on the surface of nanoflower increase the reaction between acephate molecules and materials to a certain extent.However, as shown in Figs.4b, c and e, it is possible that the interlaced thin nanostructures on the surface of the nanoflower caused its unstable gas response.

    Fig.4.Typical sensing responses of the SnO2 nanosphere,SnO2 hollow nanosphere and SnO2 nanoflower based sensors:(a)The temperature-dependent sensitivity of various sensors versus the operating temperature from 200。C to 400。C towards 20 ppm acephate.(b) Dynamic acephate (1-100 ppm) sensing transients.(c)Response/recovery times of the preparative sensors.(d) Selectivity of gas sensor towards acephate at 300。C.(e)Five periods of response curve and f representative long-term stability curve of SnO2 based sensor to 20 ppm acephate at 300。C.

    Dynamic response of SnO2nanosphere, SnO2hollow nanosphere, and SnO2nanoflower towards different concentrations of acephate (1-100 ppm) were then investigated at 300 。C.As Fig.4b clearly illustrates, the response value of the obtained SnO2nanosphere, SnO2hollow nanosphere, and nanoflower based sensors all increased with the injection quantity of acephate increasing from 1 ppm to 100 ppm,and decreased with the concentration decreasing, which indicates that the gas sensors have distinguished reversibility and repeatability.What worth mentioning is that the SnO2hollow nanosphere based gas sensor also shows good linearity with the acephate concentration.Fig.4c displays the response/recovery behavior of sensors toward 20 ppm acephate.SnO2hollow nanosphere shows relative fast response speed (9 s) upon exposure to acephate in those of SnO2nanosphere (15 s) and nanoflower (19 s).According to the results of BET tests, SnO2nanospheres hollow structures with more surface area, which exposes larger effective response area for sensor testing than the other materials.Meanwhile, the mesoporous structures in the materials also contribute to the smooth diffusion of target molecules in SnO2hollow nanospheres [43].Therefore, SnO2hollow nanospheres show the highest response and shortest response-recovery time to the target gases under the same conditions of the three nanomaterials.

    Selectivity is the most important criterion for gas sensors in real-time application.Hence, this work also investigated the sensitivities of SnO2nanosphere, SnO2hollow nanosphere and SnO2nanoflower based sensors, when explore to the common various interfering gases, including acetone, ethanol, methanol,formaldehyde and ammonia under the same conditions (Fig.4d).Obviously, the above characteristic curves indicate that SnO2hollow nanosphere based sensor has a good selectivity to acephate of 20 ppm and less affected by other gases at 300。C, which is beneficial to the effective differentiation of acetylate.

    In addition, repeatability and long-term stability tests were conducted on the on-site test of acephate( Figs.4e and f).The good repeatability was confirmed by exposure to 20 ppm of acephate for five times under the same conditions.During the continuously five-week of testing, the sensitivity of all sensors displays minor changes towards 20 ppm acephate at 300。C,showing an excellent sensor stability of the SnO2nanomaterials-based sensor.Results of above tests indicate the good repeatability and stability of the asfabricated acephate sensor.These excellent gas sensitivity characteristics are conducive to the application and promotion of the as-prepared gas sensors.

    The main reason for good sensing properties of SnO2hollow nanosphere is the stable crystal and mesoporous hollow structure.The band gap of SnO2nanomaterials with different morphologies can be obtained by UV-vis diffuse reflectance spectra in the Fig.5a[44].The band gap of SnO2nanosphere and SnO2nanoflower are 3.64 eV and 3.58 eV,respectively.As actually shown in Fig.5b,SnO2hollow nanosphere has the minimum bandgap energy of 3.54 eV,which means that it is more liable for the electrons of SnO2hollow nanosphere to transition from its valence to the conduction band[45-47].Great quantity of carrier can be more easily transferred to the conductive band of SnO2hollow nanosphere, resulting in the more significant change in the conductivity of the material(Fig.5c).Furthermore, as shown in Fig.5c, hollow nanospheres with huge specific surface area provide active sites on and inside the surface,which can be used for oxygen adsorption,and acted as sensitizers to modify and display their functions [48].Therefore,the response of hollow nanosphere is higher than the SnO2nanosphere and SnO2nanoflower.Therefore, the SnO2hollow nanospheres sensor shows the best sensing performance for acephate in different SnO2hollow nanomaterials.

