• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimized Pt-MnOx interface in Pt-MnOx/3DOM-Al2O3 catalysts for enhancing catalytic soot combustion

    2021-10-14 00:55:26JingXiongZhenguoLiPengZhngQiYuKixingLiYilinZhngZhenZhoJinLiuJinmeiLiYuechngWei
    Chinese Chemical Letters 2021年4期

    Jing Xiong,Zhenguo Li,Peng Zhng,Qi Yu,Kixing Li,Yilin Zhng,Zhen Zho,Jin Liu,Jinmei Li,Yuechng Wei,,*

    a National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology & Research Center Co., Ltd., Tianjin 300300,China

    b State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China

    1 These authors contributed equally to this work.

    ABSTRACT The catalysts of three-dimensionally ordered macroporous (3DOM) Al2O3-supported core-shell structured Pt@MnOx nanoparticles (3DOM-Pt@MnOx/Al2O3) were successfully prepared by the gas bubbling-assisted membrane reduction-precipitation (GBMR/P) method.Pt@MnOx core-shell nanoparticles(NPs)are highly dispersed on the inner surface of 3DOM-Al2O3 support.Pt@MnOx/3DOM-Al2O3 catalysts, which combine both advantages of high-efficiency soot-catalyst contact by 3DOM-Al2O3 structure and the abundant active sites by the optimized Pt-MnOx interface, exhibit high catalytic activities for soot combustion, and the catalytic activities are strongly dependent on the thickness of MnOx shell.Among the catalysts, 3DOM-Pt@MnOx/Al2O3-1 catalyst with optimized Pt-MnOx interface shows the highest catalytic activity for soot combustion, i.e., its values of T50 and SCO2m are 351 。C and 98.6%,respectively.The highest density of Pt-MnOx active sites for adsorption-activation of gaseous O2 is responsible for enhancing catalytic activity for soot combustion.Pt@MnOx/3DOM-Al2O3 catalysts are promising to practical applications for the emission reduction of soot particles.

    Keywords:3DOM material Platinum Manganese oxide Strong metal-oxide interaction Soot combustion

    Soot particles emitted from motor vehicles have caused serious atmosphere environment and human health problems [1,2].The elimination of soot particles is urgently needed.Nowadays,one of the most efficient techniques for soot purification is the continuously regenerating technology (CRT), which consists of oxidation catalysts and diesel particulate filters (DPFs) [3,4].The key challenge of CRT is to find a highly active catalyst with low ignition temperature for soot combustion.Platinum (Pt) as active site is main component of soot purification catalysts in practice[5,6].The high-efficient development of Pt-based catalysts for soot combustion is still a crucial goal in the field of vehicle exhaust treatment.

    The catalytic oxidation of soot particles is a complex heterogeneous reaction,which occurs at the three-phase contact interfaces of soot particle, catalyst and gaseous reactants(O2, NO) [7].Thus,the catalytic activity for soot combustion is closely correlated with two factors:The contact efficiency between soot particles and the catalysts and the density of active sites for the adsorptionactivation of O2[8-11].In order to meet the need of designing highperformance catalysts,three-dimensionally ordered macroporous(3DOM) materials are developed in the field of soot purification[12-15].3DOM materials with uniform pore sizes (>50 nm) can dramatically increase the contact efficiency between soot and the catalyst by improving the mass diffusion and transfer of soot particles [16,17].On the other hand, the active sites for O2adsorption-activation, which locates at the metal-oxide interface,are often oxygen vacancy or coordination unsaturated metal cations [18-20].The density of active sites for Pt-based materials can be further improved by the establishment of unique interface structure between Pt (core) and oxide (shell) with strong metaloxide interaction [21,22].The novel core-shell nanostructure can optimize the Pt-oxide interface and enhance the redox ability of Ptbased materials [23,24].The catalysts of Pt@oxides core-shell nanostructure show superior catalytic performances unattainable by their single counterparts[25-27].Thus,the design of Pt@oxide core-shell nanoparticles(NPs)provides an effective mean to study the effect of oxide shell on catalytic activity for soot combustion.

    Herein, a series of catalysts with Pt@MnOxcore-shell NPs supported on 3DOM Al2O3were prepared via the gas bubblingassisted membrane reduction-precipitation (GBMR/P) method shown in Supporting information [28].The catalytic activities for soot combustion were evaluated by the temperature programmed oxidation (TPO) tests.3DOM-Pt@MnOx/Al2O3catalysts with the optimized Pt-MnOxinterface exhibit good catalytic activity and stability for soot combustion.The thickness effect of MnOxshell on catalytic activity was systemically investigated.Pt@MnOx/3DOM-Al2O3-1 catalyst with the high density of active sites shows the highest catalytic activity for soot combustion.3DOM-Pt@MnOx/Al2O3catalysts are not only excellent systems for soot purification, but also open a new window for fundamental research of Pt-MnOxsynergistic effect.

