• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mechanism of the Ir/Pd catalyzed photocarboxylation of aryl halides

    2021-10-14 00:55:16YingLvBingWngHizhuYu
    Chinese Chemical Letters 2021年4期

    Ying Lv,Bing Wng*,Hizhu Yu,*

    a Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei 230601, China

    b Department of Chemistry, University of Science and Technology of China, Hefei 230026, China

    ABSTRACT The recent Ir/Pd co-catalyzed photo carboxylation of aromatic halides with CO2 has shown high efficiency and excellent functional group tolerance for preparing aromatic carboxylic acids and esters.With the aid of density functional theory (DFT) calculations, the carboxylation starts with two parallel steps, i.e.,oxidative addition of aromatic halides on Pd0 and reductive quenching of the photocatalyst Ir(ppy)2(dtbpy)+with amine.Thereafter,a successive oxidation of PdII with the amine radical(generated by the reaction of cationic radical amine and Cs2CO3)and IrII species occurs to generate Pd0,from which the carboxylation occurs easily via a coordination, Pd-C insertion step.The release of the carboxylate product then regenerates the catalyst.

    Keywords:Carboxylation Pd-catalysis DFT Charge state Mechanism

    As an abundant, readily-available, green and renewable C1 block, CO2has recently attracted increasing research interest[1-12].The carboxylation of organometallic reagents (such as Grignard reagent and organic lithium reagent) with CO2has been reported for decades [13-16].Despite the great success,these reactions always suffer from the drawbacks such as poor selectivity and harsh reaction conditions(sensitive to water and oxygen).With the development of transition metal catalysts(such as Pd, Ni and Co complexes), highly selective carboxylation with CO2have been reported [17-19], using the relatively mild metal/metalloid reagents, such as organotin [20-23],organozinc [24,25] and organoboron [26-32], as substrates.

    A breakthrough on direct carboxylation of aromatic halides with CO2under mild conditions (40。C) was recently reported by Martin and co-workers, using Pd/tBuXPhos (tBuXPhos=2-di-tertbutyl(2′,4′,6′-triisopropyl-[1,1′-biphenyl]-2-yl)phosphine) as the catalyst(Scheme 1a)[33].Thereafter,a variety of transition metal(such as Ni,Cu)catalysis has been developed,and greatly expands the functional group tolerance of the carboxylation[34-36].Nevertheless, the used metal reducing agents, such as Et2Zn and Zn/Mn powder,result in the necessity for post treatment of the metal wastes.

    To improve the robustness of the carboxylation reactions,chemists recently developed a series of novel photocarboxylation reactions.For example,Iwasawa and co-workers recently reported the dehalogenation-carboxylation of aromatic halides with the combination of the photocatalyst Ir(ppy)2(dtbpy)(PF6) (ppy:2-phenylpyridine; dtbpy: 4,4′-di-tert-butyl-2,2′-dipyridyl) and the transition metal catalyst Pd(OAc)2(Scheme 1b) [37], in the presence of the additive N,N-diisopropyl ethylamine and PhXPhos/tBuXphos (PhXPhos: 2-diphenyl(2′,4′,6′-triisopropyl-[1,1′-biphenyl]-2-yl)phosphine).The carboxylation has shown excellent functional group tolerance, and gave the corresponding methyl ester derivatives (after the methyl esterification) in good yields.

    The preliminary mechanistic probes by Iwasawa et al.suggests a catalytic cycle involving the reduction (Pd(OAc)2→Pd0), oxidative addition (of aromatic halide), carboxylation, dehalogenation and catalyst-regeneration steps [37].Albeit the reasonability of the proposed mechanism, some details remain to be clarified.For example,the direct reaction of PdIIwith CO2,or a prior reduction of PdIIto PdIor Pd0over the carboxylation are all possible(Scheme 2).In other words, the accurate valent state and structure of the precursor before the carboxylation step are still unknown.Meanwhile, the quenching mode of the photocatalyst (oxidative/reductive quenching) and how the photocatalyst cooperates with the transition metal catalyst are all unsettled problems.In this context,density functional theory(DFT)calculations were used to investigate the mechanism of the Ir/Pd co-catalyzed photocarboxylation of aromatic halides with CO2.

    Scheme 1.Pd catalyzed dehalogenation-carboxylation of aromatic halides with CO2 reported by Martin et al.(a);and Ir/Pd co-catalyzed carboxylation of aromatic halides reported by Iwasawa et al.(b).

    Scheme 2.The possible carboxylation pathways on Pd0/I/II species.

