• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A characteristic modeling method of error-free compression for nonlinear systems

    2021-10-13 07:16:44BinMengYunBoZhaoJingJingMu
    Control Theory and Technology 2021年3期

    Bin Meng·Yun-Bo Zhao·Jing-Jing Mu

    Abstract The existence of error when compressing nonlinear functions into the coefficients of the characteristic model is known to be a key issue in existing characteristic modeling approaches,which is solved in this work by an error-free compression method.We first define a key concept of relevant states with corresponding compressing methods into their coefficients,where the coefficients are continuous and bounded and the compression is error-free.Then,we give the conditions for decoupling characteristic modeling for MIMO systems,and sequentially,we establish characteristic models for nonlinear systems with minimum phase and relative order two as well as the flexible spacecrafts,realizing the equivalence in the characteristic model theory.Finally,we explicitly explain the reasons for normalization in the characteristic model theory.

    Keywords Characteristic modeling·Relevant states·Error-free compression·Flexible spacecraft·Normalization

    1 Introduction

    The characteristic model theory founded by Academician Wu Hongxin in the 1980s [1–3] has already witnessed many of its successful stories in the aerospace and industry fields,e.g.,the reentry lift control of the Shenzhou spacecraft [4–6],the rendezvous and docking control of the Shenzhou spacecraft and Tiangong 1 [7,8],the skip reentry control of the Chang’e-5 [9],the electrolytic aluminum control [10],just to name a few.The characteristic model theory consists of three ingredients,namely,characteristic modeling,parameter identification and all-coefficient adaptive control.In the characteristic modeling stage,the dynamics of the controlled systems is transformed to establish the characteristic model.Then,in the parameter identification stage,the projection gradient method or the projection least square method are used to identify the bounded coefficients,which is key to the success of the characteristic model.Finally,the control law is designed using the so-called all-coefficient adaptive control approach,examples of which include maintenancetracking control,golden-section adaptive control,logic integral control,logic differential control,etc.[4].

    As can be understood,characteristic modeling is the first step of and key to the characteristic model theory,which has been studied extensively in the recent decades.For linear systems,the problem has been solved by proving that general linear time-invariant systems can be transformed to the second-order linear time-varying difference equations with bounded coefficients under certain conditions [11,12].For second-order affine nonlinear systems the second-order characteristic model has also been given by introducing nonlinear time scale [13].The cyclic demonstration problem is solved by a state-dependent identification projection region and a novel adaptive control method [14,15].Also,one assumption on characteristic modeling is that the compressed functions should be zero for zero system state,since otherwise the modeling errors will be infinity under certain conditions,which can be solved by the translation transformation method [16].

    We notice that key to characteristic modeling is the errorfree compression of nonlinear functions into the coefficients of a characteristic model,but unfortunately error is always present in all existing methods [4].On the other hand,the reasons of the so-called“normalization”phenomenon need also be explained,where the bounds of the output coefficients of the characteristic model for different controlled systems,systems different time scales,linear or nonlinear,are all the same.Motived by the above challenges,in the present work,we

    – Define a key concept of“relevant states”for nonlinear functions,which ensures the equivalence in the compression process.

    – Establish the necessary and sufficient conditions for the first time,under which MIMO systems can be transformed into a decoupled characteristic model.

    – Establish the characteristic models of nonlinear systems with minimum phase and relative order two as well as the flexible spacecraft,realizing the equivalence in the characteristic model theory.

    – Address the normalization problem in the characteristic model theory.

    In what follows,we first formulate the problem of interest in Sect.2,then present the main results in Sect.3,and finally concludes the paper in Sect.4.

    2 Problem formulation and preliminaries

    We first formulate the considered problems with preliminaries on characteristic modeling with error-free compression.

    2.1 Problem formulation

    In [19],it was proved that the dynamics of a flexible spacecraft can be transformed into a standard form of input–output linearization with minimum phase and relative order two.With this in mind,we may consider the following affine nonlinear system:

    wherex1∈?n,x2∈?nandη∈?pare the system states,u∈?nis the system input,f∈?n,g∈?n×nandq∈?pare the smooth differential functions,f(0,0,0)=0 andq(0,0,0)=0.