    Fig.5.(a) UV-vis diffuse reflectance spectrum.(b) Kubelka-Munk function curve plotted against photon versus the energy of absorbed light of SnO2 nanosphere,SnO2 hollow nanosphere and SnO2 nanoflower.(c)The reaction schematic diagram of the gas sensor based on 3D SnO2 nanomaterials in air and acephate.

    In summary, SnO2nanosphere, SnO2hollow nanosphere and SnO2nanoflower with characteristic structure were prepared through one-step template free method, by controlling the acid base of reaction and changing reaction temperature.Furthermore,the effect of morphology on gas-sensing behavior were studied.Experimental results show that MOS gas sensors based on SnO2with different morphologies have the superiority of good sensitivity,high stability,and rapid response recovery to acephate at 300。C.SnO2hollow structure shows the highest sensitivity,by comparation of the gas sensing behavior with the SnO2nanosphere and SnO2nanoflower based sensors.This is mainly due to the large surface area of the hollow structure, which can expose the rich reaction points for target molecules, thereby helping to improve the sensitivity.This SnO2hollow nanosphere based gas sensor provides a vital research direction for the development of a new,simple, accurate and rapid sensor for monitoring acephate pesticide residue.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was financially funded by the National Natural Science Foundation of China (No.31701678), the Key Project of Shanghai Agriculture Prosperity through Science and Technology(No.2019-02-08-00-15-F01147), the project of Shanghai Science and Technology Committee (No.19391901600), the