    In this study,all calculations were performed with the Gaussian 16 software [38].The B3LYP functional [39,40] is used in the geometry optimization for all species.The effective core potential and the associated basis set of SDD[41]is used for Ir and Pd atoms,and the 6-31G(d,p)basis set is used for other atoms(including C,H,O, N, P, Br).Frequency analysis was performed at the same level with geometry optimization to ensure the number of imaginary frequencies (1 for transition state and 0 for other species), and to obtain the thermal correction to Gibbs free energy.Single point energy calculations were carried out at a higher level of theory:B3LYP/def2-TZVP [42].In all these calculations, the dispersion correction reported by Grimme and co-workers (i.e., Grimme-D3BJ) was used [43], and N,N-dimethylacetamide was used as solvent(in accordance with Iwasawa’s experiments[37],and with SMD model [44]).Natural bond orbital (NBO) [45] analysis was carried out at the same level with geometry optimization.The optimized structures were plotted by Cylview software [46].

    Bromobenzene was chosen as the modeling reactant due to its structural simplicity and the high conversion efficiency.To this end,the dehalogenation and carboxylation of bromobenzene with CO2in the presence of Ir/Pd co-catalysts and PhXphos was used as model reaction (Eq.1).

    Our calculations start with the PhBr and PhXphos coordinated Pd0intermediate I1 (Scheme 3).For clarity, I1 was set as the energetic reference point.From I1,oxidation addition occurs easily via the typical three-membered ring transition state of TS1(barrier:5.4 kcal/mol), and the relative energy of the formed I2 is indicate that the oxidative addition is favored from both thermodynamic and kinetic aspect.Of note, I2 was also verified by the experimental observations by Iwasawa and co-workers[37].

    Scheme 3.Energy changes for the oxidative addition step (in kcal/mol, L=PhXphos).

    From I2, we first examined the possibility for its direct carboxylation with CO2.As shown in Fig.1, the approaching of CO2to I2 generates the intermediates I3, from which the direct carboxylation occurs via the transition state TS2 (Figs.1 and 2).

    Fig.1.Pd catalyzed reduction carboxylation (kcal/mol).

    The energy barrier for the transformation of I3→TS2 is as high as 45.4 kcal/mol, presumably due to the high steric hindrance around the metal center(Fig.2),the low nucleophilicity of aryl C1 atom (Fig.1, with NPA charge of -0.081) and the Zwitterionic character of the transition state (NPA charge of O1/O2 atom is-0.648/-0.678) in TS2.Alternatively, a pre-dissociation of bromide could provide a vacant coordination site on the palladium center,making it possible to accommodate the dangling O2 atoms to reduce steric hindrance and avoid the formation of the Zwitterionic intermediates (TS2 vs.TS3 in Fig.2).To this end,the energy barrier of the carboxylation step was decreased to 40.5 kcal/mol.Nevertheless, the energy demand of over 40 kcal/mol remain too high to occur under the experimental conditions.Therefore, the results herein indicate that the main difficulty in the PdIIparticipated carboxylation lies in the low electron density of the aromatic group.In this context, we examined the possibility for a pre-reduction of the carboxylate precursor of I2.

    Fig.2.The optimized geometries of TS2 and TS3.H atoms are omitted.

    I2 could be reduced by either the excited state of photocatalyst(i.e.,IrIII*),or the reduced photocatalyst(IrII,vide supra)generated from the catalytic cycle of the photocatalyst.Therefore,the relative facility of the reductive and oxidative quenching of the photocatalyst was examined [47-50].In oxidative quenching, IrIII* is oxidized by I2 to generate IrIVand I6 (Scheme 4), while in the reductive quenching, IrIII* is reduced by Amine1 to generate Amine2 and IrII.According to the calculation results,the reductive quenching is exergonic by 15.4 kcal/mol,and is more feasible than the oxidative quenching(endergonic by 2.6 kcal/mol).In addition,considering the existence of Cs2CO3, the removal of H+from Amine2(formed during the reductive quenching of photocatalyst)could occur easily to generate the radical [iPrNEt(CMe2)]·(Amine3).In this context, Amine3 could possibly act as the electron donor to reduce I2.This process is exergonic by 1.7 kcal/mol (Scheme 4), and generates the cationic [iPrNEt(CMe2)]+(Amine4)and the I6.By contrast,the reduction of I2 with IrII(IrII+I2→IrIII+ I6) or IrIII*mentioned above is endergonic by 6.4 and 2.6 kcal/mol (Scheme 4), and is thus less favorable.