    For the system in (1),we make the following assumption.

    Assumption 1(a) The system in (1) is a minimum-phase system;(b) the derivatives of functionsfandqwith their arguments are bounded;and (c)gis nonsingular.

    Remark 1Assumption 1 is necessary for the global stability of the characteristic model based adaptive control.In fact,adaptive control can be rewritten as an adaptive PID control law with bounded coefficients [4],and Assumption 1 is one of the necessary conditions for the global stability of PID control in [17].

    An advantage of characteristic model theory is that the coefficients of the characteristic model have determined bounds,ensuring transient stability of the closed-loop systems.The bounds are determined by adjusting the sampling period according to how fast the system dynamics can be.This system property can be measured by the eigenvalues for linear time-invariant (LTI) systems,and by the following time scale introduced in [18] for nonlinear systems.

    Definition 1Define the time scale for the system in (1) as follows:

    The characteristic model is of the form of linear timevarying difference equations with bounded coefficients,with its particular focus on second-order model [4,11–16],given as follows:

    whereyCanduCare the output and input of the characteristic model in (2),with their dimensions being equal to those of the controlled system,anda1,a2andbare matrices with appropriate dimensions.The bounds of the output coeffi-cients are given by

    and the bound of the input coefficientb(k) is given according to the specific physical properties of the input matrix of the controlled systems.In the above formulas,Tscaleis the time scale of the controlled systems,andTis the sampling period.

    Whena1anda2are diagonal matrices,(2) is said to be the decoupled characteristic model.

    2.2 Preliminaries

    The following lemma gives an important property of the time scale.

    Lemma 1Assume that Assumption1holds.For the following systems,

    ProofLet the derivative variable of (5) bet,and transform(5) into the system with time scale 1,as follows:

    which then means that (6) holds.The other case can be proved similarly.

    Remark 2When degenerated to linear systems,Lemma 1 holds as well.It can be known from linear system theory thatf1andf2are the product and sum of eigenvalues,respectively.Eq.(6) holds from the definition of minimum time constant of linear system theory.Error-free compression of nonlinear functions into the coefficients of state variables is key to characteristic modeling.We define the following relevant states which is useful in the error-free compression.

    Definition 2For a functionh(s1,s2,…,sn),if

    thens1,s2,…,smare said to be a group of relevant states,ands1,s2,…,smare relevant.

    Remark 3Relevant states exist in general.In fact,all states are relevant for a system with zero equilibrium according to Definition 2.From nonlinear system theory,the nonzero equilibrium can always be transferred to zero.

    Remark 4There may exist multiple groups of relevant states for a system.For example,the following function

    has three groups of relevant statess1;s2;s1ands2.In this present work,we need to find out the group of relevant states with the fewest elements to build the characteristic model.

    For a functionh(s1,s2,…,sn) with all states being relevant,define fors1

    For a functionh(s1,s2,…,sn) with relevant states beingsi,i=1,2,…,m,m

    It is then easy to see that

    The above results are summarized in the following lemma.

    Lemma 2Consider a function h(s1,s2,…,sn)with bounded.If and only if the relevant states of h are si,i=1,…,m,m≤n,h can be compressed into the coefficients of the relevant states si without error,as shown in(9)where the coefficients are shown in(7)and(8)for m=n,and in(12)with the coefficients(10)and(11)for m

    3 Main results

    This section investigates the characteristic modeling problem with error-free compression for the nonlinear systems(1) and flexible spacecraft,and the normalization phenomena in the characteristic model theory.The characteristic modeling problem for the external dynamics of (1) is first considered.

    3.1 Characteristic modeling for second-order affine nonlinear systems

    Consider the external dynamics of (1),

    wherex1i∈?,x2i∈?,ui∈?,fi∈?,gi∈?1×n,i=1,2,…,n.By Definition 1,f(0,0)=0 means there exist relevant states forfi,i=1,2,…,n,which can be expressed as

    wherekjandljbelong to the set {1,2,…,n},j=1,2,…,i.By Lemma 2,designing the continuous bounded coefficients with respect to the relevant states (15) yields

    Rewriting (18) in its matrix form and then taking Euclidean discretization yields

    wherea1(k)∈?n×nanda2(k)∈?n×nsatisfy (3) and (4) by Lemma 1,and

    It is easy to see that by further taking the output of the characteristic model asyC=x1,(19) has the form of the characteristic model in (2),i.e.,we have established the characteristic model (2) for (13).