Key Basic Research Program of Science and Technology Commission of Shanghai Municipality(No.20JC1415300),the State Key Laboratory of Transducer Technology of China(No.SKT1904),and the Research Support Project number(No.RSP-2020/155),King Saud University,Riyadh, Saudi Arabia.

    Appendix A.Supplementary data

    Supplementary material related to this article can be found, in the online version,at doi:https://doi.org/10.1016/j.cclet.2020.10.029.

    亚洲精品乱码久久久久久按摩| 国产精品.久久久| 中文字幕亚洲精品专区| 能在线免费看毛片的网站| 日本爱情动作片www.在线观看| 97在线视频观看| 男的添女的下面高潮视频| 99久久精品一区二区三区| 久久精品国产亚洲网站| 精品人妻熟女av久视频| 国产高清有码在线观看视频| 97超视频在线观看视频| 在线观看免费日韩欧美大片 | 最黄视频免费看| 亚洲欧美精品自产自拍| 久久久久久久久久久免费av| 精品久久久噜噜| 日韩 亚洲 欧美在线| 毛片一级片免费看久久久久| 国产成人a∨麻豆精品| 国产片内射在线| 精品久久久久久久久av| 啦啦啦在线观看免费高清www| 午夜日本视频在线| 日韩,欧美,国产一区二区三区| 91成人精品电影| 亚洲精品一区蜜桃| 少妇人妻精品综合一区二区| 另类精品久久| 午夜激情av网站| 日本欧美国产在线视频| xxxhd国产人妻xxx| 国产综合精华液| 国产成人91sexporn| 高清午夜精品一区二区三区| 日韩一区二区视频免费看| 纯流量卡能插随身wifi吗| 婷婷色综合www| 一级二级三级毛片免费看| 亚洲一级一片aⅴ在线观看| 免费播放大片免费观看视频在线观看| 欧美日韩成人在线一区二区| 国产成人精品久久久久久| 亚洲在久久综合| 中文字幕久久专区| av在线app专区| 亚洲少妇的诱惑av| 亚洲国产精品国产精品| 亚洲成人一二三区av| 最近的中文字幕免费完整| 中文字幕精品免费在线观看视频 | 日本wwww免费看| 美女大奶头黄色视频| 日韩电影二区| 99视频精品全部免费 在线| 亚洲精华国产精华液的使用体验| 另类亚洲欧美激情| 日韩在线高清观看一区二区三区| 国产午夜精品一二区理论片| 老熟女久久久| 99热全是精品| 国产日韩欧美视频二区| 秋霞在线观看毛片| 超碰97精品在线观看| 韩国高清视频一区二区三区| 久久久久久久大尺度免费视频| 不卡一级毛片| 国产无遮挡羞羞视频在线观看| 亚洲色图av天堂| 一二三四在线观看免费中文在| a级毛片黄视频| 下体分泌物呈黄色| 老司机深夜福利视频在线观看| 国产精品久久久久成人av| 黄片播放在线免费| 日韩有码中文字幕| 一进一出抽搐动态| 精品国产乱码久久久久久小说| 一级,二级,三级黄色视频| 国产精品av久久久久免费| 日韩三级视频一区二区三区| 亚洲国产看品久久| 好男人电影高清在线观看| 亚洲欧美精品综合一区二区三区| 国产成人精品久久二区二区免费| 免费av中文字幕在线| 国产欧美日韩综合在线一区二区| 精品福利永久在线观看| 亚洲熟妇熟女久久| 搡老岳熟女国产| 欧美亚洲日本最大视频资源| 中文字幕精品免费在线观看视频| 91老司机精品| 制服人妻中文乱码| 成人三级做爰电影| 