    From I6,the dissociation of Br-occurs easily,generating a more stable,neutral intermediate I7.According to the calculation results,the released Br-is unlikely to bind with the cationic Amine4 to form contact ion pair or neutral complex(Scheme S1 in Supporting information).From I7, either a direct carboxylation(I7→I8→TS4→I9,Fig.3)or a reduction[37]-carboxylation pathway(I7→I11→I12→TS5→I10) might occur (the reduction-dehalogenation pathway on I7 was excluded due to the high energy demand for formation of the dianionic I13, Fig.3).

    Scheme 4.The reduction of PdII intermediate I2 (kcal/mol).

    Fig.3.Energy profiles for the possible carboxylation steps on I6 (in kcal/mol).

    In the first case, the approaching of CO2first generates the intermediate I8,and this step is endergonic by 12.3 kcal/mol.In I8,both the short Pd-C2 distance(2.19 ? in Fig.4)and the Mayer bond order (0.44) indicate the pre-activation of CO2.In the formed intermediate I9,the carboxylate product mainly coordinates with the palladium center via the terminal O2 atom(Fig.4).The energy barrier for the direct carboxylation on I8 is 4.8 kcal/mol, and the relative Gibbs free energy of the formed I9 is lower than I8 by 23.2 kcal/mol.The remarkably lower energy barrier for the carboxylation step of I8 than that of I3 (5.2 vs.45.4 kcal/mol)further evidences the importance of the enhanced nucleophilicity on the carboxylation step(NPA charge of the aryl C1 atom in I8 and I3 is-0.384 and-0.085).After that,the one electron reduction of I9 could occur to generate a more stable, Pd0intermediate I10.Finally, the formed Pd0intermediate I10 could undergo a ligand exchange to release the carboxylate product and regenerate I1.

    Fig.4.The optimized geometries of I8, TS4 and I9.H atoms are omitted.

    In the second case,the reduction of I7 with IrIIis exergonic by 9.7 kcal/mol.Due to the high electron density on the Pd0center of I11 (NPA charge on Pd is -0.540), the coordination of CO2occurs easily via an η1-C coordination mode (exergonic by 2.9 kcal/mol),while the coordination of CO2by an end-on mode is unfavorable(Scheme S2 in Supporting information).The Pd-C1 distance in I12 is 2.09 ? (Fig.5), and its Mayer bond order of 0.71, indicating the formation of σ(Pd-C1) bond therein.Such intermediate is typical for the interaction of CO2with the electron rich metal complexes[51].Thereafter, the C--C bond formation was achieved via the carboxylation transition state TS5, with a low energy barrier of 11.1 kcal/mol.The Pd0intermediate I10 is then generated as the carboxylate product, and the subsequent transformation is the same as the aforementioned carboxylation-reduction pathway.

    Fig.5.The optimized geometries of I12, TS5 and I10.H atoms are omitted.

    Comparing the different pathways in Figs.1 and 3, the most feasible carboxylation pathway involves the cascade reduction of the PdIIintermediate to Pd0, associating with the release of bromide (I2→I6→I7→I11).Then the coordination of CO2, carboxylation, and ligand exchange occurs to release the carboxylate product (I11→I12→I10→I1).In combination with the calculation results in Schemes 3 and 4, the rate determining step for the dehalogenation-carboxylation mechanism is the elementary carboxylation step, and the overall activation free energy barrier is 11.1 kcal/mol.The low energy barrier is in good agreement with the high efficiency of Iwasawa’s reaction under room temperature[37].More importantly,the easiness of the elementary carboxylation step was found to correlate with the nucleophilicity of the Pd precursor.According to the distortion-interaction analysis on the three key carboxylation transition states, i.e., TS3 (PdII), TS4 (PdI)and TS5(Pd0),the interaction energies between CO2and the other part in the target transition state decreases with reduced valence state of the Pd center(the interaction energy of TS3,TS4,TS5 was-22.4, -36.4, -53.4 kcal/mol, respectively), demonstrating the stronger interaction between the reduced Pd complex and CO2.The results verified the aforementioned proposal that the Pd complex with electron rich palladium center and aromatic groups are more prone to undergo a nucleophilic attack to CO2.Nevertheless,due to the remarkably stronger interaction between CO2and Pd0complex in TS5 (than that in TS3 and TS4), CO2distorted significantly compared to the free state(Scheme S3 in Supporting information),and thus the distortion energy of TS5 is significantly higher than TS3 and TS4 (49.5 vs.40.6, 40.8 kcal/mol).To this end, the energy barrier of the transition state TS4 with balanced the interaction and distortion energy is the lowest, while the weak interaction between the PdIIcenter and CO2results in the highest energy barrier of TS3.