    We proceed to consider the problem of decoupling characteristic modeling,which diminishes the number of coefficient identification,hence simplifying the control design.

    Lemma 2 implies that iffi,i=1,2,…,n,satisfy the following conditions:

    Apparently,a1(k) anda2(k) are diagonal,which means that(24) is decoupled.It is easy to see that by further taking the output and input of the characteristic model asyC=x1anduC=u,(23) has the form of the characteristic model (2);that is,we have established the decoupled characteristic model(2) for (13),wherea1(k)∈?n×nanda2(k)∈?n×nare diagonal matrices and satisfy (3) and (4),andb(k) is with the form of (20).Eq.(21) is necessary and sufficient for establishing the decoupled characteristic model,which is said to be the decoupling condition of characteristic model.

    We summarize the above derivations into the following two theorems.

    Theorem 1If the nonlinear system in(13)satisfies Assumption1,then there exist relevant states for the nonlinear function f in(13),and f can be compressed into the coefficients of the relevant states without error with continuously bounded coefficients(16),as shown in(17).Furthermore,(13)can be transformed into the second-order characteristic model(2)with the coefficients satisfying(3),(4),and(20).

    Theorem 2If the nonlinear system in(13)satisfies Assumption1and the decoupling condition(21),then for i=1 ,2,… ,n,fi only has two relevant states,x1i and x2i,and f can be compressed into the coefficients of the relevant states without error with continuously bounded coefficients,as shown in(22).Furthermore,(13)can be transformed into the secondorder decoupled characteristic model(2)with the coeffi-cients satisfying(3),(4),and(20),and a1and a2diagonal.

    Remark 5The decoupling conditions (21) for establishing the decoupled characteristic model are given for the first time in this work.

    Remark 6Equations (17) and (22) show that the compression is error-free,ensuring the equivalence in the characteristic model theory.

    3.2 Characteristic modeling for the nonlinear systems in (1)

    This section gives a characteristic modeling method with error-free compression for the higher-order nonlinear systems in (1),realizing the equivalence in the characteristic model theory.

    Similar to (14),let

    whereqi∈?,ηi∈?,i=1,2,…,p.In the following,we establish the characteristic model of (1).First,compress the nonlinear functionfandqof (1) into the coefficients of the relevant states.Similar to the deduction procedure in Section 3.1,forf,there exist relevant states,

    Therefore,(1) can be rewritten in matrix form by substituting (25) and (26) into it,

    whereF1,F2,Fη,Q1,Q2,andQηare matrices with appropriate dimensions.We can see that the nonlinear functionsfandqin (1) are compressed into the coefficients of the relevant states without error by comparing (1) and (27).

    We further deal with the internal statesηas follows.By matrix theory,we can find the general solution ofηfrom the second equation of (27),

    Substituting the third equation of (27) into (29) cancelsand then substituting (28) into the resultant equation cancelsη. This results in the third-order differential equation ofx1with the cancellation of the internal statesηand

    Taking Euler discretization to (30), the third-order characteristic model can be established by further takingyC=x1anduC=u,

    In characteristic model theory, the second-order one is of special significance since the intelligent adaptive control methods based on it have derived successful and widely applications [4]. Therefore, we further establish the secondorder characteristic model for (1) by introducing the online estimation methods. It follows from the first and second equations in (27) that

    By designing online estimators, for example, the extended state observer (ESO), to estimate the internal statesFηη, and denoting the estimated states as(34) can be represented as follows:

    Furthermore, by taking Euler discretization to (35), the second-order characteristic model (2) can be established where

    We summarize the above deductions into the following theorem.

    Theorem 3If the nonlinear systems in (1) satisfy Assumption 1, then (1) can be transformed into the third-order characteristic model in (31) with the coefficients satisfying (32) and(33); furthermore, if the internal states are estimated and the intermediate controlis designed as in (36), then (1) can be transformed into the second-order characteristic model(2) with the input uC =and the coefficients satisfying (3),(4), and (37).

