• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Silver nanocubes monolayers as a SERS substrate for quantitative analysis

    2021-10-14 00:55:36ZingZhouXiuhuiBiPeishenLiChngzhengWngMingGuoYngZhngPeirenDingShoweiChenYunyunWuQingWng
    Chinese Chemical Letters 2021年4期

    Zing Zhou,Xiuhui Bi,Peishen Li,Chngzheng Wng*,Ming Guo,Yng Zhng*,Peiren Ding,Showei Chen*, Yunyun Wu,Qing Wng,*

    a Laboratory for Micro-sized Functional Materials, College of Elementary Education and Department of Chemistry, Capital Normal University, Beijing 100048,China

    b School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China

    c Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture,Beijing 100044, China

    d College of Chemistry, Beijing Normal University, Beijing 100875, China

    e Department of Chemistry and Biochemistry, University of California, Santa Cruz, United States

    ABSTRACT Surface-enhanced Raman scattering (SERS) is a powerful spectroscopic tool in quantitative analysis of molecules,where the substrate plays a critical role in determining the detection performance.Herein,a silver nanocubes/polyelectrolyte/gold film sandwich structure was prepared as a reproducible, highperformance SERS substrate by the water/oil interfacial assembly method.In addition to the hot spots on the nanocubes surface,the edge-to-edge interspace of the Ag nanocubes led to marked enhancement of the SERS intensity, with a limit of detection of 10-11 mol/L and limit of quantitation of 10-10 mol/L for crystal violet.When rhodamine 6G and crystal violet were co-adsorbed on the Ag nanocube surfaces,the characteristic SERS peaks of the two molecules remained well resolved and separated, and the peak intensities varied with the respective concentration,which could be exploited for concurrent detection of dual molecules.Results from this work indicate that organized ensembles of Ag nanocubes can serve as effective SERS substrate can for sensitive analysis for complex molecular systems.

    Keywords:Silver nanocube Surface enhanced raman scattering Quantitative analysis Rhodamine 6G Crystal violet

    Surface-enhanced Raman scattering (SERS) has been recognized as an effective spectroscopic tool for trace analysis, where the performance is largely dictated by the substrate [1-4].Plasmonic metal nanoparticles and assemblies have been attracting extensive interest, thanks to the localized surface plasmon(LSP)of metal nanoparticles and surface plasmon polariton(SPP)of nanoensembles that lead to the generation of unique hot spots[5-7].In a previous study [7], it was observed that metal nanoparticles/polyelectrolyte/metal film sandwich assemblies could serve as a powerful SERS substrate, with an enhancement factor(EF) of 1011, due to the LSP-SPP coupling effect.Note that LSP-LSP coupling can produce another type of hot spots,when the distance between two neighboring nanoparticles is less than 10 nm [8].Theoretical studies have shown that the coupling effect can enhance the SERS efficiency by one to two orders of magnitude.Indeed, LSP-LSP coupling has been achieved with substrates prepared by the drop-coating deposition Raman (DCDR) method and exploited for qualitative and quantitative analysis[9,10].With the formation of ring-shaped nanoparticle aggregates (i.e., the coffee ring effect), the EF was ca.5.06×107[11].

    In an earlier study [12], we prepared a Ag nanocubes/polyelectrolyte/Au film substrate, where Ag nanocubes were randomly adsorbed on the polyelectrolyte surface without obvious agglomeration and the thickness of the polyelectrolyte spacer was varied systematically for optimal SPP-LSP coupling and hence quantitative analysis.However,because of uncontrollable agglomeration of the nanoparticles, the point-to-point repeatability was relatively low, and the Ag nanocubes had to be kept away from each other,leading to minimal LSP-LSP coupling and compromised SERS efficiency [13].In fact, the limit of quantitation (LOQ) of rhodamine 6 G(R6G)on this substrate was determined to be 10-8mol/L, in comparison to that (10-8-10-9mol/L) of conventional techniques (e.g., portable headspace/gas chromatography mass spectrometry) [14-16].An immediate question arises.Can the detection sensitivity be further enhanced with additional contributions from the LSP-LSP coupling by controlled deposition of the nanoparticles [17]?

    Indeed, uniform and strong hot spots can be produced by the formation of close-packed monolayers of plasmonic nanoparticles[18].For instance, Yu’s group developed a room-temperature liquid/liquid interfacial assembly method to prepare large-area self-assembled nanofilms composed of various nanosized building blocks, such as nanowires, nanocubes, nanoparticles and nanosheets, and observed high SERS intensity [19].Liebig’s prepared large-scale close-packed monolayers of ultrathin gold nanotriangles on silicon wafers or quartz glass by transferring these nanotriangles to the air/liquid interface after the addition of an ethanol-toluene mixture without subsequent surface functionalization.The edge-to-edge ordered arrangement of the nanotriangles rendered the monolayers a SERS-active substrate [20].