婷婷丁香在线五月| 精品久久蜜臀av无| 可以免费在线观看a视频的电影网站| 别揉我奶头~嗯~啊~动态视频| 一边摸一边抽搐一进一小说 | 欧美日本中文国产一区发布| a级片在线免费高清观看视频| 一个人免费看片子| 精品人妻1区二区| 91成人精品电影| 亚洲精品一二三| www.999成人在线观看| 亚洲av日韩精品久久久久久密| 免费女性裸体啪啪无遮挡网站| 成在线人永久免费视频| 99国产精品免费福利视频| 亚洲精品国产精品久久久不卡| 日本精品一区二区三区蜜桃| av有码第一页| a级片在线免费高清观看视频| 久久久欧美国产精品| 日韩欧美一区视频在线观看| 久久国产精品男人的天堂亚洲| 最新在线观看一区二区三区| 三级毛片av免费| 人人妻人人澡人人看| 亚洲国产av新网站| 热99re8久久精品国产| 亚洲伊人久久精品综合| 国产成人免费观看mmmm| 国产国语露脸激情在线看| 久久香蕉激情| 中文字幕人妻熟女乱码| 免费在线观看黄色视频的| 热99re8久久精品国产| 久久久国产一区二区| 久久人人爽av亚洲精品天堂| 男男h啪啪无遮挡| 99国产精品一区二区三区| 欧美日韩精品网址| 久久精品亚洲熟妇少妇任你| 在线观看66精品国产| 热re99久久精品国产66热6| 欧美 日韩 精品 国产| 欧美+亚洲+日韩+国产| 新久久久久国产一级毛片| 国产不卡一卡二| 91精品三级在线观看| 香蕉丝袜av| 欧美日韩成人在线一区二区| 老司机午夜十八禁免费视频| 2018国产大陆天天弄谢| 国产1区2区3区精品| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品国产亚洲av香蕉五月 | 午夜福利视频在线观看免费| 无遮挡黄片免费观看| 美女午夜性视频免费| 一进一出好大好爽视频| 18禁国产床啪视频网站| 99在线人妻在线中文字幕 | 国产精品免费一区二区三区在线 | 欧美激情久久久久久爽电影 | 国产精品熟女久久久久浪| 国产精品99久久99久久久不卡| 一级黄色大片毛片| 精品少妇一区二区三区视频日本电影| 精品福利观看| 成人特级黄色片久久久久久久 | avwww免费| 80岁老熟妇乱子伦牲交| 日本黄色日本黄色录像| videosex国产| 亚洲国产精品一区二区三区在线| 国产精品 国内视频| 麻豆国产av国片精品| 国产精品亚洲av一区麻豆| av网站在线播放免费| 高清在线国产一区| 色综合婷婷激情| a级毛片黄视频| 国产无遮挡羞羞视频在线观看| 欧美亚洲日本最大视频资源| 免费黄频网站在线观看国产| 宅男免费午夜| 亚洲性夜色夜夜综合| 丝袜人妻中文字幕| 一区二区av电影网| √禁漫天堂资源中文www| av国产精品久久久久影院| 亚洲va日本ⅴa欧美va伊人久久| 亚洲熟女毛片儿| 亚洲专区中文字幕在线| 久久狼人影院| 色94色欧美一区二区| 最近最新中文字幕大全免费视频| 亚洲色图 男人天堂 中文字幕| 精品欧美一区二区三区在线| av天堂久久9| 一本大道久久a久久精品| 亚洲精品成人av观看孕妇| 久久久久久人人人人人| 搡老岳熟女国产| 成人亚洲精品一区在线观看| 18在线观看网站| 一本—道久久a久久精品蜜桃钙片| 丁香六月欧美| 亚洲精品在线美女| 搡老岳熟女国产| 视频区欧美日本亚洲| cao死你这个sao货| 国产成人av教育| 免费av中文字幕在线| 亚洲精品av麻豆狂野| 国产精品1区2区在线观看. | 法律面前人人平等表现在哪些方面| 脱女人内裤的视频| 岛国在线观看网站| 乱人伦中国视频| 18禁国产床啪视频网站| 亚洲九九香蕉| 男人操女人黄网站| √禁漫天堂资源中文www| 国产成+人综合+亚洲专区| 在线观看www视频免费| 久久久国产欧美日韩av| 日本黄色日本黄色录像| 久久天躁狠狠躁夜夜2o2o| 国产成人av教育| 