    3.3 Characteristic modeling for flexible spacecraft

    This section proposes the characteristic modeling method with error-free compression for flexible spacecraft, realizing the equivalence in the characteristic model theory.

    Consider the following flexible spacecraft attitude dynamics (1-3-2 Euler rotation sequence),

    φ,θ,ψare the roll,the pitch,and the yaw attitudes;wx,wy,wzare the roll,the pitch and the yaw angular velocities,respectively;

    represents the cross-product operator matrix;Isis the inertia matrix of spacecraft,Tsis the external torque vector acting on the spacecraft;andηL∈?landηR∈?lare the mode coordinate matrices,ξL >0 andξR >0 are the mode damping coefficients,wL >0 andwR >0 are the mode frequencies,FsL∈?3×landFsR∈?3×lare the coupled matrices between flexible and rigid bodies with the subscriptLandRbeing the left and right solar array,respectively.

    Here,we consider the case where 0 ≤ψ <90?(forψ≥90?,the spacecraft model in terms of quaternion parameterization is needed).Through simple computation,C(x1)is nonsingular for 0 ≤ψ <90?.Let the main body inertial matrix be

    Assumption 2Rsis nonsingular.

    The following properties are given in [19].

    Lemma 3The relative order of the flexible spacecraft dynamics(38)is(2,2,2),and its zero dynamics are exponentially stable.

    Using differential homeomorphic transformation,(38) is transformed into the following input-output linearization form,

    By comparison,we can see that (39) is already in the form of (27),meaning that it is not necessary to compress the nonlinear functions for the flexible spacecraft (38),which consequently means that Assumption 1 is unnecessary.From Theorem 3,we can obtain the characteristic modeling results directly.

    Proposition 1If the flexible spacecraft in(38)satisfies Assumption2,then(38)can be transformed into the thirdorder characteristic model in(31)with the coefficients satisfying(32)and(33);furthermore,if the internal statesa(z)η are estimated asand the intermediate controlisdesigned as follows:

    then(38)can be transformed into the second-order charac-teristic model(2)with the inputand the coefficientssatisfying(3),(4),and(37).

    3.4 Normalization essence

    This section provides insights on“normalization”in the characteristic model theory through both linear and nonlinear systems.“normalization”means that the bounds of the output coefficients of the characteristic model for different controlled systems,systems different time scales,linear or nonlinear,are all the same.

    3.4.1 LTI systems

    Consider the following controlled systems with different poles:

    whereλi <0 andkiare real numbers fori=1,2,…,n.It follows from computer control theory that the pulse transfer function for (40) is

    andG(0) is the static gain.

    In the characteristic model theory,the static gain can be transformed to 1 through the input-output transformation [20,21].Thus,without loss of generality,we may assumeG(0)=1 .Inspection of (41) and (42) shows that for different systems,only the eigenvalueλiand the sampling periodTare different,but they all appear in the form of multiplication with same orders.Defining the minimum time constant [4],

    In the characteristic model theory,we generally choose the sampling periodTaccording toTscale[4],

    Using (43) and (44),we can obtain the same bounds for all coefficients in (41) and (42) for linear different systems (40),which implies the realization of the normalization for the linear system in (40).

    3.4.2 Nonlinear systems

    The reasons for the normalization for the nonlinear system in (1) can be seen from (3),(4),and (32).By choosing the sampling period according to (44),the bounds of the coefficients of the characteristic model in (2) and (31) for different controlled systems are equal,which implies the realization of normalization for the nonlinear systems in(1).

    In summary,the essence of the characteristic model theory is to choose the sampling period according to the change pace of controlled systems,and further taking advantage of the structural features of the characteristic model to realize the normalization.For both linear and nonlinear systems,the output coefficient bounds of their same-order characteristic model are the same.

    4 Conclusion

    The characteristic modeling problem with error-free compression for nonlinear systems is investigated.A key concept of the relevant states is defined with its corresponding compression method,where the coefficients are continuous and bounded and the compression is error-free.The conditions given for decoupling characteristic modeling for MIMO systems provide bases,based on which the establishment of the characteristic models for the nonlinear systems with minimum phase and relative order two and the flexible spacecraft realizes the equivalence in the characteristic model theory.Lastly,reasons for normalization in the characteristic model theory are given.The work contributes fundamentally to the characteristic model theory.