    In the present study, we demonstrate a simple and direct method to produce a Ag nanocubes/polyelectrolyte/Au film sandwich structure by large-scale, edge-to-edge ordered deposition of Ag nanocubes onto the polyelectrolyte layer.Experimentally, a drop of silver sol was deposited onto the polyelectrolyte surface, and a 1-dodecanethiol-ethanol mixture was added to the droplet.As water and ethanol were evaporated at room temperature and subsequently 1-dodecanethiol at 100 。C,a closely packed monolayer of Ag nanocubes was formed.Crystal violet (CV) was used as the probe molecule to evaluate the point-to-point and sample-to-sample repeatability on this substrate.The limit of detection(LOD)was determined to be 10-11mol/L and the LOQ was estimated to be 10-10mol/L.In addition, when R6 G and CV, both important biomarkers, were co-adsorbed onto the sandwich substrate, their SERS features remained well resolved and separated, suggesting the application of the sandwich substrate in the accurate detection of complex molecule systems.

    The synthesis of Ag nanocubes has been detailed previously[21].The resulting Ag sol was washed with acetone and water to remove excess EG and PVP.The concentration of the as-obtained Ag nanocubes was calibrated to be 2.1×109particles/mL by UV-vis absorption measurements.The sandwich substrate was prepared by following a layer-by-layer deposition method [22].A polystydeposited on the resulting poly(allylamine) hydrochloride (PAH,Mw=70 kDa, Aldrich)-coated slide.This cycle was repeated to increase the number of PSS-PAH layers on the glass slide surface and obtained PAH-PSS-PAH-PSS-PAH-Au film silde.A mixture of the Ag nanocube sol prepared above and ethanol(volume ratio 1:1)was dropcast on the polyelectrolyte/gold(PE/Au)film surface,then a mixture of 1-dodecanethiol and ethanol (volume ratio 1:5) was added into water-ethanol droplet.After being placed at room temperature for 10 min, the oil phase was completely evaporated by transferring the slide into an oven at 100 。C.For the testing of probe molecules,dye molecules were added to the Ag nanocube sol and mixed for 1 h,prior to deposition onto the polyelectrolyte layer surface.

    Finite-difference time-domain(FDTD)simulations were carried out with a Ag nanocubes/polyelectrolyte/Au film sandwich structure.The edge length of the Ag nanocube was set at 70 nm.The gap between the Ag nanocubes was fixed at 1 nm.The complex refractive indexes of Ag were adopted from the tabulated values measured by Johnson and Christy[23].The simulated electric field distribution of the Ag nanocubes/polyelectrolyte/Au film sandwich structures was obtained by the field monitor on the z=0 plane(excitation wavelength 532 nm)

    The structure of the Ag nanocubes was first characterized by SEM and UV-vis absorption measurements.From the SEM image in Fig.1a, one can see that Ag nanocubes were indeed successfully produced,with an edge length of 70±10 nm(inset to panel a).In UV-vis absorption measurements(Fig.1b), the Ag nanocubes can be seen to exhibit a major peak at 459 nm, along with two minor ones at 348 nm and 387 nm, consistent with the formation of Ag nanocubes with sharp corners and edges (Fig.1c) [24].The small full width at half maxima (FWHM <90 nm) of the 459 peak indicates good uniformity of the dimensions of the Ag nanocubes,again,consistent with the narrow size distribution obtained in SEM measurements (Fig.1a inset).The as-prepared Ag nanocube sol exhibited a milky yellow color(Fig.1d),and became transparently yellow when diluted with water (O.D.=1.0, Fig.1e).Fig.1f shows the XRD patterns of the silver nanocubes, where four major diffraction peaks can be identified at 2θ=38.1。, 44.3。, 64.4。 and 77.5。, corresponding to the (111), (200), (220) and (311) facets of face-centered cubic (fcc) Ag (JCPDS, No.04-0783).Again, this is consistent with the formation of silver nanocubes.

    Fig.1.(a)SEM image of Ag nanocubes.Inset is the corresponding size distribution.(b) UV-vis absorption spectra of Ag nanocubes sol samples.(c) TEM image of Ag nanocubes.(d) Photograph of the as-synthesized Ag nanocube sol at the concentration of 2.98×109 particles/mL.(e) Photograph of the Ag nanocube sol at the concentration is 9.62×108 particles/mL.(f) XRD patterns of the assynthesized Ag nanocubes.

