• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solution-processed multi-resonance organic light-emitting diodes with high efficiency and narrowband emission

    2021-10-14 00:55:12ShenXuQingqingYngYingZhngHuiLiQinXueGuohuXieMinzhoGuJibioJinLingHungRunfengChen
    Chinese Chemical Letters 2021年4期

    Shen Xu,Qingqing Yng,Ying Zhng,Hui Li,Qin Xue,Guohu Xie,*,Minzho Gu,Jibio Jin,Ling Hung*,Runfeng Chen,*

    a Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China

    b Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China

    c Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University,Wuhan 430072, China

    ABSTRACT With excellent color purity(full-width half maximum(FWHM)<40 nm)and high quantum yield,multiresonance(MR)molecules can harvest both singlet and triplet excitons for highly efficient narrowband organic light-emitting diodes (OLEDs) owing to their thermally activated delayed fluorescence (TADF)nature.However,the highly rigid molecular skeleton with the oppositely positioned boron and nitrogen in generating MR effects results in the intrinsic difficulties in the solution-processing of MR-OLEDs.Here,we demonstrate a facile strategy to increase the solubility, enhance the efficiencies and modulate emission color of MR-TADF molecules by extending aromatic rings and introducing tert-butyls into the MR backbone.Two MR-TADF emitters with smaller singlet-triplet splitting energies (ΔEST) and larger oscillator strengths were prepared conveniently,and the solution-processed MR-OLEDs were fabricated for the first time,exhibiting efficient bluish-green electroluminescence with narrow FWHM of 32 nm and external quantum efficiency of 16.3%,which are even comparable to the state-of-the-art performances of the vacuum-evaporated devices.These results prove the feasibility of designing efficient solutionprocessible MR molecules,offering important clues in developing high-performance solution-processed MR-OLEDs with high efficiency and color purity.

    Keywords:Multi-resonance Thermally activated delayed fluorescence Solution-processed devices Charge-transfer delocalization Narrowband emission

    Thermally activated delayed fluorescence (TADF) emitters,which can realize 100% internal quantum efficiency through efficient reverse intersystem crossing (RISC) of triplet excitons without the involvement of any rare noble metals, have drawn tremendous attention especially in the field of organic lightemitting diodes(OLEDs)[1-3].Plenty of TADF materials have been developed since the pioneering work of Adachi et al.[4,5],showing the increasingly improved external quantum efficiencies (EQEs)even higher than those of phosphorescent OLEDs [6,7].To design efficient TADF emitters,strong electron donor(D)and acceptor(A)units are generally incorporated in D-A architectures to spatially separate the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) and consequently minimized the splitting energy(ΔEST)between the lowest singlet(S1)and triplet(T1)excited states,because a small ΔEST(<0.37 eV)is essential in supporting efficient RISC process at room temperature [8-10].Nevertheless, these D-A molecules with strong intramolecular charge transfer(ICT)characters often display fairly small radiative emission cross-sections and are usually accompanied by large structural reorganization related to high conformational degrees of freedom of the D-A molecular architecture [11].Therefore, the emission spectra of most TADF emitters are considerably broad with full-width half maximum (FWHM) close to 100 nm without fine structures, leading to poor color purity of the TADF OLEDs which is fatal for active matrix displays.

    Alternatively, Hatakeyama et al.proposed an unusual design strategy of TADF molecules by introducing nitrogen and boron atoms positioned oppositely in a rigid polycyclic aromatic framework to induce the multi-resonance (MR) effects; an atomically separated distribution of HOMO and LUMO for small ΔESTand relatively large oscillator strength (fosc) are resulted,where HOMO locates on nitrogen atoms and carbon atoms at the meta positions of nitrogen atoms,and LUMO distributes mainly on boron atoms and carbon atoms at the meta positions of boron atoms[12,13].This localization of HOMO and LUMO induced by MR effects minimizes the bonding/antibonding character, vibronic coupling and vibrational relaxation in the material,resulting in an extremely sharp photoluminescence (PL) spectrum with a very small FWHM and significantly reduced ΔESTto promote RISC for efficient TADF emission with large fosc[14,15].Many highperformance MR-type blue TADF molecules have been developed,showing high EQEs up to 34.4% and narrow emission bands with FWHM of 14 nm [16,17].In contrast, narrowband green and red MR-TADF emitters are fairly rare owing to the intrinsic difficulties in bathochromic shift of the MR-featured emission.Effective ways reported to improve the luminescent efficiencies and manipulate the emission colors of MR-TADF materials include increasing the number of MR backbones in either linear or cyclic molecular structures and introducing various substituents on the MR systems to amplify the influence of skeleton and peripheral units [18,19].Nevertheless,along with the much increased synthetic difficulties and preparation costs,the resulting MR-TADF molecules generally exhibit reduced solubility due to the increased molecular rigidity and planarity [20].Therefore, the most reported MR-TADF-based OLEDs were fabricated by vacuum deposition and the solutionprocessed MR-OLEDs remain a challenge so far [21,22].