    In this study,the mechanism for the dehalogenation-carboxylation of aryl halides recently reported by Iwasawa and co-workers were systematically studied by DFT calculations.The overall mechanism consists of oxidative addition of aryl halides,excitation and reductive quenching of the IrIIIphoto-catalyst, successive reduction of PdIIto PdIand Pd0, removal of bromide, and carboxylation steps.The carboxylation with CO2is sensitive to the valence state of the palladium center,and thus the presence of reductant(i.e.,oxidized state of the photocatalyst IrIIand the amine radical) is pivotal to the facility of the carboxylation step.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    We appreciate the financial support from the National Natural Science Foundation of China(Nos.21672001,51961135104)and the technical support of high-performance computing platform of Anhui University.

    Appendix A.Supplementary data

    Supplementary material related to this article can be found, in the online version,at doi:https://doi.org/10.1016/j.cclet.2020.09.045.

    亚洲成人一二三区av| 人妻一区二区av| 91精品一卡2卡3卡4卡| 国产黄片美女视频| 日本午夜av视频| 国产精品成人在线| 天天躁夜夜躁狠狠久久av| av福利片在线观看| 精品一品国产午夜福利视频| 99久久人妻综合| 青春草国产在线视频| 99热全是精品| 国内精品宾馆在线| 亚洲国产色片| 最近2019中文字幕mv第一页| 日韩一区二区三区影片| 51国产日韩欧美| 少妇人妻精品综合一区二区| 久久精品久久久久久久性| 蜜桃亚洲精品一区二区三区| 久久久久久久久久久丰满| 在线观看一区二区三区激情| kizo精华| 国产黄片美女视频| 中文资源天堂在线| 91精品一卡2卡3卡4卡| 尾随美女入室| 熟女av电影| h视频一区二区三区| av视频免费观看在线观看| 国产伦理片在线播放av一区| 欧美+日韩+精品| 日韩,欧美,国产一区二区三区| 国产成人freesex在线| 国产精品.久久久| 成人亚洲欧美一区二区av| 久久人妻熟女aⅴ| 精品人妻偷拍中文字幕| 街头女战士在线观看网站| 久久99蜜桃精品久久| 麻豆国产97在线/欧美| 精品久久久精品久久久| 极品少妇高潮喷水抽搐| 欧美区成人在线视频| 观看av在线不卡| 国产精品女同一区二区软件| 熟女人妻精品中文字幕| 久久这里有精品视频免费| 免费观看在线日韩| 日韩中文字幕视频在线看片 | 精品亚洲成国产av| 久久鲁丝午夜福利片| 国产精品国产三级专区第一集| 精品午夜福利在线看| 国产免费一区二区三区四区乱码| 嘟嘟电影网在线观看| 日韩成人伦理影院| 