    The obtained Ag nanocubes were then used to prepare Ag nanocubes/polyelectrolyte/Au film sandwich structures.When the Ag nanocube sol was directly dropcast onto the polyelectrolyte/Au film surface, the nanocubes were mostly aggregated in the coffee rings after solvent evaporation, as manifested in laser scanning confocal microscopic Raman measurements(Fig.S1 in Supporting information) [25-27].A more uniform distribution of the nanocubes could be obtained by adding ethanol into the sol before dropcasting on the polyelectrolyte surface (Fig.S2 in Supporting information) [28], due to the reduced surface tension and rapid evaporation of ethanol at room temperature[29-31].However,the spacing between neighboring nanocubes generally remains too big to achieve apparent LSP-LSP coupling, which compromised the enhancement factor and LOQ.Interestingly, the addition of an ethanolic solution of 1-dodecanethiol,instead of pure ethanol,into the Ag nanocube sol before dropcasting onto the polyelectrolyte layer resulted in the formation of a highly ordered edge-to-edge monolayer after solvent evaporation (Fig.2a) [32], as manifested clearly in SEM measurements where the edge-to-edge spacing was estimated to be ca.1 nm (Fig.2b).The SERS performance of the resulting Ag nanocubes/polyelectrolyte/Au film sandwich structures was then evaluated by using CV as the probe molecule.To evaluate the LOD and LOQ of the sandwich substrate,Fig.2c shows rene sulfonate (PSS, Mw= 70 kDa, Aldrich) layer was then the SERS profiles of CV at the concentration of 10-8mol/L collected from 15 repeated measurements on three substrates prepared in the same manner.The CV concentration was lowered to 10-9,10-10and 10-11mol/L, and the corresponding SERS profiles were depicted in Fig.2d.In general, relative standard deviations(RSD)of the intensity of the four main vibrational peaks less than 20% is needed for quantitative analysis by SERS [33,34].Significantly, from Fig.S3 (Supporting information), one can also see that the four Raman peaks all showed a consistent variation trend of the intensity in 45 acquisitions on the three monolayer substrates.This means that any of the peaks can be used for the quantitative analysis of the target molecule (CV in the present measurement), which is particularly important when multiple molecules co-adsorb onto the substrate surface and some of the spectral features overlap.One can see that apparent SERS signals remained well resolved at concentration above 10-10mol/L, with the RSD values(Fig.2e)lower than 20%,suggesting an LOQ of 10-10mol/L,which is lower than that of traditional Ag nanocubes-based sandwich substrates prepared by simple dropcast(10-8mol/L)and coffee ring Ag nanocube substrates (5×10-8mol/L) [11,12].This suggests a remarkable performance of the sandwich substrate with good point-to-point and sample-to-sample repeatability.Such a compact,ordered structure may lead to strong LSP-LSP coupling,as manifested in FDTD simulation (Fig.3).From the FDTD simulations, one can see that the LSP-LSP resonance enhances the electromagnetic field in the gap (1 nm) between neighboring nanocubes (Fig.3).As linearly polarized light (1 V/m) was used along the X direction,there was no LSP-LSP resonance along the Y direction in the tetramer (Fig.3d).That is why the electric field strength of the tetramer is less than that of the trimer.In general,the LSP-LSP effect becomes intensified with an increasing number of nanocubes in the assembly.In contrast to the substrate prepared by the addition of pure ethanol(Fig.S4 in Supporting information),the LOD of the substrate prepared with the addition of an ethanolic solution of 1-docanethiol was found to be only ca.10-11mol/L for CV (Fig.4a).

    Fig.2.(a)Schematic illustration of 1-dodecanethiol-ethanol-water dropcasting deposition method.(b)SEM micrograph of edge-to-edge arrangement of Ag nanocubes in a monolayer.(c)SERS spectra of CV(10-8 mol/L)on three sandwich substrates in 15 repeated measurements.(d)SERS spectra of CV at different concentrations(from 10-9 mol/L to 10-11 mol/L).(e) The RSD values of the four main Raman peaks (912 cm-1,1174 cm-1,1364 cm-1 and 1586 cm-1) of CV (from 10-8 mol/L to 10-11 mol/L).

    Fig.3.Simulations of the electric field in the gap(1 nm)with a different number of Ag nanocubes: (a) one, (b) two, (c) three and (d) four.The localized electric field distribution of the Ag/PE/Au structures on the z=0 plane (excitation wavelength 532 nm) is collected by the field monitor.

    Fig.4.(a) SERS spectra of CV at different concentrations (from 10-7 mol/L to 10-12 mol/L) on Ag nanocubes-based sandwich substrates prepared by the addition of a 1-dodecanethiol-ethanol-water(D-E-W)mixture.(b)SERS spectra of CV(10-8 mol/L),R6 G(10-9 mol/L)and co-adsorbed CV(#,10-8 mol/L)and R6 G(*,10-9 mol/L).(c)SERS spectra of co-adsorbed CV and R6 G at different molar ratios.(d)Relationship between the intensity of the characteristic peaks(609 cm-1 and 912 cm-1)and the concentration(M: mol/L) of the probe molecules (CV; R6 G).