    Here, we demonstrate that both the emission color and efficiency of MR-TADF molecules can be modulated by introducing additional aromatic rings into the MR backbone(Fig.1).Owing to the expanded conjugation skeleton and increased molecular planarity, the facilely prepared MR-TADF emitter of CzBN shows sky-blue emission with a small ΔESTof 0.12 eV and a large oscillator strength of 0.3506.The first fabricated solution-processed MROLEDs exhibit high device performance with EQE up to 14.7%and FWHM of 35 nm.To further bathochromic shift the emission band and improve the solubility,tert-butyls were introduced at the para positions of nitrogen atoms.Excitingly,thus designed MR molecule of BCzBN has bluish-green emission around 490 nm with PLQY of 86%and FWHM of 32 nm,and the solution-processed TADF devices reach the high EQEs up to 16.3%.This combined aromatization and substitution strategy of the MR skeleton not only provides an effective way to design high-performance MR-TADF materials,but also makes the solution-processed MR-OLEDs possible.

    Fig.1.Molecular design of solution-processible MR-molecules and structures of CzBN and BCzBN.

    Based on the widely investigated deep-blue MR-TADF emitter of DABNA-1 [12], the two free-rotating peripheral benzenes of nitrogen atoms were designed to be fused to their nearby benzene rings in the core to afford CzBN.This aromatization of the skeleton not only extends the π-conjugation but also increases the ICT localization area for the more efficient MR effect [14].To increase the solubility and further modulate emission band,four electrondonating tert-butyl substituents were introduced to the para positions of the two nitrogen atoms to obtain BCzBN.These molecules can be facilely prepared by replacing diphenylamine to carbazole in a similar two-step synthetic route of DABNA-1 with total yields up to 36%(Scheme S1 in Supporting information).The molecular structures were fully characterized by1H and13C NMR(Figs.S1-S6 in Supporting information)[23].Extraordinarily,they have good solubility in comment solvents,which is up to 10 mg/mL for BCzBN.Furthermore,they are highly stable with decomposition temperature over 360。C, which is important for stable and high brightness device operation (Fig.S7 and Table S1 in Supporting information) [24-26].

    The ultraviolet-visible (UV-vis) absorption and PL spectra of CzBN and BCzBN were measured to investigate their photophysical properties(Figs.2a and b and Table S1 in Supporting information)[27].In dilute dichloromethane (DCM) solution, the two emitters exhibit dominative absorption bands at around 470 nm and narrow emission bands at 479 and 497 nm with FWHM of 30 and 28 nm,respectively.This should be a typical feature of MR molecules[12].The small Stokes shifts (<30 nm)are due to their rigid molecular structures [28].In the neat film, CzBN exhibits a weak emission band at 502 nm and an additional broad emission band at 570 nm,where the first band at 502 nm should be the single molecular emission and that at 570 nm is attributed to the excimer emission owing to the nearly planar configuration for heavy aggregation[29,30].The introduction of tert-butyls in BCzBN suppresses the aggregation in neat film, resulting in much enhanced single molecular emission at 517 nm that is comparable to the excimer emission around 571 nm.Dilute solutions of CzBN and BCzBN exhibit bright sky-blue and bluish-green emission in air with PLQYs of 87% and 86%, respectively (inset of Fig.2c).The excimer induced emission around 570 nm was confirmed by doping CzBN and BCzBN into commonly used host material of 1,3-bis(9Hcarbazol-9-yl)benzene (mCP).The doped films display similar emission spectra to those in solution with also very small FWHM about 32 nm [31].

    Fig.2.Normalized absorption spectra(dash line)and emission spectra(solid line)of(a)CzBN and(b)BCzBN in DCM solution(black),neat film(red)and doped film in mCP(blue).(c)Delayed fluorescence decay curves of CzBN(black)and BCzBN(red)at 482 and 497 nm,respectively.Inset:photographs of diluted toluene solutions of CzBN and BCzBN excited by 365 nm UV light.