亚洲 欧美一区二区三区| 黄色视频在线播放观看不卡| 亚洲伊人色综图| 久久av网站| 老鸭窝网址在线观看| 精品熟女少妇八av免费久了| 国产97色在线日韩免费| 淫妇啪啪啪对白视频| 在线十欧美十亚洲十日本专区| 女人被躁到高潮嗷嗷叫费观| 国产免费av片在线观看野外av| 免费观看人在逋| bbb黄色大片| 欧美久久黑人一区二区| 97人妻天天添夜夜摸| 国产精品亚洲一级av第二区| 一级黄色大片毛片| 丝瓜视频免费看黄片| 1024香蕉在线观看| 亚洲人成77777在线视频| 免费女性裸体啪啪无遮挡网站| 国产黄频视频在线观看| 亚洲国产av影院在线观看| 在线播放国产精品三级| 久久国产亚洲av麻豆专区| 激情在线观看视频在线高清 | 飞空精品影院首页| 999精品在线视频| 亚洲成人免费av在线播放| 国产不卡av网站在线观看| 成在线人永久免费视频| 嫁个100分男人电影在线观看| 久久午夜亚洲精品久久| 老司机福利观看| 国产1区2区3区精品| 亚洲三区欧美一区| 午夜福利欧美成人| 亚洲一码二码三码区别大吗| 色婷婷av一区二区三区视频| 亚洲色图综合在线观看| 午夜激情av网站| 国产日韩欧美在线精品| 日韩三级视频一区二区三区| 亚洲av日韩在线播放| 最黄视频免费看| 久久久久精品国产欧美久久久| 欧美成人午夜精品| 在线观看一区二区三区激情| 国产一区二区激情短视频| a级毛片在线看网站| 操美女的视频在线观看| 久久影院123| 国产精品1区2区在线观看. | 精品一区二区三区av网在线观看 | 91字幕亚洲| 99精品欧美一区二区三区四区| 高清黄色对白视频在线免费看| 一区二区av电影网| www.精华液| 咕卡用的链子| 精品亚洲成国产av| 99国产综合亚洲精品| 国产一区二区在线观看av| 91精品国产国语对白视频| 亚洲成人免费电影在线观看| 成年动漫av网址| 狠狠婷婷综合久久久久久88av| 亚洲成a人片在线一区二区| 丝袜美足系列| 99国产极品粉嫩在线观看| 亚洲成人免费av在线播放| 国产91精品成人一区二区三区 | 国产1区2区3区精品| 精品国产亚洲在线| av视频免费观看在线观看| 99国产综合亚洲精品| 欧美人与性动交α欧美精品济南到| 黑人欧美特级aaaaaa片| 亚洲专区国产一区二区| 亚洲国产看品久久| 男女之事视频高清在线观看| 中文字幕人妻熟女乱码| 亚洲欧洲精品一区二区精品久久久| 一本大道久久a久久精品| 久久人人97超碰香蕉20202| 天堂动漫精品| 中国美女看黄片| 亚洲国产中文字幕在线视频| 99九九在线精品视频| 国产日韩欧美在线精品| 母亲3免费完整高清在线观看| 亚洲国产欧美在线一区| 午夜日韩欧美国产| 美女视频免费永久观看网站| 美女高潮喷水抽搐中文字幕| 电影成人av| 亚洲国产中文字幕在线视频| 无限看片的www在线观看| 亚洲伊人色综图| 视频区欧美日本亚洲| 久9热在线精品视频| 久久ye,这里只有精品| 亚洲一区中文字幕在线| 久久狼人影院| 高清黄色对白视频在线免费看| 少妇的丰满在线观看| 国产成+人综合+亚洲专区| 女人高潮潮喷娇喘18禁视频| 国产免费现黄频在线看| 99精品久久久久人妻精品| xxxhd国产人妻xxx| 日韩中文字幕欧美一区二区| 午夜福利一区二区在线看| 1024视频免费在线观看| 美女扒开内裤让男人捅视频| 亚洲va日本ⅴa欧美va伊人久久| 涩涩av久久男人的天堂| 午夜福利在线免费观看网站| 满18在线观看网站| 亚洲综合色网址| 下体分泌物呈黄色| 亚洲,欧美精品.