    The morphology and macroporous structures of Pt/3DOMAl2O3and Pt@MnOx/3DOM-Al2O3catalysts were investigated by scanning electron microscopy (SEM) and transmission electron microscopy(TEM)images.As shown in Fig.1A,the catalyst exhibits a well-defined 3DOM structure,indicating that the introduction of MnOxon the surface of Pt/3DOM-Al2O3catalyst has a negligible impact to 3DOM structure.The uniform periodic voids in all the catalysts are observed,and the macroporous size is in the range of 280-320 nm (Table S2 in Supporting information).It is corresponding to shrinkage of 25%-35%in comparison with the original size (380 ± 50 nm) of PMMA microspheres.This shrinkage is caused by the removal of colloidal crystal template and the formation of Al2O3crystals at a high temperature.In addition,the sub-layer of 3DOM materials can be clearly observed,and the macropores are interconnected through pore windows with a diameter of 80 ± 5 nm, which is larger than particle diameter of soot particles(>25 nm).Soot particles can easily contact the active sites on the surface of macroporous wall because of the enhancing mass transfer of soot particles into the high connectivity of macropores.After introduction of Pt or Pt-MnOxNPs supported on the surface of 3DOM-Al2O3, 3DOM structure of the catalysts kept perfect shown in Figs.1B-D, suggesting that the ordered marcoporous structure of the catalysts has not been destroyed during the processes of GBMR/P method.

    Fig.1.SEM (A-D) and TEM (E) images of Pt/3DOM-Al2O3 and Pt@MnOx/3DOMAl2O3 catalysts.(A) 3DOM-Al2O3; (B) Pt/3DOM-Al2O3; (C) Pt@MnOx/3DOM-Al2O3-0.5; (D, E) Pt@MnOx/3DOM-Al2O3-1.

    The ordered macroporous structure of Pt@MnOx/3DOM-Al2O3-1 catalyst was further observed by the TEM image shown in Fig.1E.It shows that their size distributions of pore diameter arein the range of 280-320 nm, and the periodic macropores are interconnected via openwindows(80±5 nm in diameter),which is in accordance with the results of SEM images.3DOM structure allows soot particles to contact the inner surface of macropores, which can enhance the contact efficiency between soot and the catalyst.As shown in inset of Fig.1E,it is clearly observed that MnOxshell coated on the surface ofPtcore,whichistypicalPt-MnOxcore-shellstructure.Bymeansof statistical analyses,the particle sizes of Pt core are in the range of 2-8 nm with a narrow distribution, and the mean diameter of Pt core is about 4.5-5.0 nm (Table S2).In addition, Pt core exhibits irregular spherical morphology.The strong Pt-MnOxinteraction will boost the formation of coordination unsaturated MnOxsites at core-shell interfaces,which is favorable for enhancing adsorptionactivation property for O2and activating the lattice oxygen in MnOxshell.Thus,the production of active oxygen species can improve the catalytic activity for soot combustion.

    To investigate the crystalline structure of 3DOM-Al2O3and 3DOM-Pt@MnOx/Al2O3catalysts, X-ray diffraction (XRD) was carried out, and the result is shown in Fig.2.It is noted that there are four strong and symmetric Bragg diffraction peaks (2θ)located at 37.6。, 39.5。, 45.7。 and 67.0。, which can be indexed to(311),(222),(400)and(440)lattice planes of Al2O3with the cubic structure(JCPDS No.10-0425),respectively.And the impurity peak is not observed,indicating that Al2O3support possesses the singlephase crystalline structure.For 3DOM-Pt/Al2O3catalyst, it is clearly observed that there are one strong diffraction peak at 39.9。with one weak peak at 81.3。,which are assigned to(111)and(311)crystal facets of supported Pt NPs (JCPDS No.70-2057), respectively.It suggests that Pt NPs are availably decorated on the surface of 3DOM-Al2O3.After introduction of MnOxcoated on the surface of Pt/3DOM-Al2O3catalyst, one characteristic diffraction peak at 33.8。appears,which is assigned to the(311)crystal facet of Mn3O4with cubic phase(JCPDS No.04-0732),and its intensities enhance remarkably with increasing of MnOxloading, while the peak intensities of supported Pt NPs decrease obviously, which is attributed to the covering effect of Mn3O4NPs on the surface of Pt NPs obtained by GBMP method.It is an indirect proof to formation of Pt@MnOxcore-shell structure,and the thickness of MnOxshell is correlated with its loading contents.In addition, the average crystallite sizes (D) of Al2O3in the catalysts are 13.5 ± 0.5 nm calculated by the Debye-Scherrer equation using the half-height width of (440) peak in Table S2.

    Fig.2.XRD patterns of 3DOM-Al2O3 and Pt@MnOx/3DOM-Al2O3 catalysts.Lines af: (a) 3DOM-Al2O3, (b) Pt/3DOM-Al2O3, (c) Pt@MnOx/3DOM-Al2O3-0.5, (d)Pt@MnOx/3DOM-Al2O3-1, (e) Pt@MnOx/3DOM-Al2O3-2, (f) Pt@MnOx/3DOMAl2O3-4.