    The phosphorescent spectra of CzBN and BCzBN were obtained at 77 K with a delay time of 30 ms (Fig.S8 in Supporting information)[32].From the respective fluorescence and phosphorescence peaks at 478 and 502 nm,the ΔESTof 0.12 eV is identified for CzBN.Similarly,ΔESTof BCzBN is determined to be 0.11 eV on the basis of fluorescence and phosphorescence peaks at 498 and 520 nm.These ΔESTs are much smaller than the TADF criterion of 0.37 eV, suggesting that the two designed molecules are typical TADF emitters [33].Their TADF feature was further confirmed by the time-resolved PL decays.Both short-lived prompt and longlived delayed fluorescence components at room temperature were observed, exhibiting lifetimes of 7.0 and 8.4 ns (Fig.S9 in Supporting information) and 44.8 and 50.4μs, respectively(Fig.2c).It should be noted that both CzBN and BCzBN have smaller ΔESTthan DABNA-1 and their delayed fluorescence lifetimes are much shorter than 93.7μs of DABNA-1, suggesting that both RISC and radiative decay processes of the fused MR molecules are more efficient than the original MR compound.These findings are in consistent with the kinetic rate constants of the photoluminescence (Table S2 in Supporting information),exhibiting accelerated prompt fluorescence (kPF), intersystem crossing (kISC) and RISC (kRISC) of CzBN and BCzBN.

    To further clarify the MR and TADF characteristics of CzBN and BCzBN, density functional theory (DFT) and time-dependent DFT(TD-DFT)theoretical calculations were performed[34].As shownin Fig.3, CzBN and BCzBN exhibit atomically separated frontier molecular orbital (FMO) distributions similar to DABNA-1, where HOMOs distribute mainly on nitrogen atoms and carbon atoms at their meta-positions,and LUMOs locate primarily on boron atoms and carbon atoms at their meta-positions, except for the more extended distribution of FMOs and charge transfer(CT)delocalization areas duetotheirfusedmole cularstructures.These typicalMRTADF molecule-featured FMO distributions are well in line with the electron density difference (EDD) and CT amount (q) analyses[14,35].Their atomically alternative distributions of EDD show clearly the MR effects and extend to the phenyls far from boron atom, which is quite different to that of DABNA-1.Meanwhile, CT amounts of CzBN and BCzBN are 0.725 and 0.723 e,which are larger than that of DABNA-1(0.697 e),indicating the enhanced MR effects in these fused MR molecules (Tables S3-S5 in Supporting information).Therefore,not only reducedΔEST,but also red-shifted emission are resulted with increased foscfrom 0.2048 for DABNA-1 to 0.3506 and 0.4152 for CzBN and BCzBN,respectively.The highest foscof BCzBN should be due toboth increased molecular rigidityand enhanced MR effect by introducing tert-butyl substitutes at parapositions of nitrogen atoms to strengthen the electron-donating ability of N atoms[36].Moreover,the introduction of four electrodonating tert-butyl substitutes also raises the HOMO energy level for better hole injection and transport, which was confirmed by both the DFT calculations and cyclic voltammetry (CV) measurements (Fig.S10 in Supporting information) [37].The high-lying HOMO around-5.5 eV and low-lying LUMO about-2.9 eV are highly attractive for hole and electron injection and transport,making it convenient in selecting host materialsand otherfunctional layers to fabricate TADF OLED devices.

    Fig.3.HOMO and LUMO distributions and theoretical (black) and experimental(red)energy levels of CzBN and BCzBN,as well as EDD distributions and oscillator strength (fosc) of DABNA-1, CzBN and BCzBN.

    In light of the highly soluble MR-TADF molecules of BCzBN with favorable FMO energy levels,we fabricated the solution-processed MR-OLEDs with the structure of ITO/PEDOT:PSS (40 nm)/emitting layer(EML,50 nm)/DPEPO(10 nm)/TmPyPB(35 nm)/Liq(1 nm)/Al,where PEDOT:PSS (poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid) and Liq (8-hydroxyquinolinolatolithium) act as hole- and electron-injection layers, DPEPO (bis(2-(diphenylphosphino)phenyl)ether oxide)serves as hole-blocking layer,TmPyPB(1,3,5-tri(m-pyrid-3-yl-phenyl)benzene) is electron-transporting layer (Figs.4a and b) [38].10-(4-((4-(9H-Carbazol-9-yl)phenyl)sulfonyl)phenyl)-9,9-dimethyl-910-dihydroacridine (CzAcSF) is selected as the host materials in the EML with 2 wt%, 5 wt%,10 wt% CzBN and BCzBN [39].Indeed, very sharp electroluminescence(EL)spectra with small FWHM from 32 nm to 42 nm similar to the PL spectra were observed at different doping concentrations of MR-TADF emitters, indicating clearly the successful fabrication of solution-processed MR-OLEDs.The enlarged FWHM at increasing doping amount from 2 wt% to 10 wt% could be due to the enhanced guest aggregation at high concentrations.Impressively,the maximum current efficiency (CE), power efficiency (PE) and EQE of the sky-blue OLEDs based on CzBN reach 24.3 cd/A, 15.9 lm/W,and 14.7%,respectively,at the optimized doping concentration of 2 wt% (Table 1, and Figs.4c and d).The much higher EQEs than the upper-limit (5%) of the conventional fluorescent OLEDs give the direct evidence that triplet excitons were harvested for EL through TADF mechanism.More excitingly, when BCzBN was employed as the emitter,improved device performances with CE of 31.1 cd/A, PE of 19.5 lm/W and EQE of 16.3% were achieved in the efficient bluish-green MR-OLEDs at a doping concentration of 2 wt%(Figs.4e and f).These device performances are among the best results of solution-processed TADF OLEDs(Table S6 and Scheme S2 in Supporting information) [40].