    In practical applications, multiple analytes often coexist.It is highly desired that SERS can be used for the detection without separation of the various components, despite possible spectral overlap with non-target molecules [35].In the present study, the pair of CV and R6 G was used as the illustrating example(Fig.S5 in Supporting information).R6 G can be seen to exhibit much more intense SERS signals than CV(Fig.S6 in Supporting information).As the absorption peak of R6 G is located at 524 nm,while that of CV at 590 nm,excitation at 532 nm can intensify the R6 G Raman signals.Consequently, when R6 G (10-9mol/L) and CV (10-8mol/L) were co-adsorbed onto the sandwich substrate, the Raman profiles became an oblique line (Fig.S7 in Supporting information).Repetitive tests (Fig.S7) show a uniform adsorption of the two molecules on the silver nanocube arrays.

    After the baseline of the original SERS spectra in Fig.S7 were adjusted, one can see more intuitively the changes of the peak intensity before and after the mixing of the two probe molecules(Fig.4b).The peaks at 609 and 912 cm-1are independent of the other probe molecule (Tables S1 and S2 in Supporting information).This suggests that these two peaks can be used to quantify the concentration of the corresponding probe( Figs.4c and d).The concentration of R6 G was varied from 0.8×10-9mol/L to 0.2×10-9mol/L, and from 0.2×10-8mol/L to 0.8×10-8mol/L for CV.Fig.4c shows the SERS profiles of the two molecules at different molar ratios.One can see that with the decrease of R6 G concentration, the intensity of the R6 G peak at 609 cm-1decreases, and concurrently the intensity of the CV peak at 912 cm-1increases.Linear regression of the peak intensities yields an R2coefficient of 0.99 for R6 G and 0.98 for CV, suggesting high feasibility of using the sandwich substrate for simultaneous detection of multiple analytes.

    In this study,a Ag nanocubes/polyelectrolyte/Au film sandwich structure with a monolayer of large-scale edge-to-edge ordered arrangement of Ag nanocubes was prepared by the addition of an ethanolic solution of 1-dodecanethiol into the Ag nanocube sol,and could be used as an effective substrate for SERS quantitative detection of probe molecules.The substrate showed high SERS intensity for CV with a low LOD of 10-11mol/L and LOQ of 10-10mol/L, at least one order of magnitude better than that with Ag nanocubes-based sandwich substrates prepared by the conventional dropcast method or with the addition of an ethanol-water mixture.Notably, the sandwich substrates also exhibited high point-to-point and sample-to-sample reproducibility, with RSD lower than 20%.Significantly,the sandwich substrate could be used to for simultaneous detection of dual analytes (e.g., CV and R6 G).Results from the present study demonstrate that with a uniform edge-to-edge arrangement of Ag nanocubes, the sandwich structure can be used as a high-performance Raman substrate due to strong LSP-LSP coupling, and can be used for the practical detection of complex molecular systems.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the Natural Science Foundation of China (NSFC, Nos.21471103, 51631001, 11574173 and 21603014),the Scientific Research Base Development Program and the science and technology innovation service ability construction project of the Beijing Municipal Commission of Education.

    Appendix A.Supplementary data

    Supplementary material related to this article can be found, in the online version,at doi:https://doi.org/10.1016/j.cclet.2020.10.021.