    Fig.S1 (Supporting information) exhibits the N2adsorptiondesorption isotherms of the 3DOM-Al2O3and 3DOM-Pt@MnOx/Al2O3-X catalysts.It is observed that it is a linear relation of the absorbed volume with relative pressure in the relative pressure(P/P0)range of 0-0.4,and there is a typical type IV isotherm with a type H2 hysteresis loop in the P/P0range of 0.4-0.8 and a type H3 hysteresis loop in the P/P0range of 0.8-1.0, which is usually associated with the macroporous structure in the catalysts.Basis on the result of N2adsorption-desorption isotherms, the porous characteristics and BET surface area (SBET) of all the catalysts are listed in Table S2.The SBETvalues of the catalysts are located in the range of 52.6-63.1 m2/g,and their pore volumes are in the range of 0.11-0.19 cm3/g.The mesopore sizes of the catalysts are in the range of 3-12 nm, indicating that the intergranular mesoporous existed on the 3DOM inner wall.The actual amounts(3.7%±0.2%)of Pt element in the catalysts were determined by ICP-OES technique in Table S2,which are close to the theoretical contents of 4 wt%.

    For deep oxidation reaction, the catalytic activity for soot combustion is closely related to the redox of the catalysts.Fig.3 shows the hydrogen temperature-programmed reduction(H2-TPR) profiles of 3DOM-Al2O3and 3DOM-Pt@MnOx/Al2O3-X catalysts.For 3DOM-Al2O3,there is not obviously H2consumption peak at 150-750 。C regions.The reduction peaks of Pt/3DOMAl2O3catalyst located at 90 and 357 。C were observed,which are assigned to the reduction of surface and oxidized Pt species at the Pt-Al2O3interface, respectively.After introduction of MnOxshell on the surface of Pt/3DOM-Al2O3,a series of reduction peaks at 178,262 and 459 。C are observed, which are assigned to the stepwise reduction of the surface oxygen species, MnOxspecies(Mn3+→ Mn2+and Mn2+→ Mn0), respectively [29,30].The formation of Pt-O-Mn bonds at the Pt-MnOxinterface can improve their reducibility, and the spillover of hydrogen atom from Pt to MnOxshell occurs easily at metal-oxide interface, indicating the existence of a strong Pt-MnOxinteraction [31].It is noted that,Pt@MnOx/3DOM-Al2O3-1 catalyst possesses the largest reduction peak at 262 。C,which may be crucial to catalytic soot combustion in the range of 200-400 。C.With increasing of MnOxloading contents,the H2consumption peak at 459。C became width and the intensity of reduction peak at 262 。C decreased.It indicates that the appropriate thickness of MnOxshell is beneficial for enhancing the redox property,and the active interface between Pt and MnOxcan be maximally exposed to the TPR atmosphere because of the optimal thickness of MnOxshell on Pt core.Among the catalysts,Pt@MnOx/3DOM-Al2O3-1 catalyst with optimal area of active Pt-MnOxinterfaceshows the best redox property,thus,it is potential to exhibit the super catalytic performance for soot combustion.

    Fig.3.The H2-TPR profiles of 3DOM-Al2O3, Pt/3DOM-Al2O3 and Pt@MnOx/3DOMAl2O3 catalysts.Line a-e:(a)3DOM-Al2O3,(b)Pt/3DOM-Al2O3,(c)Pt@MnOx/3DOMAl2O3-0.5, (d) Pt@MnOx/3DOM-Al2O3-1, (e) Pt@MnOx/3DOM-Al2O3-4.

    The catalytic performances of the catalysts for soot combustion were evaluated by soot-TPO method under conditions of loose contact between soot and catalysts by mixing with a spoon for 5 min, and the results are shown in Table 1.In the absence of the catalysts, soot combustion needs to high temperature(T50=580 。C).For 3DOM-Al2O3catalyst,its T50value decreases to 532 。C, which is still higher temperature in comparison with vehicle exhaust temperature.In our previous works [32], it has been proved that the interconnected 3DOM structure can dramatically enhance contact efficiency between soot and catalysts, which is beneficial for boosting catalytic soot combustion.After introduction of supported Pt NPs,the T50value(462 。C)over Pt/3DOM-Al2O3catalyst for soot combustion decreases obviously, indicating that Pt NPs are main active component during catalytic soot combustion.After further introduction of MnOxcoated on the surface of Pt/3DOM-Al2O3, the catalytic activities for soot combustion are improved significantly.Among the 3DOM-Pt@MnOx/Al2O3-X catalysts, 3DOM-Pt@MnOx/Al2O3-1 catalyst shows the highest catalytic activity during soot combustion, i.e., its T50value is only 351 。C, which is far lower than those of 3DOM-Pt/Al2O3(T50= 462 。C) and 3DOM-MnOx/Al2O3-1(T50=425 。C).It indicates that supported Pt@MnOxcore-shell NPs play an important role in enhancing the catalytic activity for soot combustion, and the effect of Pt@MnOxcore-shell nanostructure on the catalytic activities is strongly related to the thickness of MnOxshell.The strong Pt-MnOxinteraction at core-shell interface can enhance the adsorption-activation capability of O2and the mobility of lattice oxygen.In addition, 3DOM-Pt@MnOx/Al2O3catalysts show the high selectivity of CO2product (SCO2m) during catalytic soot combustion, i.e., their values are more than 98%,which is attributed to the strong oxidation ability of Pt@MnOxcore-shell NPs for CO molecules.It suggests that CO intermediates are immediately oxidation under the practical conditions of motor vehicle operation.