    Table 1 Device performance of the solution-processed MR-OLEDs.

    In summary,a new design strategy for the solution-processible MR-TADF molecules was proposed by extending the CT delocalization of the MR backbone using both conjugated moieties and tert-butyl substituents.Two MR-TADF emitters with sky-blue and bluish-green emission were facilely prepared in two steps.It was found that the extension of π-conjugation and the introduction of electron-donating moieties at N-resonance positions to enhance the MR effect can narrow the bandgap and bathochromic-shift the emission spectra for small ΔEST, increased PLQY and good solubility.Unprecedentedly,the first solution-processed MR-TADF OLEDs exhibit the maximum CEs of 31.1 and 24.3 cd/A,PEs of 19.5 and 15.9 lm/W and EQEs of 16.3 and 14.7% for BCzBN and CzBNbased devices, respectively.These device performances are even better than the vacuum-deposited OLEDs based on DABNA-1,which may initiate the explorations of solution-processible MR materials and devices in the near future.

    Fig.4.(a)Structure and energy diagram of the solution-processed MR-TADF OLEDs.(b)Molecular structures of the adopted materials.Current density-voltage-luminance(JV-L)curves(inset:EL spectra),current efficiency,power efficiency and external quantum efficiency curves of the devices at different doping concentration of(c,d)CzBN and(e, f) BCzBN.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This study was supported by the National Natural Science Foundation of China (Nos.21772095, 91833306, 51873159,91956107, 61875090 and 21674049), 1311 Talents Program of Nanjing University of Posts and Telecommunications (Dingshan),the Six Talent Plan (No.2016XCL050), the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD,No.YX030003),China Postdoctoral Science Foundation(No.2020M671460),Jiangsu Planned Projects for Postdoctoral Research Funds (No.2020Z137), and Postgraduate Research & Practice Innovation Program of Jiangsu Province (No.46030CX17761).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version, at doi:https://doi.org/10.1016/j.cclet.2020.10.022.