    国产主播在线观看一区二区| 亚洲人成电影免费在线| 18禁黄网站禁片午夜丰满| 中国美女看黄片| svipshipincom国产片| av视频在线观看入口| 日本 欧美在线| 中国美女看黄片| 香蕉国产在线看| 香蕉国产在线看| 国产麻豆成人av免费视频| 亚洲成国产人片在线观看| 国产亚洲欧美精品永久| 亚洲av电影不卡..在线观看| 国产精品永久免费网站| 久久热在线av| 国产激情偷乱视频一区二区| 亚洲国产日韩欧美精品在线观看 | 久久人妻福利社区极品人妻图片| 欧美丝袜亚洲另类 | 国产av一区在线观看免费| 亚洲自偷自拍图片 自拍| 午夜福利在线在线| 黑丝袜美女国产一区| 操出白浆在线播放| 在线观看舔阴道视频| 韩国精品一区二区三区| 日本免费a在线| 中文字幕精品亚洲无线码一区 | 免费av毛片视频| 欧美在线一区亚洲| 国产高清videossex| 白带黄色成豆腐渣| 午夜免费观看网址| 黄片大片在线免费观看| 亚洲欧美日韩高清在线视频| 午夜日韩欧美国产| 成熟少妇高潮喷水视频| 国产高清激情床上av| 亚洲熟女毛片儿| 日本熟妇午夜| 色av中文字幕| 99国产精品一区二区蜜桃av| 久久精品夜夜夜夜夜久久蜜豆 | 一本大道久久a久久精品| 亚洲专区国产一区二区| 午夜视频精品福利| 国产三级在线视频| 国内揄拍国产精品人妻在线 | 真人一进一出gif抽搐免费| 夜夜夜夜夜久久久久| 天堂影院成人在线观看| 成年女人毛片免费观看观看9| 国产精品美女特级片免费视频播放器 | 看片在线看免费视频| 国产亚洲av高清不卡| 免费在线观看影片大全网站| 色综合站精品国产| 精品一区二区三区四区五区乱码| 亚洲精品av麻豆狂野| 级片在线观看| 午夜两性在线视频| 亚洲一区中文字幕在线| 亚洲精品av麻豆狂野| 无限看片的www在线观看| 久久国产精品影院| 999久久久精品免费观看国产| 婷婷精品国产亚洲av在线| 国产主播在线观看一区二区| 国产一区二区激情短视频| 精品免费久久久久久久清纯| 亚洲精华国产精华精| 人人妻人人澡人人看| 午夜福利成人在线免费观看| 91大片在线观看| 色综合婷婷激情| 99riav亚洲国产免费| 一本久久中文字幕| 国产日本99.免费观看| 中文字幕最新亚洲高清| 韩国av一区二区三区四区| 身体一侧抽搐| 欧美午夜高清在线| 91麻豆精品激情在线观看国产| 欧美黑人精品巨大| 午夜亚洲福利在线播放| 亚洲五月婷婷丁香| 性欧美人与动物交配| 国产成人av激情在线播放| 欧美乱码精品一区二区三区| 国产激情欧美一区二区| 一本大道久久a久久精品| 国产一级毛片七仙女欲春2 | 亚洲av第一区精品v没综合| 欧美成狂野欧美在线观看| 桃色一区二区三区在线观看| 日本一本二区三区精品| 亚洲av片天天在线观看| av免费在线观看网站| 国产精品久久久久久亚洲av鲁大| 国产欧美日韩一区二区三| 黄色视频,在线免费观看| 免费看十八禁软件| 高清毛片免费观看视频网站| 一二三四在线观看免费中文在| 欧美绝顶高潮抽搐喷水| 成人特级黄色片久久久久久久| 神马国产精品三级电影在线观看 | 国产一区二区三区视频了| 欧美av亚洲av综合av国产av| 欧美黑人欧美精品刺激| 制服丝袜大香蕉在线| 真人一进一出gif抽搐免费| 久久久久国产一级毛片高清牌| 免费在线观看日本一区| 亚洲午夜精品一区,二区,三区| 亚洲全国av大片| 久久久久久国产a免费观看| 精品一区二区三区四区五区乱码| 午夜激情av网站| 国产一卡二卡三卡精品| 非洲黑人性xxxx精品又粗又长| 女人爽到高潮嗷嗷叫在线视频| 成人三级黄色视频| 18禁裸乳无遮挡免费网站照片 | 午夜a级毛片| 久久久久国内视频| 日日爽夜夜爽网站| 男女下面进入的视频免费午夜 | 欧美国产精品va在线观看不卡| 男女下面进入的视频免费午夜 | 岛国在线观看网站| 欧美黑人欧美精品刺激| 亚洲成国产人片在线观看| 国产精品1区2区在线观看.| 欧美黄色片欧美黄色片| 成人国语在线视频| 一级黄色大片毛片| a级毛片a级免费在线| 久久草成人影院| 国产精品1区2区在线观看.