中文字幕av成人在线电影| 女性被躁到高潮视频| 亚洲国产精品成人久久小说| 久久久久久久亚洲中文字幕| 精品国产露脸久久av麻豆| 日韩精品有码人妻一区| 嫩草影院入口| 少妇精品久久久久久久| 国产免费福利视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 精品久久久精品久久久| 国产色婷婷99| 你懂的网址亚洲精品在线观看| 一区在线观看完整版| 18禁在线播放成人免费| 蜜桃亚洲精品一区二区三区| 色综合色国产| 亚洲欧洲国产日韩| 高清欧美精品videossex| 精品亚洲乱码少妇综合久久| 久久女婷五月综合色啪小说| 草草在线视频免费看| 91在线精品国自产拍蜜月| 麻豆精品久久久久久蜜桃| 亚洲av中文字字幕乱码综合| 男女啪啪激烈高潮av片| 国产精品一区二区在线不卡| 国产精品国产三级国产专区5o| 99久久精品一区二区三区| 三级经典国产精品| 国产爱豆传媒在线观看| 亚洲色图av天堂| 免费av不卡在线播放| 欧美最新免费一区二区三区| 日韩欧美 国产精品| 国产精品人妻久久久影院| 日本欧美国产在线视频| 少妇的逼水好多| 汤姆久久久久久久影院中文字幕| 中国国产av一级| 欧美3d第一页| 女人久久www免费人成看片| 欧美bdsm另类| 大片免费播放器 马上看| 国产久久久一区二区三区| 女人久久www免费人成看片| 视频区图区小说| 高清不卡的av网站| 99热这里只有是精品50| 久久人妻熟女aⅴ| 国产精品人妻久久久影院| 国产精品嫩草影院av在线观看| 国产成人a区在线观看| 欧美三级亚洲精品| 国产精品欧美亚洲77777| 国产 精品1| 午夜视频国产福利| 精品人妻视频免费看| 久久99热这里只频精品6学生| 国产精品伦人一区二区| 99视频精品全部免费 在线| 久久久久视频综合| 国产精品国产三级国产专区5o| 日本黄色日本黄色录像| 久久久久视频综合| 久久久久国产精品人妻一区二区| 人妻一区二区av| 男女下面进入的视频免费午夜| 国产免费一区二区三区四区乱码| 联通29元200g的流量卡| 深夜a级毛片| 亚洲婷婷狠狠爱综合网| 精品久久久噜噜| 日韩人妻高清精品专区| 啦啦啦视频在线资源免费观看| 久久精品国产亚洲av天美| 美女脱内裤让男人舔精品视频| 黑人高潮一二区| 水蜜桃什么品种好| 亚洲中文av在线| 久久久久久伊人网av| 国产精品熟女久久久久浪| 日韩欧美一区视频在线观看 | 欧美国产精品一级二级三级 | 国产一区二区三区综合在线观看 | 久久这里有精品视频免费| 国产黄频视频在线观看| 精品久久久久久久末码| 男女无遮挡免费网站观看| 亚洲av欧美aⅴ国产| 国产亚洲91精品色在线| 国语对白做爰xxxⅹ性视频网站| 纯流量卡能插随身wifi吗| 麻豆成人av视频| av在线观看视频网站免费| av一本久久久久| 美女cb高潮喷水在线观看| 日日啪夜夜爽| 纵有疾风起免费观看全集完整版| 免费大片18禁| 干丝袜人妻中文字幕| 国产精品不卡视频一区二区| 国产精品偷伦视频观看了| 精品久久国产蜜桃| 水蜜桃什么品种好| av福利片在线观看| xxx大片免费视频| 中文字幕精品免费在线观看视频 | 欧美日韩综合久久久久久| 欧美日韩视频精品一区| 一级毛片我不卡| 中文在线观看免费www的网站| 国产高清不卡午夜福利| 亚洲怡红院男人天堂| 午夜福利视频精品| 中文字幕免费在线视频6| 男女免费视频国产| 国产国拍精品亚洲av在线观看| 大香蕉97超碰在线| 免费黄频网站在线观看国产| 三级国产精品欧美在线观看| 又粗又硬又长又爽又黄的视频| 麻豆精品久久久久久蜜桃| 日日摸夜夜添夜夜添av毛片| 亚洲美女黄色视频免费看| 日韩成人av中文字幕在线观看| 欧美成人精品欧美一级黄| 精品国产露脸久久av麻豆| 久久热精品热| 久久影院123| 在线观看av片永久免费下载| 最近最新中文字幕免费大全7| 一区二区三区乱码不卡18| 国产久久久一区二区三区| 国产白丝娇喘喷水9色精品| 少妇人妻久久综合中文| 