    少妇的丰满在线观看| 久久毛片免费看一区二区三区| 韩国高清视频一区二区三区| 国产精品久久久久成人av| 午夜久久久在线观看| 国产精品一国产av| 99精国产麻豆久久婷婷| 国产日韩欧美在线精品| 老司机深夜福利视频在线观看 | 无限看片的www在线观看| 日韩不卡一区二区三区视频在线| 夫妻性生交免费视频一级片| 国产成人精品无人区| 人妻 亚洲 视频| 天堂俺去俺来也www色官网| 女人爽到高潮嗷嗷叫在线视频| 午夜久久久在线观看| 69精品国产乱码久久久| 久久99一区二区三区| 蜜桃在线观看..| 欧美97在线视频| 性色av一级| 亚洲婷婷狠狠爱综合网| av又黄又爽大尺度在线免费看| 国产一区二区在线观看av| 久久99精品国语久久久| 欧美日韩综合久久久久久| 国产精品香港三级国产av潘金莲 | 久久热在线av| 日韩不卡一区二区三区视频在线| 国产精品国产三级专区第一集| videosex国产| 国产探花极品一区二区| 精品视频人人做人人爽| 欧美 日韩 精品 国产| 热re99久久精品国产66热6| 国产成人a∨麻豆精品| 久久久国产一区二区| 色吧在线观看| 免费高清在线观看视频在线观看| 女性生殖器流出的白浆| 亚洲精华国产精华液的使用体验| 美女视频免费永久观看网站| 无限看片的www在线观看| 欧美国产精品va在线观看不卡| 国产精品三级大全| 亚洲美女黄色视频免费看| 免费人妻精品一区二区三区视频| 日韩熟女老妇一区二区性免费视频| 美女午夜性视频免费| 亚洲国产精品国产精品| 在线免费观看不下载黄p国产| 看免费av毛片| 久久ye,这里只有精品| 久久这里只有精品19| 久久久亚洲精品成人影院| 国产男女超爽视频在线观看| 男人添女人高潮全过程视频| www.自偷自拍.com| av视频免费观看在线观看| 亚洲国产精品成人久久小说| 如日韩欧美国产精品一区二区三区| 大香蕉久久成人网| 制服诱惑二区| 精品国产超薄肉色丝袜足j| 男男h啪啪无遮挡| 18禁动态无遮挡网站| 国产黄色视频一区二区在线观看| 超碰成人久久| 最近2019中文字幕mv第一页| 曰老女人黄片| 男人爽女人下面视频在线观看| 啦啦啦视频在线资源免费观看| 中文字幕高清在线视频| 亚洲国产精品一区三区| xxxhd国产人妻xxx| 久久青草综合色| 卡戴珊不雅视频在线播放| 看免费成人av毛片| 亚洲人成网站在线观看播放| 欧美变态另类bdsm刘玥| 久久亚洲国产成人精品v| 一二三四在线观看免费中文在| 成人三级做爰电影| 美女主播在线视频| 亚洲欧美一区二区三区黑人| 五月开心婷婷网| 亚洲在久久综合| 美女午夜性视频免费| 亚洲成人国产一区在线观看 | 国产精品久久久久久久久免| 中文字幕亚洲精品专区| 九九爱精品视频在线观看| 精品人妻一区二区三区麻豆| 黑人巨大精品欧美一区二区蜜桃| 成人午夜精彩视频在线观看| 欧美黑人欧美精品刺激| 性高湖久久久久久久久免费观看| 欧美黑人欧美精品刺激| 久久久久久久久久久免费av| 亚洲成人av在线免费| 午夜福利免费观看在线| 亚洲,欧美,日韩| 亚洲在久久综合| 90打野战视频偷拍视频| 欧美激情极品国产一区二区三区| 国产一区二区三区综合在线观看| 久久久精品免费免费高清| 在线观看人妻少妇| 熟妇人妻不卡中文字幕| 国产精品国产三级国产专区5o| 水蜜桃什么品种好| 亚洲精品国产av成人精品| 国产1区2区3区精品| 天美传媒精品一区二区| 伦理电影免费视频| 精品第一国产精品| 男女国产视频网站| 国产一区亚洲一区在线观看| 国产成人啪精品午夜网站| 亚洲国产欧美在线一区| 亚洲精品国产一区二区精华液| 久久国产亚洲av麻豆专区| 国产在视频线精品| 欧美人与性动交α欧美软件| 晚上一个人看的免费电影| 亚洲精华国产精华液的使用体验| 深夜精品福利| 热99久久久久精品小说推荐| 精品国产一区二区三区四区第35| 秋霞伦理黄片| 交换朋友夫妻互换小说| 女人精品久久久久毛片| 色吧在线观看| 亚洲一级一片aⅴ在线观看| 免费不卡黄色视频| 国产欧美日韩综合在线一区二区| 亚洲精品日韩在线中文字幕| 51午夜福利影视在线观看| 哪个播放器可以免费观看大片| 欧美少妇被猛烈插入视频| 一级毛片我不卡| tube8黄色片| 免费女性裸体啪啪无遮挡网站| 99热网站在线观看| 高清不卡的av网站| 久久久久久久国产电影| 欧美黑人欧美精品刺激| 丝袜人妻中文字幕| 久久久久视频综合| 丁香六月欧美| a 毛片基地| 日韩 欧美 亚洲 中文字幕| 