| 日本精品一区二区三区蜜桃| 免费看日本二区| 欧美精品亚洲一区二区| 亚洲av日韩精品久久久久久密| 欧美黄色淫秽网站| 夜夜看夜夜爽夜夜摸| 久久香蕉国产精品| 午夜久久久在线观看| 成人av一区二区三区在线看| 黑丝袜美女国产一区| 美女扒开内裤让男人捅视频| 黄色 视频免费看| 嫩草影院精品99| 精品午夜福利视频在线观看一区| 亚洲五月色婷婷综合| 他把我摸到了高潮在线观看| 国产极品粉嫩免费观看在线| 超碰成人久久| 亚洲熟妇中文字幕五十中出| 成年女人毛片免费观看观看9| 日本成人三级电影网站| 国产精品久久久人人做人人爽| 亚洲久久久国产精品| 久久精品91蜜桃| 自线自在国产av| 男女床上黄色一级片免费看| 精品久久久久久久末码| 国产成人一区二区三区免费视频网站| 精品国内亚洲2022精品成人| 亚洲五月色婷婷综合| 波多野结衣av一区二区av| 国产亚洲欧美在线一区二区| 一本一本综合久久| 国产高清videossex| 日本熟妇午夜| 伊人久久大香线蕉亚洲五| 久久精品国产清高在天天线| 日韩欧美免费精品| 一级作爱视频免费观看| 亚洲第一电影网av| 国产精品亚洲美女久久久| 不卡一级毛片| 1024香蕉在线观看| a级毛片在线看网站| 欧美一级毛片孕妇| 国产亚洲精品av在线| 亚洲中文字幕日韩| 久久精品夜夜夜夜夜久久蜜豆 | 成人av一区二区三区在线看| 国产精品久久久久久精品电影 | 欧美 亚洲 国产 日韩一| 国产高清视频在线播放一区| 2021天堂中文幕一二区在线观 | 黄色毛片三级朝国网站| 亚洲精品一卡2卡三卡4卡5卡| 久久狼人影院| videosex国产| 亚洲五月婷婷丁香| 亚洲精品国产一区二区精华液| 亚洲av中文字字幕乱码综合 | 欧美日韩亚洲综合一区二区三区_| 成年人黄色毛片网站| 久久久久国产一级毛片高清牌| 男男h啪啪无遮挡| 亚洲国产高清在线一区二区三 | 黑丝袜美女国产一区| 1024手机看黄色片| 精品久久久久久成人av| 国产精品电影一区二区三区| 欧美绝顶高潮抽搐喷水| 亚洲专区中文字幕在线| 99热只有精品国产| 亚洲精华国产精华精| 成人三级做爰电影| 黄色a级毛片大全视频| 国产精品1区2区在线观看.| av在线播放免费不卡| 叶爱在线成人免费视频播放| 亚洲人成电影免费在线| 亚洲人成网站高清观看| 超碰成人久久| 婷婷精品国产亚洲av在线| 亚洲久久久国产精品| 午夜福利在线观看吧| 欧美成人免费av一区二区三区| 精品国内亚洲2022精品成人| 久久国产精品影院| 日韩成人在线观看一区二区三区| 淫秽高清视频在线观看| 欧美成狂野欧美在线观看| 免费看日本二区| 国产成人精品久久二区二区免费| 国产午夜福利久久久久久| 一进一出好大好爽视频| 亚洲九九香蕉| 日韩有码中文字幕| 精品久久久久久久久久免费视频| 韩国av一区二区三区四区| 夜夜看夜夜爽夜夜摸| 亚洲精品久久成人aⅴ小说| 精品久久久久久久末码| 国产又黄又爽又无遮挡在线| 在线观看www视频免费| 88av欧美| 亚洲成人久久爱视频| 一级毛片女人18水好多| 国产亚洲精品久久久久久毛片| 久久婷婷人人爽人人干人人爱| 丝袜美腿诱惑在线| 在线观看免费午夜福利视频| 欧美中文综合在线视频| 黑人操中国人逼视频| 欧美亚洲日本最大视频资源| 黄色女人牲交| 国产精品精品国产色婷婷| tocl精华| 国产人伦9x9x在线观看| 手机成人av网站| 国产高清视频在线播放一区| 91av网站免费观看| 亚洲一区高清亚洲精品| 成人精品一区二区免费| 一进一出抽搐gif免费好疼| 亚洲av美国av| 一本一本综合久久| 国内精品久久久久精免费| 国产亚洲精品久久久久久毛片| 黄色女人牲交| 又大又爽又粗| 久久国产精品人妻蜜桃| 欧美最黄视频在线播放免费| 9191精品国产免费久久| 午夜福利在线在线| 免费高清在线观看日韩| 久久精品国产99精品国产亚洲性色| 成人永久免费在线观看视频| 午夜影院日韩av| 精品免费久久久久久久清纯| 成年女人毛片免费观看观看9| 久久国产亚洲av麻豆专区| 一区二区三区高清视频在线| 国产精品九九99| 午夜精品久久久久久毛片777| 精品一区二区三区av网在线观看| 日韩中文字幕欧美一区二区| 久热这里只有精品99| 免费看十八禁软件| 淫妇啪啪啪对白视频| 老汉色∧v一级毛片| 国产精品九九99| 一进一出抽搐动态| 91在线观看av| 人人妻人人澡欧美一区二区| 丝袜美腿诱惑在线| 日本撒尿小便嘘嘘汇集6| 免费在线观看视频国产中文字幕亚洲| 久久国产精品男人的天堂亚洲| 免费女性裸体啪啪无遮挡网站| 欧洲精品卡2卡3卡4卡5卡区| av免费在线观看网站| 久久中文看片网| 国产欧美日韩一区二区精品| 精品国内亚洲2022精品成人| 老熟妇仑乱视频hdxx| 俄罗斯特黄特色一大片| 免费看日本二区| 