2018国产大陆天天弄谢| 97超视频在线观看视频| 一本—道久久a久久精品蜜桃钙片| 国产男女内射视频| 激情五月婷婷亚洲| 啦啦啦中文免费视频观看日本| av在线播放精品| 日本一二三区视频观看| 欧美老熟妇乱子伦牲交| 亚洲精品日韩av片在线观看| 国产av国产精品国产| 97精品久久久久久久久久精品| 国产精品人妻久久久久久| 久久99精品国语久久久| 噜噜噜噜噜久久久久久91| 熟妇人妻不卡中文字幕| 亚洲成人av在线免费| 一本色道久久久久久精品综合| 高清欧美精品videossex| 男人添女人高潮全过程视频| 免费高清在线观看视频在线观看| 观看美女的网站| 免费黄频网站在线观看国产| 成人毛片a级毛片在线播放| 免费久久久久久久精品成人欧美视频 | 视频区图区小说| 午夜老司机福利剧场| 欧美97在线视频| 国产亚洲5aaaaa淫片| 日本av手机在线免费观看| 18禁动态无遮挡网站| 国产黄片美女视频| 国产精品三级大全| 直男gayav资源| 精品熟女少妇av免费看| 亚洲国产欧美在线一区| 久久精品国产亚洲网站| 久久久久久久久久久免费av| xxx大片免费视频| 中文字幕亚洲精品专区| av福利片在线观看| 精品久久国产蜜桃| 午夜精品国产一区二区电影| 国产一区二区三区综合在线观看 | 免费看av在线观看网站| 国产在线免费精品| 一本—道久久a久久精品蜜桃钙片| 国产片特级美女逼逼视频| 亚洲丝袜综合中文字幕| 观看av在线不卡| 国产 精品1| 亚洲精品视频女| www.色视频.com| 视频中文字幕在线观看| 黄色欧美视频在线观看| 日日啪夜夜撸| 亚洲国产最新在线播放| 在线观看免费视频网站a站| 日本与韩国留学比较| 毛片一级片免费看久久久久| 免费人成在线观看视频色| 亚洲精品自拍成人| 97热精品久久久久久| 久久婷婷青草| 国产精品av视频在线免费观看| 多毛熟女@视频| 97热精品久久久久久| 久久久久国产精品人妻一区二区| 国产视频内射| 国产色爽女视频免费观看| 亚洲精品乱码久久久久久按摩| 国产精品女同一区二区软件| 免费黄频网站在线观看国产| 亚洲精品久久久久久婷婷小说| 国产在视频线精品| 日日摸夜夜添夜夜添av毛片| 精华霜和精华液先用哪个| 18禁裸乳无遮挡免费网站照片| 亚洲av中文字字幕乱码综合| 自拍欧美九色日韩亚洲蝌蚪91 | 久久精品国产亚洲av天美| 久久久亚洲精品成人影院| 天美传媒精品一区二区| 九九爱精品视频在线观看| 2022亚洲国产成人精品| 高清欧美精品videossex| 亚洲av中文字字幕乱码综合| 国产精品av视频在线免费观看| 美女高潮的动态| 国产精品一区二区在线观看99| 久久久成人免费电影| av国产精品久久久久影院| 高清欧美精品videossex| 特大巨黑吊av在线直播| 成人综合一区亚洲| 亚洲色图av天堂| 日日撸夜夜添| 久久精品久久久久久久性| 九九在线视频观看精品| 青春草亚洲视频在线观看| 狠狠精品人妻久久久久久综合| 中文资源天堂在线| 亚洲国产av新网站| 亚洲欧美中文字幕日韩二区| 少妇高潮的动态图| 又粗又硬又长又爽又黄的视频| 精品亚洲乱码少妇综合久久| 亚洲精品自拍成人| 18禁裸乳无遮挡免费网站照片| 久久久欧美国产精品| 国内揄拍国产精品人妻在线| 亚洲精品456在线播放app| 全区人妻精品视频| 亚洲国产精品一区三区| 亚洲第一av免费看| 亚洲欧美日韩无卡精品| 性色av一级| 大陆偷拍与自拍| 欧美另类一区| 97在线人人人人妻| 免费观看a级毛片全部| 搡女人真爽免费视频火全软件| 国产人妻一区二区三区在| 十八禁网站网址无遮挡 | 各种免费的搞黄视频| 久久人人爽人人片av| 人人妻人人澡人人爽人人夜夜| 久久久国产一区二区| 精品人妻一区二区三区麻豆| 亚洲美女黄色视频免费看| 亚洲欧美清纯卡通| 国产成人freesex在线| 成人漫画全彩无遮挡| 伊人久久国产一区二区| 国产亚洲5aaaaa淫片| 欧美成人a在线观看| 免费黄网站久久成人精品| 亚洲成人中文字幕在线播放| a 毛片基地| 