天天添夜夜摸| 国产麻豆69| 人人妻人人添人人爽欧美一区卜| av国产久精品久网站免费入址| 侵犯人妻中文字幕一二三四区| 少妇精品久久久久久久| 看免费成人av毛片| 亚洲美女黄色视频免费看| 男女高潮啪啪啪动态图| 色婷婷久久久亚洲欧美| 国产亚洲av片在线观看秒播厂| videosex国产| 国产有黄有色有爽视频| 永久免费av网站大全| 日日撸夜夜添| 午夜免费鲁丝| 精品少妇一区二区三区视频日本电影 | 高清av免费在线| 国产成人免费无遮挡视频| 999精品在线视频| 精品一区二区三卡| 亚洲一码二码三码区别大吗| 国产精品人妻久久久影院| 青青草视频在线视频观看| 99久国产av精品国产电影| 国产精品久久久av美女十八| 你懂的网址亚洲精品在线观看| 成人国产麻豆网| 亚洲色图综合在线观看| 国产福利在线免费观看视频| 男女免费视频国产| 久久精品久久久久久噜噜老黄| 一级毛片电影观看| 超碰成人久久| 免费少妇av软件| 精品酒店卫生间| 亚洲天堂av无毛| 最近中文字幕高清免费大全6| 亚洲国产精品成人久久小说| 日韩一区二区视频免费看| 成人免费观看视频高清| 一区在线观看完整版| 久久精品久久精品一区二区三区| 亚洲精品在线美女| av有码第一页| 国产成人91sexporn| 丰满迷人的少妇在线观看| 黄色毛片三级朝国网站| 黄片播放在线免费| 国产亚洲最大av| 美女国产高潮福利片在线看| 国产在线一区二区三区精| 午夜免费观看性视频| 国产福利在线免费观看视频| 免费久久久久久久精品成人欧美视频| 我要看黄色一级片免费的| 国产精品蜜桃在线观看| 熟女av电影| 母亲3免费完整高清在线观看| 亚洲色图 男人天堂 中文字幕| 日韩av免费高清视频| 日本爱情动作片www.在线观看| 9热在线视频观看99| 亚洲专区中文字幕在线 | 18在线观看网站| 国产一区亚洲一区在线观看| 久久影院123| 国产在视频线精品| 久久久精品区二区三区| 精品亚洲成国产av| 亚洲人成网站在线观看播放| 在线天堂中文资源库| 丝袜美腿诱惑在线| 中文字幕另类日韩欧美亚洲嫩草| 狠狠婷婷综合久久久久久88av| 大陆偷拍与自拍| 欧美精品一区二区大全| 视频在线观看一区二区三区| 欧美日韩视频精品一区| 日韩伦理黄色片| 亚洲精品国产一区二区精华液| 亚洲欧洲精品一区二区精品久久久 | 日韩人妻精品一区2区三区| 香蕉国产在线看| 精品久久久久久电影网| 精品久久蜜臀av无| 9色porny在线观看| 99九九在线精品视频| 97人妻天天添夜夜摸| 美女视频免费永久观看网站| 久久久久久人妻| 少妇精品久久久久久久| 熟女av电影| 久久国产精品大桥未久av| 亚洲一码二码三码区别大吗| 十八禁人妻一区二区| 美女扒开内裤让男人捅视频| 国产老妇伦熟女老妇高清| 亚洲精品国产区一区二| 日韩视频在线欧美| 看十八女毛片水多多多| 丝袜人妻中文字幕| 国产精品 欧美亚洲| 99九九在线精品视频| 亚洲av综合色区一区| 天天影视国产精品| 捣出白浆h1v1| 日韩一本色道免费dvd| 精品久久蜜臀av无| 久久综合国产亚洲精品| 国产老妇伦熟女老妇高清| 999精品在线视频| 欧美激情 高清一区二区三区| 国产精品av久久久久免费| 国产熟女午夜一区二区三区| 国精品久久久久久国模美| 啦啦啦啦在线视频资源| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人系列免费观看| 欧美人与善性xxx| 亚洲欧美精品自产自拍| 久久久久精品久久久久真实原创| 日本av手机在线免费观看| 最近2019中文字幕mv第一页| 日日啪夜夜爽| 国产伦理片在线播放av一区| 午夜福利网站1000一区二区三区| 国产97色在线日韩免费| 人人妻人人添人人爽欧美一区卜| 老司机亚洲免费影院| 精品视频人人做人人爽| 国产av码专区亚洲av| 最近最新中文字幕大全免费视频 | 狠狠婷婷综合久久久久久88av| 亚洲一区二区三区欧美精品| 日本一区二区免费在线视频| 多毛熟女@视频| 日本av手机在线免费观看| 美女福利国产在线| 激情视频va一区二区三区| 亚洲国产看品久久| 亚洲成人av在线免费| 久久鲁丝午夜福利片| 亚洲第一区二区三区不卡| 亚洲av男天堂| 亚洲 欧美一区二区三区| 九色亚洲精品在线播放| 少妇精品久久久久久久| 亚洲成人av在线免费| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品中文字幕在线视频| 91成人精品电影| 午夜福利一区二区在线看| 亚洲成人av在线免费| 91aial.com中文字幕在线观看| 熟女少妇亚洲综合色aaa.