    Table 1 The catalytic performances of Pt@MnOx/3DOM-Al2O3 catalysts during soot combustion.

    The intrinsic catalytic performances for soot combustion were also investigated, and the turnover frequency (TOF) obtained by the ratio of reaction rates(R)and active oxygen amounts are shown in Table 1.Fig.S2 (Supporting information) shows the soot conversion lines over time at 310 。C (the approximate kinetic regime can be achieved at this temperature),whose slopes are the R values during soot combustion.Pt-MnOx/3DOM-Al2O3-1 catalyst has the largest R value (0.062 μmol g-1min-1), which is equal to the 3-fold of Pt/3DOM-Al2O3catalyst,indicating that the Pt-MnOxsynergetic effect can boost catalytic soot combustion.Fig.S3(Supporting information)shows the tests of isothermal anaerobic titration using soot particles to obtain the surface active oxygen amounts.Combined with the above results,the TOF values can be obtained.The TOF value of Pt-MnOx/3DOM-Al2O3-1 catalyst is the largest(2.45 h-1), indicating that the optimal Pt@MnOxcore-shell structure can enhance the intrinsic catalytic activity for soot combustion.In addition, Fig.S4 (Supporting information) shows the results of soot-TPO cycles over 3DOM-Pt@MnOx/Al2O3-1 catalyst to investigate its catalytic stability.The T10, T50and T90values are almost unchanged during four soot-TPO cycles,and the SCO2mvalues keep constant.The marcopore and core-shell nanostructures of 3DOM-Pt@MnOx/Al2O3-1 catalyst remain perfect after four soot-TPO cycles shown in Fig.S5 (Supporting information), indicating that the catalysts have the excellent catalytic activity and stability during soot combustion.

    In summary, a series of 3DOM Al2O3-supported Pt@MnOxcore-shell catalysts were successfully synthesized by GBMR/P method.The periodic voids(280-320 nm)of 3DOM structure are clearly observed, and which are also interconnected via the pore window (80 ± 5 nm).The interconnected macropores provide an ideal reaction space for diesel soot particles, and the contact efficiency between catalyst and soot particles will be increased dramatically.The Pt@MnOxcore-shell NPs are highly dispersed on the inner surface of 3DOM-Al2O3support.The thicknesses of MnOxshell increase gradually with increase in the content of manganese oxide in catalysts.The strong interaction between Pt core and MnOxshell is beneficial for the improvement of redox ability.The catalytic activity of 3DOM-Pt@MnOx/Al2O3-X catalysts for soot combustion is strongly dependent on the thickness of MnOxshell,i.e.,the catalyst with the optimal thickness of MnOxshell shows a higher catalytic activity in comparison with other catalysts with a larger thickness of MnOxshell.Among the catalysts, 3DOMPt@MnOx/Al2O3-1 catalyst exhibits the highest catalytic activity for soot combustion.It is attributed to that the strong Pt-MnOxinteraction can boost the increasing density of active sites for the adsorption-activation of gaseous O2.The present work not only is very rewarding for high-efficiency purification of solid particles emitted from diesel engines, but also can be well-referenced for the design and manufacture of other advanced catalysts for soot combustion.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.21673142, 21972166), Beijing Natural Science Foundation (No.2202045), National Engineering Laboratory for Mobile Source Emission Control Technology(No.NELMS2017A05), PetroChina Innovation Foundation (No.2018D-5007-0505) and Science Foundation of China University of Petroleum, Beijing (No.242017QNXZ02).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found, in the online version,at doi:https://doi.org/10.1016/j.cclet.2020.10.014.