    AcknowledgementsThis work was supported by the National Key R&D Program of China (Grant Nos.2018YFA0703800 and 2018AAA0100800),the Science and Technology on Space Intelligent Control Laboratory Foundation of China (Grant No.ZDSYS-2018-04)and the National Natural Science Foundation of China (Grant Nos.U20B2054 and 51805025).

    岛国在线观看网站| 久久香蕉国产精品| 国产三级黄色录像| 亚洲av第一区精品v没综合| 日日干狠狠操夜夜爽| 欧美成狂野欧美在线观看| 国产精品秋霞免费鲁丝片| 亚洲精品国产一区二区精华液| 夜夜躁狠狠躁天天躁| 精品国产国语对白av| 女同久久另类99精品国产91| 精品久久久久久成人av| 欧洲精品卡2卡3卡4卡5卡区| 丁香六月欧美| 欧美国产精品va在线观看不卡| 亚洲熟女毛片儿| 女人高潮潮喷娇喘18禁视频| 另类亚洲欧美激情| 成在线人永久免费视频| www.www免费av| 亚洲成a人片在线一区二区| 天堂影院成人在线观看| 国产熟女xx| 久久香蕉精品热| 亚洲欧美日韩无卡精品| 久久精品影院6| 国产成人精品久久二区二区91| 亚洲人成电影免费在线| 色尼玛亚洲综合影院| 国产激情欧美一区二区| 精品福利观看| 成人国产一区最新在线观看| 国产蜜桃级精品一区二区三区| 91成年电影在线观看| 一边摸一边抽搐一进一小说| 夜夜夜夜夜久久久久| 制服人妻中文乱码| 午夜日韩欧美国产| 欧美国产精品va在线观看不卡| 亚洲精品国产一区二区精华液| 少妇 在线观看| 精品久久久精品久久久| 一级黄色大片毛片| 亚洲欧美日韩另类电影网站| 亚洲人成网站在线播放欧美日韩| 黄色成人免费大全| 悠悠久久av| 国产又爽黄色视频| 美女高潮到喷水免费观看| 亚洲九九香蕉| 电影成人av| 免费高清在线观看日韩| 18禁美女被吸乳视频| cao死你这个sao货| 男人的好看免费观看在线视频 | bbb黄色大片| 99精品久久久久人妻精品| 欧美日韩亚洲国产一区二区在线观看| www.精华液| 正在播放国产对白刺激| 欧美日韩瑟瑟在线播放| 激情视频va一区二区三区| 老熟妇仑乱视频hdxx| 亚洲国产精品sss在线观看 | 日韩大码丰满熟妇| 超色免费av| 女人精品久久久久毛片| 看片在线看免费视频| 手机成人av网站| 亚洲精品中文字幕在线视频| 日本五十路高清| 亚洲欧美激情在线| 婷婷丁香在线五月| 国产成人免费无遮挡视频| 一边摸一边做爽爽视频免费| 天天躁夜夜躁狠狠躁躁| 精品人妻在线不人妻| 一个人免费在线观看的高清视频| 黄片大片在线免费观看| 一级片'在线观看视频| 热re99久久国产66热| 美女国产高潮福利片在线看| ponron亚洲| 女人被躁到高潮嗷嗷叫费观| 色在线成人网| 亚洲成av片中文字幕在线观看| 69av精品久久久久久| 免费在线观看亚洲国产| 黄片播放在线免费| 9热在线视频观看99| 亚洲美女黄片视频| 亚洲av日韩精品久久久久久密| 午夜免费激情av| 欧美另类亚洲清纯唯美| 美国免费a级毛片| 国产高清视频在线播放一区| 国产xxxxx性猛交| 免费高清在线观看日韩| 