| 欧美乱妇无乱码| 看免费av毛片| 天堂俺去俺来也www色官网| 日本精品一区二区三区蜜桃| 欧美日韩视频精品一区| 看免费av毛片| 嫩草影视91久久| 99国产综合亚洲精品| 操出白浆在线播放| 脱女人内裤的视频| 老汉色∧v一级毛片| 99re6热这里在线精品视频| 69精品国产乱码久久久| 丰满少妇做爰视频| 97在线人人人人妻| 日韩熟女老妇一区二区性免费视频| 中文字幕色久视频| 一级a爱视频在线免费观看| 久久av网站| 亚洲一卡2卡3卡4卡5卡精品中文| 精品少妇内射三级| 国产成人系列免费观看| 久久精品成人免费网站| 国产av国产精品国产| 日韩欧美国产一区二区入口| 精品国产一区二区三区久久久樱花| 日韩大片免费观看网站| 国产精品美女特级片免费视频播放器 | 久久人人爽av亚洲精品天堂| 热re99久久精品国产66热6| 性高湖久久久久久久久免费观看| 亚洲伊人久久精品综合| 757午夜福利合集在线观看| 久热这里只有精品99| 99riav亚洲国产免费| 黄色毛片三级朝国网站| 在线观看人妻少妇| 中国美女看黄片| 久久影院123| 飞空精品影院首页| 午夜福利免费观看在线| 狂野欧美激情性xxxx| 水蜜桃什么品种好| 午夜福利乱码中文字幕| 最近最新免费中文字幕在线| 国产aⅴ精品一区二区三区波| 另类精品久久| www.999成人在线观看| bbb黄色大片| 美国免费a级毛片| 在线观看一区二区三区激情| 国产精品久久久久久人妻精品电影 | 久久热在线av| 国产亚洲一区二区精品| 亚洲熟妇熟女久久| 色婷婷av一区二区三区视频| 欧美 亚洲 国产 日韩一| 男女无遮挡免费网站观看| 久久精品91无色码中文字幕| 人人澡人人妻人| 天天躁夜夜躁狠狠躁躁| 91av网站免费观看| 欧美成人免费av一区二区三区 | 老司机福利观看| 黄色成人免费大全| 99re6热这里在线精品视频| 日本wwww免费看| www日本在线高清视频| 国产精品免费一区二区三区在线 | 亚洲,欧美精品.| a在线观看视频网站| 精品国产乱子伦一区二区三区| 女人高潮潮喷娇喘18禁视频| 国产成人影院久久av| 真人做人爱边吃奶动态| 99re在线观看精品视频| 国产色视频综合| netflix在线观看网站| 国产在线观看jvid| 又大又爽又粗| 中文字幕精品免费在线观看视频| av欧美777| 成年人黄色毛片网站| 一本综合久久免费| 国产一区有黄有色的免费视频| a级毛片在线看网站| 亚洲 欧美一区二区三区| 亚洲伊人色综图| 亚洲国产欧美一区二区综合| 日日爽夜夜爽网站| 一个人免费看片子| 国产精品成人在线| 日韩免费高清中文字幕av| 日韩 欧美 亚洲 中文字幕| 中国美女看黄片| 国精品久久久久久国模美| 国产xxxxx性猛交| 后天国语完整版免费观看| av国产精品久久久久影院| 精品一品国产午夜福利视频| 亚洲五月婷婷丁香| 欧美日韩国产mv在线观看视频| 国产精品香港三级国产av潘金莲| 后天国语完整版免费观看| 99国产精品一区二区三区| 天堂动漫精品| 国产单亲对白刺激| 午夜视频精品福利| 一夜夜www| 国产成人精品久久二区二区免费| 黄片小视频在线播放| 亚洲国产av新网站| 亚洲熟女毛片儿| 91成年电影在线观看| 法律面前人人平等表现在哪些方面| 亚洲精品在线观看二区| 精品午夜福利视频在线观看一区 | 欧美 亚洲 国产 日韩一| 欧美老熟妇乱子伦牲交| 亚洲国产av影院在线观看| 变态另类成人亚洲欧美熟女 | 精品国产乱码久久久久久男人| 高潮久久久久久久久久久不卡| 天天影视国产精品| 99热国产这里只有精品6| 热re99久久精品国产66热6| 久久精品91无色码中文字幕| 国产在视频线精品| 欧美日本中文国产一区发布| 多毛熟女@视频| 精品亚洲成a人片在线观看| 久久午夜亚洲精品久久| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利在线免费观看网站| 欧美久久黑人一区二区| 美女午夜性视频免费| 性少妇av在线| 18禁观看日本| 