    一卡2卡三卡四卡精品乱码亚洲| 99久久综合精品五月天人人| 91老司机精品| 国产精品久久电影中文字幕| 伦理电影免费视频| 午夜成年电影在线免费观看| 丰满人妻熟妇乱又伦精品不卡| 级片在线观看| 少妇的逼水好多| 日本熟妇午夜| 国产精品1区2区在线观看.| av在线蜜桃| 亚洲 国产 在线| av欧美777| 十八禁网站免费在线| 久久中文字幕一级| 老鸭窝网址在线观看| 亚洲第一欧美日韩一区二区三区| 国产亚洲精品av在线| 999久久久国产精品视频| 五月玫瑰六月丁香| 亚洲成人久久爱视频| 精品一区二区三区av网在线观看| 国产极品精品免费视频能看的| 男女下面进入的视频免费午夜| 久久久久国产精品人妻aⅴ院| 国产午夜福利久久久久久| 久久99热这里只有精品18| 最近最新中文字幕大全免费视频| www.精华液| 成人高潮视频无遮挡免费网站| 无遮挡黄片免费观看| 午夜福利免费观看在线| 日本黄色片子视频| 欧美精品啪啪一区二区三区| 国产又色又爽无遮挡免费看| 久久精品91无色码中文字幕| 亚洲国产精品久久男人天堂| 欧美日韩综合久久久久久 | 亚洲国产欧美一区二区综合| 观看免费一级毛片| 三级国产精品欧美在线观看 | 麻豆一二三区av精品| 精品国产超薄肉色丝袜足j| 18禁国产床啪视频网站| 最近在线观看免费完整版| 欧美成人免费av一区二区三区| 成熟少妇高潮喷水视频| 午夜福利在线在线| 超碰成人久久| 精品国产乱子伦一区二区三区| 可以在线观看的亚洲视频| 桃色一区二区三区在线观看| 国产精品永久免费网站| 真人做人爱边吃奶动态| 亚洲色图av天堂| 午夜视频精品福利| 国产一区二区在线观看日韩 | 欧美日韩瑟瑟在线播放| 麻豆久久精品国产亚洲av| 美女大奶头视频| 麻豆国产97在线/欧美| 91av网站免费观看| 18禁美女被吸乳视频| 国产av不卡久久| 免费av毛片视频| www.自偷自拍.com| 国产午夜福利久久久久久| 亚洲美女黄片视频| 欧美黄色片欧美黄色片| 视频区欧美日本亚洲| 欧美在线一区亚洲| 熟女人妻精品中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 啦啦啦观看免费观看视频高清| 欧美绝顶高潮抽搐喷水| 不卡一级毛片| 国产野战对白在线观看| 国产精品,欧美在线| 一个人免费在线观看电影 | 婷婷精品国产亚洲av| 精品久久久久久,| 欧美日韩乱码在线| 高清在线国产一区| 国产高清视频在线播放一区| 国内毛片毛片毛片毛片毛片| 日韩欧美在线二视频| 一级黄色大片毛片| 国产精品日韩av在线免费观看| 女警被强在线播放| 99国产精品一区二区三区| av国产免费在线观看| 欧美zozozo另类| 欧美色视频一区免费| 欧美日韩亚洲国产一区二区在线观看| 日本一二三区视频观看| 俺也久久电影网| 亚洲欧美一区二区三区黑人| 18禁裸乳无遮挡免费网站照片| 国产高清有码在线观看视频| 18禁美女被吸乳视频| 麻豆av在线久日| 日本撒尿小便嘘嘘汇集6| 欧美大码av| 天天一区二区日本电影三级| 12—13女人毛片做爰片一| 国产高清激情床上av| 中文字幕熟女人妻在线| a在线观看视频网站| 国产v大片淫在线免费观看| 欧美最黄视频在线播放免费| 又黄又粗又硬又大视频| 成人av一区二区三区在线看| 一进一出好大好爽视频| 偷拍熟女少妇极品色| 别揉我奶头~嗯~啊~动态视频| 丰满人妻熟妇乱又伦精品不卡| 午夜日韩欧美国产| 精品久久久久久久久久免费视频| 午夜成年电影在线免费观看| 精品久久蜜臀av无| 淫妇啪啪啪对白视频| 九九在线视频观看精品| 精品国产美女av久久久久小说| 91av网站免费观看| aaaaa片日本免费| 中文字幕久久专区| 日韩国内少妇激情av| 婷婷亚洲欧美| 中文亚洲av片在线观看爽| 男女下面进入的视频免费午夜| 偷拍熟女少妇极品色| 无人区码免费观看不卡| 欧美最黄视频在线播放免费| 91在线观看av| 亚洲va日本ⅴa欧美va伊人久久| 亚洲天堂国产精品一区在线| www.