欧美日韩福利视频一区二区| 欧美大码av| 又黄又爽又免费观看的视频| 亚洲全国av大片| 国产成年人精品一区二区 | 99精品在免费线老司机午夜| 老熟妇乱子伦视频在线观看| 村上凉子中文字幕在线| videosex国产| 一区在线观看完整版| 丰满人妻熟妇乱又伦精品不卡| 老司机深夜福利视频在线观看| 国产精品影院久久| 国产三级黄色录像| 亚洲色图 男人天堂 中文字幕| 正在播放国产对白刺激| 九色亚洲精品在线播放| 亚洲成人免费av在线播放| 久久久久久大精品| 青草久久国产| 最新美女视频免费是黄的| 美女大奶头视频| 国产黄a三级三级三级人| 嫁个100分男人电影在线观看| 夫妻午夜视频| 亚洲av五月六月丁香网| 亚洲欧美日韩无卡精品| 俄罗斯特黄特色一大片| aaaaa片日本免费| 久久 成人 亚洲| 亚洲精品中文字幕在线视频| 美女高潮喷水抽搐中文字幕| 99riav亚洲国产免费| 国产精品久久电影中文字幕| 在线十欧美十亚洲十日本专区| 欧美日本亚洲视频在线播放| 国产免费现黄频在线看| 99精品久久久久人妻精品| 夜夜躁狠狠躁天天躁| 精品一区二区三区视频在线观看免费 | 国产亚洲精品综合一区在线观看 | 一个人免费在线观看的高清视频| 人人妻人人澡人人看| 可以在线观看毛片的网站| 欧美日韩黄片免| 国产精品免费一区二区三区在线| 亚洲五月天丁香| 欧美中文综合在线视频| 午夜激情av网站| 国产精品香港三级国产av潘金莲| 狠狠狠狠99中文字幕| 成年女人毛片免费观看观看9| 色综合婷婷激情| 欧美+亚洲+日韩+国产| 啦啦啦 在线观看视频| 中文字幕人妻熟女乱码| 99精品在免费线老司机午夜| 丝袜在线中文字幕| 亚洲熟妇熟女久久| 久99久视频精品免费| 精品国产乱子伦一区二区三区| 麻豆成人av在线观看| 在线永久观看黄色视频| a级毛片在线看网站| 高清在线国产一区| 变态另类成人亚洲欧美熟女 | 亚洲中文av在线| 中文字幕人妻熟女乱码| 高潮久久久久久久久久久不卡| 一区二区三区激情视频| 欧美黄色片欧美黄色片| 这个男人来自地球电影免费观看| 伦理电影免费视频| 国产视频一区二区在线看| 国产免费av片在线观看野外av| 久久精品91无色码中文字幕| 国产成人啪精品午夜网站| 亚洲精品一卡2卡三卡4卡5卡| 国产蜜桃级精品一区二区三区| 视频在线观看一区二区三区| www.熟女人妻精品国产| 亚洲五月色婷婷综合| 欧美老熟妇乱子伦牲交| 国产成人影院久久av| 国产人伦9x9x在线观看| 欧美日韩瑟瑟在线播放| 日本 av在线| 久久久久久久久久久久大奶| 精品久久久久久成人av| 在线观看66精品国产| 久久精品aⅴ一区二区三区四区| 人成视频在线观看免费观看| 黑人猛操日本美女一级片| 少妇 在线观看| 欧美激情 高清一区二区三区| 亚洲五月婷婷丁香| xxxhd国产人妻xxx| 久久人人97超碰香蕉20202| 亚洲av日韩精品久久久久久密| 亚洲欧美激情综合另类| 午夜福利影视在线免费观看| 国产又爽黄色视频| av超薄肉色丝袜交足视频| 久久伊人香网站| 精品少妇一区二区三区视频日本电影| 国产91精品成人一区二区三区| 成年人黄色毛片网站| 亚洲在线自拍视频| 日韩免费高清中文字幕av| 日韩精品青青久久久久久| 久久中文字幕一级| 大码成人一级视频| 激情在线观看视频在线高清| 黄色女人牲交| 两性夫妻黄色片| 日日爽夜夜爽网站| av天堂在线播放| 狠狠狠狠99中文字幕| 久久伊人香网站| 亚洲 欧美 日韩 