制服诱惑二区| av免费在线观看网站| 少妇裸体淫交视频免费看高清 | 国产亚洲午夜精品一区二区久久| tube8黄色片| 国产成人av教育| 另类精品久久| 久久国产精品影院| 精品免费久久久久久久清纯 | 天天躁日日躁夜夜躁夜夜| 国产亚洲欧美在线一区二区| 人人澡人人妻人| 国产精品免费一区二区三区在线 | 一边摸一边抽搐一进一小说 | 下体分泌物呈黄色| 免费观看人在逋| 王馨瑶露胸无遮挡在线观看| 亚洲久久久国产精品| 中文字幕最新亚洲高清| 两个人免费观看高清视频| 久久久国产一区二区| 日韩成人在线观看一区二区三区| 国产精品秋霞免费鲁丝片| 久久久久久人人人人人| 免费人妻精品一区二区三区视频| 欧美日韩av久久| 国产有黄有色有爽视频| 久久 成人 亚洲| 十八禁网站免费在线| 正在播放国产对白刺激| 日本欧美视频一区| 一区二区av电影网| 女人被躁到高潮嗷嗷叫费观| 亚洲天堂av无毛| 激情视频va一区二区三区| 麻豆av在线久日| 亚洲五月色婷婷综合| 精品福利永久在线观看| 丰满少妇做爰视频| 国产在线免费精品| 看免费av毛片| 日本精品一区二区三区蜜桃| 两个人看的免费小视频| 欧美午夜高清在线| 国产高清videossex| 80岁老熟妇乱子伦牲交| svipshipincom国产片| av天堂在线播放| 亚洲熟女精品中文字幕| 国产精品久久久久久精品电影小说| 日韩欧美免费精品| 亚洲欧美一区二区三区久久| 成人亚洲精品一区在线观看| 免费一级毛片在线播放高清视频 | 午夜福利在线免费观看网站| 男男h啪啪无遮挡| 国产av精品麻豆| 亚洲午夜理论影院| 午夜福利在线免费观看网站| 国产免费视频播放在线视频| 国产精品二区激情视频| 人人妻人人添人人爽欧美一区卜| 亚洲男人天堂网一区| av天堂久久9| 久久毛片免费看一区二区三区| 国产精品 欧美亚洲| 成年动漫av网址| 高清av免费在线| avwww免费| 2018国产大陆天天弄谢| 亚洲成人免费av在线播放| 十分钟在线观看高清视频www| 新久久久久国产一级毛片| 色婷婷av一区二区三区视频| 欧美+亚洲+日韩+国产| 极品人妻少妇av视频| av线在线观看网站| aaaaa片日本免费| av天堂在线播放| 亚洲国产av影院在线观看| 在线亚洲精品国产二区图片欧美| 波多野结衣一区麻豆| 婷婷成人精品国产| 99热国产这里只有精品6| 亚洲伊人色综图| 亚洲人成伊人成综合网2020| 丝瓜视频免费看黄片| 亚洲伊人久久精品综合| 午夜福利视频在线观看免费| 少妇的丰满在线观看| 色在线成人网| 日韩大片免费观看网站| 免费看a级黄色片| 免费不卡黄色视频| videos熟女内射| 精品午夜福利视频在线观看一区 | 免费女性裸体啪啪无遮挡网站| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩免费av在线播放| 久久久国产成人免费| 狠狠精品人妻久久久久久综合| 又大又爽又粗| 国产成+人综合+亚洲专区| 狠狠婷婷综合久久久久久88av| 夜夜骑夜夜射夜夜干| 男女下面插进去视频免费观看| 下体分泌物呈黄色| 国产黄色免费在线视频| 动漫黄色视频在线观看| 欧美精品一区二区免费开放| 国产一区二区三区视频了| 欧美成狂野欧美在线观看| 欧美亚洲日本最大视频资源| 欧美人与性动交α欧美精品济南到| 12—13女人毛片做爰片一| 国产精品偷伦视频观看了| 在线观看www视频免费| 一区在线观看完整版| 纯流量卡能插随身wifi吗| 三级毛片av免费| 国产亚洲精品第一综合不卡| 成人国语在线视频| tube8黄色片| 国产精品免费大片| 两个人免费观看高清视频| 国产精品一区二区在线不卡| 午夜福利,免费看| 久久青草综合色| 亚洲av电影在线进入| 无限看片的www在线观看| 男女免费视频国产|