精华液| 日日夜夜操网爽| 亚洲精品一卡2卡三卡4卡5卡| 日本与韩国留学比较| 国产黄a三级三级三级人| 一边摸一边抽搐一进一小说| 亚洲欧美精品综合久久99| 亚洲成av人片在线播放无| 一区二区三区高清视频在线| 深夜精品福利| 免费看十八禁软件| 国产久久久一区二区三区| 天天一区二区日本电影三级| 国内揄拍国产精品人妻在线| 黄频高清免费视频| 女人被狂操c到高潮| netflix在线观看网站| 亚洲专区中文字幕在线| 88av欧美| 精品免费久久久久久久清纯| 国产精品 国内视频| 精品熟女少妇八av免费久了| 精品无人区乱码1区二区| 又爽又黄无遮挡网站| 人人妻人人看人人澡| 国产一级毛片七仙女欲春2| 身体一侧抽搐| 国产高清视频在线播放一区| 亚洲av成人不卡在线观看播放网| 草草在线视频免费看| 亚洲av美国av| АⅤ资源中文在线天堂| 这个男人来自地球电影免费观看| 久久久久国产一级毛片高清牌| 成人精品一区二区免费| 午夜福利在线观看免费完整高清在 | 日韩免费av在线播放| 亚洲中文字幕日韩| 国产男靠女视频免费网站| 波多野结衣高清无吗| 精品乱码久久久久久99久播| 国产精品久久视频播放| 欧美中文综合在线视频| 欧美日韩瑟瑟在线播放| 色吧在线观看| 女人被狂操c到高潮| 久久香蕉精品热| 亚洲无线在线观看| 日本在线视频免费播放| 欧美+亚洲+日韩+国产| 岛国在线免费视频观看| 国产1区2区3区精品| 美女午夜性视频免费| 日本一二三区视频观看| 欧美一级a爱片免费观看看| 精品久久久久久久久久免费视频| а√天堂www在线а√下载| 一个人观看的视频www高清免费观看 | 精品一区二区三区视频在线观看免费| 久久久成人免费电影| 欧美激情在线99| 婷婷丁香在线五月| 亚洲国产日韩欧美精品在线观看 | 99国产精品一区二区三区| 亚洲一区二区三区色噜噜| 少妇人妻一区二区三区视频| 久久久国产精品麻豆| 精品熟女少妇八av免费久了| 怎么达到女性高潮| 1000部很黄的大片| 他把我摸到了高潮在线观看| www国产在线视频色| 亚洲成人免费电影在线观看| 岛国在线免费视频观看| 一区二区三区国产精品乱码| 免费av毛片视频| aaaaa片日本免费| 在线a可以看的网站| 久久久国产精品麻豆| 丰满人妻熟妇乱又伦精品不卡| 精品电影一区二区在线| 一本久久中文字幕| 国产精品99久久久久久久久| 国产亚洲欧美在线一区二区| 国产又黄又爽又无遮挡在线| 99re在线观看精品视频| 亚洲人成伊人成综合网2020| 熟女电影av网| 亚洲aⅴ乱码一区二区在线播放| 国产激情欧美一区二区| 亚洲,欧美精品.| 国产成人一区二区三区免费视频网站| 三级男女做爰猛烈吃奶摸视频| 一个人免费在线观看的高清视频| 啦啦啦观看免费观看视频高清| 午夜福利欧美成人| 国产视频内射| 老熟妇仑乱视频hdxx| 色播亚洲综合网| 中文字幕av在线有码专区| 日韩欧美一区二区三区在线观看| 久久精品国产99精品国产亚洲性色| 精品国产超薄肉色丝袜足j| 亚洲av第一区精品v没综合| 天堂网av新在线| av国产免费在线观看| 熟女人妻精品中文字幕| 午夜福利在线观看免费完整高清在 | 黄色 视频免费看| 亚洲aⅴ乱码一区二区在线播放| 日日摸夜夜添夜夜添小说| 婷婷六月久久综合丁香| 久久久久国产一级毛片高清牌| 午夜视频精品福利| 亚洲成av人片免费观看| 国产亚洲精品久久久久久毛片| 午夜亚洲福利在线播放| 9191精品国产免费久久| 床上黄色一级片| 亚洲第一电影网av| 欧美在线黄色| 成人鲁丝片一二三区免费| 99久久久亚洲精品蜜臀av| 男女视频在线观看网站免费| 免费在线观看视频国产中文字幕亚洲| 欧美日韩中文字幕国产精品一区二区三区| 99久久精品热视频| 亚洲五月婷婷丁香| 变态另类成人亚洲欧美熟女| 亚洲国产精品成人综合色| 黑人操中国人逼视频| 午夜免费观看网址| 欧美一级毛片孕妇| 2021天堂中文幕一二区在线观| 两性夫妻黄色片| 日本熟妇午夜| 国产伦人伦偷精品视频| 国产亚洲精品av在线| 长腿黑丝高跟| 观看免费一级毛片| 午夜免费观看网址| 久久久久精品国产欧美久久久| 日本与韩国留学比较| 欧美日韩一级在线毛片| 国产极品精品免费视频能看的| 免费搜索国产男女视频| 国产伦在线观看视频一区| 国产黄a三级三级三级人| 亚洲天堂国产精品一区在线| 在线永久观看黄色视频| 日本三级黄在线观看| 亚洲欧美日韩无卡精品| 操出白浆在线播放| 亚洲中文字幕日韩| 性色avwww在线观看| 天天一区二区日本电影三级| 午夜亚洲福利在线播放| 国产成+人综合+亚洲专区| 麻豆国产97在线/欧美| 级片在线观看| 精品国产美女av久久久久小说| 亚洲欧美精品综合久久99| av天堂在线播放| 真人一进一出gif抽搐免费| av福利片在线观看| 欧美成人性av电影在线观看| 国产午夜精品论理片| 亚洲中文av在线| 国产高清三级在线| 久久中文看片网| 