| av卡一久久| 国产精品一二三区在线看| 日韩 欧美 亚洲 中文字幕| 免费高清在线观看日韩| 两性夫妻黄色片| 国产精品 欧美亚洲| 午夜91福利影院| 婷婷色av中文字幕| 男女床上黄色一级片免费看| 99国产精品免费福利视频| 精品国产一区二区三区久久久樱花| 精品国产乱码久久久久久男人| 亚洲欧洲国产日韩| 免费av中文字幕在线| 9热在线视频观看99| 午夜免费男女啪啪视频观看| 在线看a的网站| 色婷婷av一区二区三区视频| 观看美女的网站| av国产久精品久网站免费入址| 国产一级毛片在线| 欧美老熟妇乱子伦牲交| 伊人亚洲综合成人网| 日韩大片免费观看网站| 久久97久久精品| 亚洲三区欧美一区| 亚洲精品一二三| 免费观看人在逋| 大片电影免费在线观看免费| 久久久久网色| 午夜福利视频在线观看免费| 在线精品无人区一区二区三| 香蕉丝袜av| 亚洲美女视频黄频| 精品一区二区三区av网在线观看 | 日韩中文字幕视频在线看片| 两个人看的免费小视频| 侵犯人妻中文字幕一二三四区| 秋霞伦理黄片| 精品免费久久久久久久清纯 | 国产成人欧美| 亚洲精华国产精华液的使用体验| 天天躁夜夜躁狠狠久久av| 熟女少妇亚洲综合色aaa.| 日本欧美国产在线视频| 考比视频在线观看| 1024视频免费在线观看| 久久99热这里只频精品6学生| 女的被弄到高潮叫床怎么办| 欧美激情极品国产一区二区三区| 久久精品久久久久久噜噜老黄| 精品久久久精品久久久| av在线老鸭窝| 亚洲国产精品一区二区三区在线| 久久久国产一区二区| 黄色视频在线播放观看不卡| 少妇被粗大的猛进出69影院| 老鸭窝网址在线观看| 中文字幕色久视频| 久久久久国产精品人妻一区二区| 尾随美女入室| av免费观看日本| 国产成人免费无遮挡视频| av在线app专区| 亚洲av日韩在线播放| 亚洲国产av新网站| 精品国产国语对白av| 亚洲精品一区蜜桃| 午夜福利免费观看在线| 99久久精品国产亚洲精品| 2021少妇久久久久久久久久久| 午夜影院在线不卡| 一级片免费观看大全| 成人18禁高潮啪啪吃奶动态图| 十八禁高潮呻吟视频| 天堂中文最新版在线下载| svipshipincom国产片| 如何舔出高潮| 伦理电影大哥的女人| 中文精品一卡2卡3卡4更新| 亚洲精品日本国产第一区| 亚洲国产看品久久| 日韩av不卡免费在线播放| 男女国产视频网站| 国产精品国产三级国产专区5o| 黄色一级大片看看| 精品国产乱码久久久久久小说| 丰满少妇做爰视频| 午夜免费观看性视频| 黄片无遮挡物在线观看| 国产免费视频播放在线视频| 国产日韩欧美亚洲二区| 午夜福利在线免费观看网站| 各种免费的搞黄视频| 一边摸一边抽搐一进一出视频| 考比视频在线观看| 国产黄色免费在线视频| 亚洲精品久久午夜乱码| 女人被躁到高潮嗷嗷叫费观| 色94色欧美一区二区| 亚洲欧洲国产日韩| 亚洲国产精品成人久久小说| 欧美人与善性xxx| 人人妻人人澡人人看| 最近手机中文字幕大全| 免费在线观看完整版高清| 欧美日韩视频精品一区| 亚洲欧美一区二区三区久久| 男女午夜视频在线观看| av.在线天堂| 又粗又硬又长又爽又黄的视频| 精品少妇一区二区三区视频日本电影 | av电影中文网址| 国产亚洲av片在线观看秒播厂| 欧美日韩一区二区视频在线观看视频在线| 女人精品久久久久毛片| 99久国产av精品国产电影| 午夜福利乱码中文字幕| 亚洲一区二区三区欧美精品| 久久久久人妻精品一区果冻| 如何舔出高潮| 51午夜福利影视在线观看| 在线观看国产h片| 伊人久久国产一区二区| 欧美精品一区二区大全| 亚洲色图综合在线观看| 日本欧美视频一区| 国产精品偷伦视频观看了| 欧美日韩国产mv在线观看视频| 国产午夜精品一二区理论片| 欧美日韩视频精品一区| 亚洲欧美清纯卡通| 午夜福利,免费看| 极品人妻少妇av视频| 亚洲欧美精品综合一区二区三区| 1024香蕉在线观看| 最新在线观看一区二区三区 | 亚洲av成人精品一二三区| 免费日韩欧美在线观看| 尾随美女入室| 精品久久久久久电影网| 日韩,欧美,国产一区二区三区| 哪个播放器可以免费观看大片| 国产免费一区二区三区四区乱码| 在线观看免费视频网站a站| 国产熟女午夜一区二区三区| 亚洲精品国产av成人精品| 国产精品久久久人人做人人爽| 欧美人与性动交α欧美精品济南到| 