亚洲专区国产一区二区| 波多野结衣高清作品| 国产精品美女特级片免费视频播放器 | 热re99久久国产66热| 国产亚洲精品第一综合不卡| 免费女性裸体啪啪无遮挡网站| 国产单亲对白刺激| 欧美国产精品va在线观看不卡| 婷婷六月久久综合丁香| 欧美成人一区二区免费高清观看 | 精品久久久久久,| 亚洲国产欧洲综合997久久, | 国产一级毛片七仙女欲春2 | 免费一级毛片在线播放高清视频| 午夜影院日韩av| 夜夜爽天天搞| 欧美大码av| 午夜两性在线视频| 男女午夜视频在线观看| 国产精品av久久久久免费| 成人亚洲精品av一区二区| 国产精品99久久99久久久不卡| 亚洲精品色激情综合| 国内精品久久久久久久电影| 黄色成人免费大全| 十八禁网站免费在线| 欧美黄色淫秽网站| 国产精品1区2区在线观看.| 亚洲精品色激情综合| 亚洲人成伊人成综合网2020| 激情在线观看视频在线高清| 88av欧美| 三级毛片av免费| 又黄又爽又免费观看的视频| 99热只有精品国产| 亚洲成人久久爱视频| 日韩国内少妇激情av| 色综合亚洲欧美另类图片| 男人操女人黄网站| 99久久99久久久精品蜜桃| 婷婷六月久久综合丁香| 精品欧美国产一区二区三| 欧美最黄视频在线播放免费| 成人三级黄色视频| 国产黄色小视频在线观看| 国产高清videossex| 亚洲 国产 在线| 亚洲精品中文字幕一二三四区| 国产精品一区二区免费欧美| 亚洲精品在线观看二区| 成人午夜高清在线视频 | 男人舔女人下体高潮全视频| 成人手机av| 女人爽到高潮嗷嗷叫在线视频| 色综合亚洲欧美另类图片| 国产成人av教育| 免费在线观看视频国产中文字幕亚洲| 悠悠久久av| 国产高清激情床上av| 精品乱码久久久久久99久播| 琪琪午夜伦伦电影理论片6080| 淫秽高清视频在线观看| 久久性视频一级片| 亚洲成人久久爱视频| 国产精品永久免费网站| xxx96com| 天天一区二区日本电影三级| 成人av一区二区三区在线看| 亚洲片人在线观看| 久久人妻福利社区极品人妻图片| 免费在线观看亚洲国产| 香蕉久久夜色| 久久天堂一区二区三区四区| 两人在一起打扑克的视频| 久久国产精品影院| 欧美激情极品国产一区二区三区| 精品午夜福利视频在线观看一区| 亚洲中文字幕一区二区三区有码在线看 | 国产国语露脸激情在线看| 成人国产综合亚洲| 久久精品影院6| 欧美中文日本在线观看视频| 亚洲一区二区三区色噜噜| 亚洲av电影在线进入| 一本精品99久久精品77| ponron亚洲| 亚洲一码二码三码区别大吗| 国产精品电影一区二区三区| 国产又色又爽无遮挡免费看| 青草久久国产| 国产熟女xx| 我的亚洲天堂| 搡老岳熟女国产| x7x7x7水蜜桃| 国产一级毛片七仙女欲春2 | 成熟少妇高潮喷水视频| 亚洲国产欧美日韩在线播放| 欧美在线一区亚洲| 亚洲国产欧美网| 日本 av在线| 18禁裸乳无遮挡免费网站照片 | 午夜福利高清视频| 长腿黑丝高跟| 久久久国产成人精品二区| 999精品在线视频| 亚洲av熟女| 夜夜躁狠狠躁天天躁| 搡老岳熟女国产| 男人的好看免费观看在线视频 | 中文字幕精品免费在线观看视频| 免费电影在线观看免费观看| 十分钟在线观看高清视频www| 精品少妇一区二区三区视频日本电影| 久久久久久大精品| 天堂影院成人在线观看| 人人妻人人澡欧美一区二区| 91国产中文字幕| 亚洲一区中文字幕在线| 亚洲av成人av| 国产激情久久老熟女| 亚洲av成人不卡在线观看播放网| 亚洲国产欧美一区二区综合| 91大片在线观看| 久久欧美精品欧美久久欧美| 最近最新免费中文字幕在线| 可以在线观看毛片的网站| 色综合亚洲欧美另类图片| 桃色一区二区三区在线观看| 亚洲精品在线美女| 色播亚洲综合网| 搡老熟女国产l中国老女人| 亚洲精品色激情综合| 午夜福利成人在线免费观看| 99国产极品粉嫩在线观看| 午夜精品在线福利| 欧美绝顶高潮抽搐喷水| 欧美性猛交黑人性爽| 国产人伦9x9x在线观看| 国产精品九九99| 久久国产精品影院| 日韩欧美免费精品| 看免费av毛片| 亚洲精品一区av在线观看| 国产av不卡久久| 国产aⅴ精品一区二区三区波| 欧美av亚洲av综合av国产av| 18禁黄网站禁片午夜丰满| 久久久久久免费高清国产稀缺| 中亚洲国语对白在线视频| 91九色精品人成在线观看| 久久久水蜜桃国产精品网| 国产久久久一区二区三区| av中文乱码字幕在线| 午夜精品久久久久久毛片777| 