久久久久久久久久久免费av| 少妇的逼好多水| 国产91av在线免费观看| 日日啪夜夜撸| 简卡轻食公司| 美女脱内裤让男人舔精品视频| 91久久精品国产一区二区三区| 精品久久久噜噜| 少妇丰满av| 亚洲精品成人av观看孕妇| 一个人看的www免费观看视频| 亚洲欧洲日产国产| 久久这里有精品视频免费| 九九久久精品国产亚洲av麻豆| 一区二区三区乱码不卡18| 91狼人影院| 亚洲自偷自拍三级| 男人添女人高潮全过程视频| 色吧在线观看| 欧美日韩亚洲高清精品| 国内少妇人妻偷人精品xxx网站| 国产精品嫩草影院av在线观看| 国产成人freesex在线| 国产男女内射视频| 国产色爽女视频免费观看| av免费在线看不卡| 欧美丝袜亚洲另类| 国产有黄有色有爽视频| 国产精品女同一区二区软件| 国产av一区二区精品久久 | 成年免费大片在线观看| 九九在线视频观看精品| av国产精品久久久久影院| 久热这里只有精品99| 国内揄拍国产精品人妻在线| 亚洲精品一区蜜桃| 国产真实伦视频高清在线观看| 国产精品熟女久久久久浪| 伦理电影大哥的女人| 国产精品欧美亚洲77777| 日韩一区二区视频免费看| 日本vs欧美在线观看视频 | 国产色爽女视频免费观看| 少妇人妻一区二区三区视频| 久久人人爽人人片av| 亚洲av欧美aⅴ国产| 欧美日韩国产mv在线观看视频 | 成人影院久久| 丝袜喷水一区| 麻豆国产97在线/欧美| 涩涩av久久男人的天堂| 26uuu在线亚洲综合色| 亚洲精品第二区| 波野结衣二区三区在线| 一级毛片我不卡| 黄色配什么色好看| 成人影院久久| 大又大粗又爽又黄少妇毛片口| 九色成人免费人妻av| 丝瓜视频免费看黄片| 亚洲一区二区三区欧美精品| 久久久色成人| 亚洲国产日韩一区二区| 亚洲色图综合在线观看| 久久av网站| 精品久久久久久久久av| videos熟女内射| 亚洲一级一片aⅴ在线观看| 国产精品久久久久久久久免| 自拍偷自拍亚洲精品老妇| 在现免费观看毛片| 美女脱内裤让男人舔精品视频| 高清欧美精品videossex| 久久女婷五月综合色啪小说| 免费观看性生交大片5| 久久女婷五月综合色啪小说| 久久久久人妻精品一区果冻| h视频一区二区三区| 一本—道久久a久久精品蜜桃钙片| a级毛色黄片| 亚洲欧美日韩无卡精品| 麻豆精品久久久久久蜜桃| 两个人的视频大全免费| 我要看黄色一级片免费的| 久久久久国产网址| 亚洲欧美日韩卡通动漫| 日韩国内少妇激情av| 国产精品一区二区在线不卡| 亚洲丝袜综合中文字幕| av一本久久久久| 男人添女人高潮全过程视频| 国产欧美另类精品又又久久亚洲欧美| 国产91av在线免费观看| 少妇人妻久久综合中文| 国产爽快片一区二区三区| 日本av免费视频播放| 狠狠精品人妻久久久久久综合| 国产 一区精品| 少妇人妻精品综合一区二区| 久久久亚洲精品成人影院| 秋霞在线观看毛片| 大话2 男鬼变身卡| 国产亚洲精品久久久com| 欧美激情国产日韩精品一区| 国产视频首页在线观看| kizo精华| 夫妻午夜视频| 在线观看免费视频网站a站| 五月玫瑰六月丁香| 另类亚洲欧美激情| 亚洲国产欧美人成| 亚洲三级黄色毛片| 亚洲国产欧美在线一区| 日韩欧美一区视频在线观看 | 观看美女的网站| 国产精品不卡视频一区二区| 成人影院久久| 联通29元200g的流量卡| 一级二级三级毛片免费看| 男人添女人高潮全过程视频| 亚洲内射少妇av| 免费看不卡的av| 日本猛色少妇xxxxx猛交久久| 久久久a久久爽久久v久久| 七月丁香在线播放| 夜夜爽夜夜爽视频| 丰满少妇做爰视频| 女性生殖器流出的白浆| 久久久色成人| 国产高潮美女av| 免费观看的影片在线观看| 欧美日韩综合久久久久久| 国产综合精华液| 成人免费观看视频高清| 女人十人毛片免费观看3o分钟| 国产探花极品一区二区| 免费观看性生交大片5| 伦精品一区二区三区| 国产精品久久久久久av不卡| 国产白丝娇喘喷水9色精品| 国精品久久久久久国模美| www.av在线官网国产| 蜜桃亚洲精品一区二区三区| 26uuu在线亚洲综合色| av在线老鸭窝| 欧美精品国产亚洲| 日韩视频在线欧美| 欧美日韩视频高清一区二区三区二| 国产精品人妻久久久久久| 亚洲精品国产色婷婷电影| 人人妻人人看人人澡| 日本爱情动作片www.