美国免费a级毛片| 免费看不卡的av| 人人妻人人澡人人看| 九草在线视频观看| 另类亚洲欧美激情| 91国产中文字幕| 欧美日韩国产mv在线观看视频| 免费看不卡的av| 少妇人妻久久综合中文| 少妇 在线观看| 精品国产一区二区三区久久久樱花| 制服人妻中文乱码| 国产日韩欧美亚洲二区| 免费人妻精品一区二区三区视频| 欧美日韩国产mv在线观看视频| 1024香蕉在线观看| 一级毛片 在线播放| 国产亚洲一区二区精品| 国产av码专区亚洲av| 久久影院123| 久久久精品免费免费高清| 亚洲av男天堂| 高清在线视频一区二区三区| av在线观看视频网站免费| 最近中文字幕高清免费大全6| 亚洲人成网站在线观看播放| 日韩精品有码人妻一区| 天堂俺去俺来也www色官网| av.在线天堂| 黄色怎么调成土黄色| 久久狼人影院| 精品一区二区三区四区五区乱码 | 中国三级夫妇交换| 欧美成人精品欧美一级黄| 黄片无遮挡物在线观看| 9热在线视频观看99| 国产男女超爽视频在线观看| 看免费av毛片| 人妻 亚洲 视频| 国产男人的电影天堂91| 狠狠精品人妻久久久久久综合| 国产成人精品无人区| 免费在线观看视频国产中文字幕亚洲 | 人人妻人人澡人人看| 黄色视频在线播放观看不卡| 欧美日韩一区二区视频在线观看视频在线| 高清不卡的av网站| 黄片小视频在线播放| 国产精品欧美亚洲77777| 搡老岳熟女国产| 亚洲国产av新网站| 18禁动态无遮挡网站| 最新的欧美精品一区二区| 人妻人人澡人人爽人人| 人妻一区二区av| 午夜久久久在线观看| 亚洲国产精品国产精品| 日本色播在线视频| 国产精品99久久99久久久不卡 | 成人漫画全彩无遮挡| 天天躁狠狠躁夜夜躁狠狠躁| 别揉我奶头~嗯~啊~动态视频 | 一级片免费观看大全| 免费在线观看视频国产中文字幕亚洲 | 亚洲一区二区三区欧美精品| 免费在线观看视频国产中文字幕亚洲 | 18在线观看网站| 久热爱精品视频在线9| 国产熟女欧美一区二区| 一区二区三区四区激情视频| 久久久欧美国产精品| 久久午夜综合久久蜜桃| 男人添女人高潮全过程视频| 日韩不卡一区二区三区视频在线| 老司机靠b影院| 日本av免费视频播放| 久久人人爽人人片av| 天天操日日干夜夜撸| 热99国产精品久久久久久7| 精品免费久久久久久久清纯 | 叶爱在线成人免费视频播放| 国产av国产精品国产| 深夜精品福利| 中国国产av一级| 久热这里只有精品99| 国产成人欧美在线观看 | 2018国产大陆天天弄谢| 久久久国产欧美日韩av| 久久精品久久久久久噜噜老黄| 国产日韩欧美视频二区| 一级片免费观看大全| 老司机深夜福利视频在线观看 | 最近中文字幕高清免费大全6| 久热这里只有精品99| xxx大片免费视频| 黄色 视频免费看| 99国产精品免费福利视频| 精品久久久久久电影网| 午夜激情av网站| 亚洲成人av在线免费| 青春草亚洲视频在线观看| 成人午夜精彩视频在线观看| 狂野欧美激情性xxxx| 丁香六月天网| 最新在线观看一区二区三区 | 综合色丁香网| 黄片小视频在线播放| 搡老乐熟女国产| 1024香蕉在线观看| 丰满乱子伦码专区| 免费看不卡的av| av一本久久久久| 亚洲精品一二三| 日本av手机在线免费观看| 欧美激情极品国产一区二区三区| 99九九在线精品视频| 亚洲一码二码三码区别大吗| 99热全是精品| 观看av在线不卡| 亚洲精品在线美女| 久久精品亚洲av国产电影网| 精品国产超薄肉色丝袜足j| 免费人妻精品一区二区三区视频| 久久人人爽人人片av| 汤姆久久久久久久影院中文字幕| 侵犯人妻中文字幕一二三四区| 日韩一本色道免费dvd| 一二三四在线观看免费中文在| 日韩av在线免费看完整版不卡| 在线免费观看不下载黄p国产| 麻豆av在线久日| 亚洲精品第二区| 日韩大码丰满熟妇| 青春草国产在线视频| 免费人妻精品一区二区三区视频| 国产亚洲一区二区精品| 91国产中文字幕| 999精品在线视频| 日本色播在线视频| 飞空精品影院首页| 99香蕉大伊视频| 999久久久国产精品视频| 免费在线观看黄色视频的| 晚上一个人看的免费电影| 别揉我奶头~嗯~啊~动态视频 | 一级片免费观看大全| 九色亚洲精品在线播放| 又大又爽又粗| 黄色 视频免费看| 免费不卡黄色视频| 美女午夜性视频免费| 黑人猛操日本美女一级片| 午夜福利,免费看| 午夜免费鲁丝| 成人亚洲精品一区在线观看| 我要看黄色一级片免费的| 成人毛片60女人毛片免费|