午夜成年电影在线免费观看| 少妇丰满av| 亚洲成a人片在线一区二区| 日韩欧美 国产精品| 久久性视频一级片| 日本黄色视频三级网站网址| 亚洲五月婷婷丁香| 精品国产亚洲在线| 欧美成狂野欧美在线观看| 一二三四在线观看免费中文在| 一夜夜www| 韩国av一区二区三区四区| 国产伦精品一区二区三区视频9 | a级毛片在线看网站| 国产亚洲欧美98| 成人高潮视频无遮挡免费网站| 巨乳人妻的诱惑在线观看| 最近最新免费中文字幕在线| 高潮久久久久久久久久久不卡| 99国产极品粉嫩在线观看| a级毛片在线看网站| 国产精品电影一区二区三区| 亚洲国产精品999在线| 中国美女看黄片| 亚洲欧美日韩东京热| 香蕉丝袜av| 亚洲成av人片在线播放无| 琪琪午夜伦伦电影理论片6080| 亚洲在线自拍视频| 天堂√8在线中文| 久久久精品大字幕| 九色成人免费人妻av| 淫妇啪啪啪对白视频| 黄片小视频在线播放| 亚洲国产精品久久男人天堂| 在线永久观看黄色视频| 观看免费一级毛片| 天堂动漫精品| 国产激情欧美一区二区| 国产精品日韩av在线免费观看| 看免费av毛片| 床上黄色一级片| 啦啦啦韩国在线观看视频| 深夜精品福利| 国产精品电影一区二区三区| 亚洲精品美女久久av网站| 亚洲av成人精品一区久久| 欧美黄色片欧美黄色片| 99热精品在线国产| 久久香蕉国产精品| 9191精品国产免费久久| 免费观看人在逋| 欧美乱色亚洲激情| а√天堂www在线а√下载| 两性午夜刺激爽爽歪歪视频在线观看| 免费看美女性在线毛片视频| www日本在线高清视频| а√天堂www在线а√下载| 一个人看视频在线观看www免费 | 久久草成人影院| 欧美av亚洲av综合av国产av| 精品日产1卡2卡| 美女午夜性视频免费| 午夜福利成人在线免费观看| 黄色女人牲交| 真实男女啪啪啪动态图| 亚洲熟妇熟女久久| 欧美高清成人免费视频www| 久久久国产精品麻豆| 中文字幕av在线有码专区| 一个人免费在线观看的高清视频| 亚洲一区二区三区不卡视频| av视频在线观看入口| 老熟妇乱子伦视频在线观看| 丝袜人妻中文字幕| 久久香蕉精品热| 免费观看的影片在线观看| 精品一区二区三区视频在线观看免费| 午夜精品久久久久久毛片777| 两个人的视频大全免费| 午夜激情福利司机影院| 国产三级在线视频| 精品午夜福利视频在线观看一区| 热99在线观看视频| 国产精品久久电影中文字幕| 久久久国产欧美日韩av| 国产精品美女特级片免费视频播放器 | 国产精品一及| 校园春色视频在线观看| 色吧在线观看| 可以在线观看毛片的网站| 亚洲国产欧美人成| 欧美日本视频| 国产成人精品久久二区二区91| 精品福利观看| 毛片女人毛片| 成人国产一区最新在线观看| 首页视频小说图片口味搜索| 色噜噜av男人的天堂激情| 精品久久久久久成人av| 97超视频在线观看视频| 免费一级毛片在线播放高清视频| 亚洲九九香蕉| 欧美不卡视频在线免费观看| 亚洲五月婷婷丁香| 国内少妇人妻偷人精品xxx网站 | 男女做爰动态图高潮gif福利片| 成人18禁在线播放| 亚洲av免费在线观看| 99精品在免费线老司机午夜| 黄色视频,在线免费观看| 国产免费男女视频| 久久精品91无色码中文字幕| 999精品在线视频| 成人av在线播放网站| 人人妻,人人澡人人爽秒播| e午夜精品久久久久久久| 亚洲成人精品中文字幕电影| 熟女少妇亚洲综合色aaa.| 国产免费av片在线观看野外av| 中文在线观看免费www的网站| 国产高清视频在线观看网站| 久久久久久久久中文| 日本免费a在线| 国产毛片a区久久久久| 日本 欧美在线| 亚洲 欧美 日韩 在线 免费| 三级毛片av免费| 久久久国产欧美日韩av| 成人18禁在线播放| АⅤ资源中文在线天堂| 香蕉久久夜色| 午夜福利免费观看在线| 精品国产乱子伦一区二区三区| 国产野战对白在线观看| 一个人观看的视频www高清免费观看 | 99在线视频只有这里精品首页| 婷婷亚洲欧美| 亚洲九九香蕉| 亚洲av电影在线进入| 老司机福利观看| 午夜影院日韩av| 国产成人欧美在线观看| 欧美又色又爽又黄视频| 亚洲人成电影免费在线| 日韩欧美 国产精品| 久久九九热精品免费| 久久香蕉精品热| 久久天躁狠狠躁夜夜2o2o| 亚洲中文日韩欧美视频| 搡老岳熟女国产| 午夜福利欧美成人| 色综合站精品国产| 国产91精品成人一区二区三区| 欧美成狂野欧美在线观看| 在线a可以看的网站| av视频在线观看入口| 