在线 免费| www.999成人在线观看| 99香蕉大伊视频| 热re99久久国产66热| 亚洲av成人不卡在线观看播放网| 久久中文字幕人妻熟女| 久久久国产成人精品二区 | 一级,二级,三级黄色视频| 欧美最黄视频在线播放免费 | 麻豆av在线久日| 精品第一国产精品| 亚洲 国产 在线| 免费观看人在逋| 欧美另类亚洲清纯唯美| 亚洲一区二区三区色噜噜 | 一级片'在线观看视频| 色老头精品视频在线观看| 国产91精品成人一区二区三区| 国产极品粉嫩免费观看在线| 超碰成人久久| 久久亚洲精品不卡| 亚洲一区二区三区欧美精品| 淫妇啪啪啪对白视频| 老熟妇仑乱视频hdxx| 久久中文字幕一级| 高清av免费在线| 老司机在亚洲福利影院| 日韩欧美一区二区三区在线观看| 免费看十八禁软件| 亚洲av片天天在线观看| 97碰自拍视频| 大陆偷拍与自拍| 精品久久久久久电影网| 欧美日韩国产mv在线观看视频| 亚洲欧美日韩无卡精品| 免费在线观看黄色视频的| 在线观看免费视频日本深夜| 中文字幕另类日韩欧美亚洲嫩草| 黄色怎么调成土黄色| 国产不卡一卡二| 18禁黄网站禁片午夜丰满| 麻豆成人av在线观看| 免费女性裸体啪啪无遮挡网站| 日日夜夜操网爽| 少妇被粗大的猛进出69影院| 欧美中文日本在线观看视频| 999久久久国产精品视频| 亚洲一区二区三区欧美精品| 欧美性长视频在线观看| 久久久久久久午夜电影 | 久久久水蜜桃国产精品网| 夫妻午夜视频| 亚洲国产精品sss在线观看 | 曰老女人黄片| 1024香蕉在线观看| 如日韩欧美国产精品一区二区三区| 亚洲中文日韩欧美视频| 在线观看一区二区三区| 亚洲一码二码三码区别大吗| 亚洲avbb在线观看| 激情在线观看视频在线高清| 久久狼人影院| 夜夜爽天天搞| 成人亚洲精品av一区二区 | 久久精品91无色码中文字幕| 日本三级黄在线观看| 亚洲 欧美 日韩 在线 免费| 亚洲一码二码三码区别大吗| 午夜91福利影院| 99在线人妻在线中文字幕| 亚洲精品国产色婷婷电影| 天天影视国产精品| 亚洲成a人片在线一区二区| 女人被躁到高潮嗷嗷叫费观| 一区二区三区精品91| 美女国产高潮福利片在线看| 日本免费a在线| 免费一级毛片在线播放高清视频 | 黄片大片在线免费观看| 水蜜桃什么品种好| 中文字幕人妻丝袜制服| 精品国产国语对白av| 十八禁网站免费在线| 亚洲欧洲精品一区二区精品久久久| 亚洲国产精品999在线| 亚洲人成伊人成综合网2020| 一进一出抽搐gif免费好疼 | 波多野结衣av一区二区av| 一进一出抽搐动态| 国产无遮挡羞羞视频在线观看| av网站免费在线观看视频| 一级毛片高清免费大全| 欧美日本中文国产一区发布| xxx96com| 亚洲精品一二三| 久久久国产一区二区| 日韩成人在线观看一区二区三区| 无人区码免费观看不卡| 久久婷婷成人综合色麻豆| 亚洲人成电影观看| 国产精品一区二区精品视频观看| 国产成人精品无人区| 亚洲自偷自拍图片 自拍| 国产精品九九99| 91老司机精品| 日韩欧美一区二区三区在线观看| 法律面前人人平等表现在哪些方面| 天天影视国产精品| 欧美丝袜亚洲另类 | 啦啦啦 在线观看视频| 两个人看的免费小视频| 国产精品免费一区二区三区在线| 黄色丝袜av网址大全| 国产主播在线观看一区二区| 久久草成人影院| 精品人妻1区二区| 热99re8久久精品国产| 身体一侧抽搐| 在线观看免费日韩欧美大片| 亚洲五月色婷婷综合| 最近最新免费中文字幕在线| www日本在线高清视频| 