在线观看| 高清视频免费观看一区二区| 亚洲精品国产成人久久av| 免费看不卡的av| 卡戴珊不雅视频在线播放| 日韩,欧美,国产一区二区三区| 久久青草综合色| 伊人久久精品亚洲午夜| 亚洲精品国产av成人精品| 在线天堂最新版资源| 美女cb高潮喷水在线观看| 婷婷色麻豆天堂久久| 亚洲精品成人av观看孕妇| 午夜日本视频在线| 五月天丁香电影| 欧美日韩在线观看h| 丝袜脚勾引网站| 成人毛片a级毛片在线播放| 免费看日本二区| 免费观看a级毛片全部| 老熟女久久久| 色吧在线观看| 久久国产精品男人的天堂亚洲 | 人妻系列 视频| 亚洲精品乱码久久久久久按摩| 午夜激情福利司机影院| 精品人妻偷拍中文字幕| 在线亚洲精品国产二区图片欧美 | 狠狠精品人妻久久久久久综合| 成人国产麻豆网| av在线app专区| 18禁裸乳无遮挡动漫免费视频| 91精品一卡2卡3卡4卡| 视频中文字幕在线观看| 国产成人freesex在线| 嫩草影院新地址| 国产精品久久久久久久电影| av女优亚洲男人天堂| 亚洲精品视频女| 久久精品国产亚洲av天美| 久久久久久久久大av| 免费黄频网站在线观看国产| 亚洲av男天堂| 赤兔流量卡办理| 亚洲精品国产色婷婷电影| 亚洲精品一二三| 一级毛片久久久久久久久女| 夜夜看夜夜爽夜夜摸| 在现免费观看毛片| 男的添女的下面高潮视频| 亚洲婷婷狠狠爱综合网| 91午夜精品亚洲一区二区三区| 久久久久国产精品人妻一区二区| 国产午夜精品久久久久久一区二区三区| 极品少妇高潮喷水抽搐| 久久人人爽人人爽人人片va| 久久这里有精品视频免费| 麻豆国产97在线/欧美| 女人久久www免费人成看片| 嫩草影院入口| 免费观看在线日韩| 国产一级毛片在线| 少妇人妻 视频| 免费黄频网站在线观看国产| 自拍欧美九色日韩亚洲蝌蚪91 | 久久国产精品大桥未久av | 国产无遮挡羞羞视频在线观看| 欧美日韩在线观看h| 亚洲第一av免费看| 国产亚洲最大av| 亚洲性久久影院| 日本欧美国产在线视频| 91久久精品电影网| 亚洲欧美日韩另类电影网站 | 日韩中字成人| 久久精品国产亚洲av天美| 国产视频首页在线观看| 亚洲欧美日韩东京热| videossex国产| 自拍偷自拍亚洲精品老妇| 国产欧美日韩一区二区三区在线 | 美女福利国产在线 | 国产成人一区二区在线| 国产成人免费无遮挡视频| 久久久亚洲精品成人影院| 国产精品久久久久久精品古装| 日韩不卡一区二区三区视频在线| 老熟女久久久| 深爱激情五月婷婷| 成人免费观看视频高清| 久久精品国产亚洲网站| 久久精品久久久久久噜噜老黄| 免费黄频网站在线观看国产| 日本爱情动作片www.在线观看| 欧美日韩综合久久久久久| 下体分泌物呈黄色| 日韩制服骚丝袜av| 男女无遮挡免费网站观看| 超碰av人人做人人爽久久| 天堂中文最新版在线下载| 少妇人妻精品综合一区二区| 精品人妻视频免费看| 亚洲美女搞黄在线观看| 青春草亚洲视频在线观看| 国产成人精品福利久久| 亚洲av免费高清在线观看| 免费播放大片免费观看视频在线观看| 国产色爽女视频免费观看| 91久久精品国产一区二区三区| 日本免费在线观看一区| 丝袜脚勾引网站| 欧美日韩在线观看h| 高清毛片免费看| 国产精品一区二区在线不卡| 久久女婷五月综合色啪小说| 在现免费观看毛片| 国产精品av视频在线免费观看| 久久国产精品男人的天堂亚洲 | 人妻系列 视频| 久久国产乱子免费精品| av在线app专区| 2018国产大陆天天弄谢| 欧美最新免费一区二区三区| 亚洲国产精品成人久久小说| 精品人妻视频免费看| 成人午夜精彩视频在线观看| 女人十人毛片免费观看3o分钟| 欧美xxⅹ黑人| 久久精品国产亚洲av天美| 日韩av免费高清视频| 国产成人freesex在线| 99热6这里只有精品|