国产精品99久久久久久久久| 淫秽高清视频在线观看| 天堂网av新在线| 欧美黄色片欧美黄色片| 在线播放国产精品三级| avwww免费| 一卡2卡三卡四卡精品乱码亚洲| 天天躁狠狠躁夜夜躁狠狠躁| xxxwww97欧美| 一区二区三区激情视频| 日本 欧美在线| h日本视频在线播放| 夜夜爽天天搞| 亚洲色图av天堂| 日本 欧美在线| 网址你懂的国产日韩在线| 久久亚洲真实| 手机成人av网站| av视频在线观看入口| 婷婷亚洲欧美| 国产淫片久久久久久久久 | 成熟少妇高潮喷水视频| 国产高清视频在线观看网站| 国产伦在线观看视频一区| 色精品久久人妻99蜜桃| 99久久久亚洲精品蜜臀av| 女人被狂操c到高潮| 久久精品国产清高在天天线| 免费一级毛片在线播放高清视频| 欧美zozozo另类| 999久久久精品免费观看国产| 无人区码免费观看不卡| 日本 av在线| 99热精品在线国产| 狠狠狠狠99中文字幕| 国产精品久久久久久久电影 | 欧美高清成人免费视频www| 亚洲aⅴ乱码一区二区在线播放| 国产午夜福利久久久久久| 97超级碰碰碰精品色视频在线观看| 国产高清激情床上av| 可以在线观看毛片的网站| 搡老妇女老女人老熟妇| 国产99白浆流出| 最新在线观看一区二区三区| 亚洲激情在线av| 99热精品在线国产| 成人午夜高清在线视频| 亚洲成人久久性| 精品久久蜜臀av无| 亚洲国产欧洲综合997久久,| 超碰成人久久| 精品欧美国产一区二区三| 日韩欧美精品v在线| 亚洲天堂国产精品一区在线| 最近视频中文字幕2019在线8| 国产精品1区2区在线观看.| 熟女人妻精品中文字幕| 日本 av在线| 精品国内亚洲2022精品成人| 亚洲精品国产精品久久久不卡| 啦啦啦韩国在线观看视频| 又粗又爽又猛毛片免费看| 五月玫瑰六月丁香| 欧美中文综合在线视频| 国产精品av视频在线免费观看| 99热这里只有精品一区 | 最新中文字幕久久久久 | 国产午夜精品论理片| 噜噜噜噜噜久久久久久91| 免费一级毛片在线播放高清视频| 欧美一区二区国产精品久久精品| 免费在线观看日本一区| 19禁男女啪啪无遮挡网站| 精品久久久久久久人妻蜜臀av| 国产亚洲欧美在线一区二区| 久久久久久久久中文| 欧美性猛交╳xxx乱大交人| netflix在线观看网站| 免费观看人在逋| 成人国产综合亚洲| 一边摸一边抽搐一进一小说| 亚洲电影在线观看av| 别揉我奶头~嗯~啊~动态视频| 日韩免费av在线播放| 老司机午夜十八禁免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲avbb在线观看| 一进一出好大好爽视频| 99热这里只有是精品50| 麻豆国产97在线/欧美| 91九色精品人成在线观看| 成人午夜高清在线视频| 久久国产精品影院| 欧美色视频一区免费| 亚洲 国产 在线| 美女高潮的动态| 五月伊人婷婷丁香| 在线看三级毛片| 嫩草影视91久久| 精品一区二区三区四区五区乱码| 神马国产精品三级电影在线观看| 麻豆国产av国片精品| 国产精品久久久久久久电影 | 天天躁日日操中文字幕| 熟女电影av网| 18禁裸乳无遮挡免费网站照片| 九九在线视频观看精品| 国产亚洲精品久久久com| 麻豆久久精品国产亚洲av| 三级毛片av免费| 亚洲国产精品999在线| 国产久久久一区二区三区| 在线免费观看的www视频| 日韩大尺度精品在线看网址| 久久久国产精品麻豆| 成人永久免费在线观看视频| 日韩av在线大香蕉| 成人特级黄色片久久久久久久| 国产精华一区二区三区| 日韩人妻高清精品专区| 亚洲一区高清亚洲精品| 亚洲国产看品久久| 最近最新中文字幕大全电影3| 亚洲精品粉嫩美女一区| 国产成+人综合+亚洲专区| 色播亚洲综合网| 亚洲电影在线观看av| 狂野欧美白嫩少妇大欣赏| 无遮挡黄片免费观看| 亚洲国产中文字幕在线视频| 丰满人妻一区二区三区视频av | 精品99又大又爽又粗少妇毛片 | 亚洲第一电影网av| 国产黄a三级三级三级人| 亚洲一区二区三区不卡视频| 国产一区二区在线观看日韩 | 人人妻人人澡欧美一区二区| 久久久国产精品麻豆| 国产欧美日韩精品一区二区| 国产伦人伦偷精品视频| 国产视频一区二区在线看| 最近在线观看免费完整版| 一区二区三区高清视频在线| 国产日本99.免费观看| 国内揄拍国产精品人妻在线| 国产精品一区二区免费欧美| 成人高潮视频无遮挡免费网站| 九色成人免费人妻av| 欧美日韩国产亚洲二区| 啪啪无遮挡十八禁网站|