侵犯人妻中文字幕一二三四区| 国产伦人伦偷精品视频| 中文字幕高清在线视频| 国产精品免费一区二区三区在线| 亚洲精品国产一区二区精华液| 精品人妻1区二区| 欧美日韩一级在线毛片| 成人特级黄色片久久久久久久| 性色av乱码一区二区三区2| 午夜日韩欧美国产| 国产av不卡久久| xxx96com| 久久天堂一区二区三区四区| 国产v大片淫在线免费观看| 自线自在国产av| 十八禁人妻一区二区| 亚洲av五月六月丁香网| 叶爱在线成人免费视频播放| 日日夜夜操网爽| 天堂动漫精品| 级片在线观看| 国产又色又爽无遮挡免费看| 亚洲免费av在线视频| 嫩草影视91久久| 国产熟女午夜一区二区三区| 中文亚洲av片在线观看爽| 男女视频在线观看网站免费 | 一本综合久久免费| 啦啦啦 在线观看视频| 国产片内射在线| 亚洲片人在线观看| 久久久久国产一级毛片高清牌| 成人国产一区最新在线观看| 午夜精品在线福利| 日本成人三级电影网站| 日本a在线网址| 超碰成人久久| 亚洲性夜色夜夜综合| 真人做人爱边吃奶动态| АⅤ资源中文在线天堂| 中文字幕最新亚洲高清| 草草在线视频免费看| 一卡2卡三卡四卡精品乱码亚洲| 精品人妻1区二区| 一进一出抽搐动态| 国产爱豆传媒在线观看 | 精品欧美国产一区二区三| 精品国产亚洲在线| www.熟女人妻精品国产| 又紧又爽又黄一区二区| 久久天躁狠狠躁夜夜2o2o| 国产精品乱码一区二三区的特点| 国产一区二区三区在线臀色熟女| 日日夜夜操网爽| 啦啦啦 在线观看视频| 脱女人内裤的视频| 亚洲av成人av| 啦啦啦韩国在线观看视频| 亚洲熟妇中文字幕五十中出| 久久久久久久久免费视频了| 国产蜜桃级精品一区二区三区| 亚洲欧美精品综合久久99| 天天躁狠狠躁夜夜躁狠狠躁| av片东京热男人的天堂| 人人妻人人澡欧美一区二区| 亚洲成a人片在线一区二区| 国产精品久久久久久亚洲av鲁大| 男人的好看免费观看在线视频 | 亚洲国产高清在线一区二区三 | 亚洲欧美日韩高清在线视频| 免费电影在线观看免费观看| 91大片在线观看| 亚洲第一青青草原| 中文在线观看免费www的网站 | 国产不卡一卡二| 色av中文字幕| 美女午夜性视频免费| 亚洲av电影不卡..在线观看| 精华霜和精华液先用哪个| 老司机福利观看| 男人舔女人下体高潮全视频| 欧美日韩亚洲国产一区二区在线观看| 男女午夜视频在线观看| 成年人黄色毛片网站| 悠悠久久av| 美女 人体艺术 gogo| 成人av一区二区三区在线看| 欧美日韩福利视频一区二区| 午夜福利高清视频| 精品无人区乱码1区二区| 波多野结衣高清无吗| 欧美色欧美亚洲另类二区| 亚洲欧美日韩无卡精品| 99久久综合精品五月天人人| 啦啦啦免费观看视频1| 成熟少妇高潮喷水视频| 在线观看一区二区三区| 国产激情久久老熟女| 午夜福利一区二区在线看| 中文字幕最新亚洲高清| 香蕉av资源在线| 人妻丰满熟妇av一区二区三区| 88av欧美| 亚洲精品av麻豆狂野| 久久久久久大精品| 韩国av一区二区三区四区| 91av网站免费观看| www日本在线高清视频| 久久亚洲真实| 婷婷精品国产亚洲av| 亚洲精品久久国产高清桃花| 精品国产超薄肉色丝袜足j| 欧美人与性动交α欧美精品济南到| 少妇粗大呻吟视频| 99热6这里只有精品| 午夜免费成人在线视频| 成年免费大片在线观看| 国产三级在线视频| 99久久综合精品五月天人人| 久久婷婷人人爽人人干人人爱| 91大片在线观看| 国产黄a三级三级三级人| 一级毛片女人18水好多| 18禁黄网站禁片免费观看直播| 99久久精品国产亚洲精品| 午夜福利在线在线| 亚洲第一欧美日韩一区二区三区| 亚洲精品久久成人aⅴ小说| 日韩欧美国产在线观看| 亚洲久久久国产精品| 亚洲中文日韩欧美视频| 天天添夜夜摸| 欧美性长视频在线观看| av超薄肉色丝袜交足视频| 日本黄色视频三级网站网址| 最近在线观看免费完整版| 日韩欧美国产一区二区入口| 十分钟在线观看高清视频www| 啦啦啦免费观看视频1| 色尼玛亚洲综合影院| 国产精品二区激情视频| 色播在线永久视频| 免费观看人在逋| 亚洲精品一卡2卡三卡4卡5卡| 久久久久九九精品影院| 国产高清视频在线播放一区| 桃色一区二区三区在线观看| 国产又色又爽无遮挡免费看| 国产高清videossex| 免费高清视频大片| 精品高清国产在线一区| 亚洲欧美一区二区三区黑人| 精品不卡国产一区二区三区| 亚洲色图 男人天堂 中文字幕|