国产亚洲精品久久久久5区| 国产1区2区3区精品| 亚洲熟妇中文字幕五十中出 | 午夜福利免费观看在线| 国产1区2区3区精品| 日韩三级视频一区二区三区| 黄色怎么调成土黄色| 国产精品免费一区二区三区在线| 久久影院123| 午夜免费观看网址| 制服人妻中文乱码| 在线免费观看的www视频| 亚洲国产中文字幕在线视频| 国产又色又爽无遮挡免费看| 首页视频小说图片口味搜索| 午夜免费成人在线视频| av片东京热男人的天堂| 激情视频va一区二区三区| 亚洲av熟女| 老司机深夜福利视频在线观看| 日韩欧美免费精品| 色综合婷婷激情| 国产亚洲欧美在线一区二区| 免费一级毛片在线播放高清视频 | 制服诱惑二区| 亚洲五月色婷婷综合| 国产黄色免费在线视频| 国产精品亚洲一级av第二区| 日韩高清综合在线| 午夜激情av网站| 电影成人av| 亚洲欧美精品综合一区二区三区| 麻豆av在线久日| 女同久久另类99精品国产91| 丝袜人妻中文字幕| 在线观看www视频免费| 亚洲五月婷婷丁香| 精品国产亚洲在线| 99在线视频只有这里精品首页| 热re99久久精品国产66热6| 久久精品亚洲av国产电影网| 亚洲精品在线美女| 欧美成狂野欧美在线观看| 身体一侧抽搐| 国产欧美日韩综合在线一区二区| 99久久人妻综合| 97超级碰碰碰精品色视频在线观看| 乱人伦中国视频| 日本撒尿小便嘘嘘汇集6| 久久久久亚洲av毛片大全| 精品无人区乱码1区二区| 99久久人妻综合| 两人在一起打扑克的视频| 免费看a级黄色片| 女人被狂操c到高潮| 美女大奶头视频| 成人亚洲精品av一区二区 | 看免费av毛片| 国产午夜精品久久久久久| 精品高清国产在线一区| 久久中文字幕人妻熟女| 亚洲国产精品合色在线| 久久亚洲真实| 久久精品91蜜桃| 久久香蕉激情| 久久久久亚洲av毛片大全| 久久久久久亚洲精品国产蜜桃av| 欧美av亚洲av综合av国产av| 欧洲精品卡2卡3卡4卡5卡区| 亚洲第一青青草原| 精品国内亚洲2022精品成人| 精品久久久久久久毛片微露脸| av电影中文网址| 亚洲国产精品一区二区三区在线| 久热爱精品视频在线9| 在线观看免费日韩欧美大片| 日韩免费av在线播放| 老司机午夜十八禁免费视频| 免费在线观看日本一区| 日韩欧美三级三区| 久久国产亚洲av麻豆专区| 国产精品自产拍在线观看55亚洲| 久久精品亚洲熟妇少妇任你| 一个人观看的视频www高清免费观看 | 国产熟女xx| 久久精品国产亚洲av高清一级| 午夜激情av网站| 桃红色精品国产亚洲av| 亚洲成人久久性| 精品一区二区三区四区五区乱码| 久久国产乱子伦精品免费另类| 久久久国产一区二区| 一进一出好大好爽视频| 50天的宝宝边吃奶边哭怎么回事| 一个人免费在线观看的高清视频| 不卡av一区二区三区| 人成视频在线观看免费观看| 激情视频va一区二区三区| 在线观看免费午夜福利视频| 无遮挡黄片免费观看| 成人三级做爰电影| 国产精品免费一区二区三区在线| 丁香六月欧美| 男女之事视频高清在线观看| 亚洲精品成人av观看孕妇| 欧美成狂野欧美在线观看| 自线自在国产av| 可以免费在线观看a视频的电影网站| avwww免费| xxx96com| 亚洲人成77777在线视频| 免费日韩欧美在线观看| 嫁个100分男人电影在线观看| 久久久久久人人人人人| 欧美黄色淫秽网站| 国产欧美日韩一区二区三| 怎么达到女性高潮| 欧美日韩亚洲综合一区二区三区_| a级毛片黄视频| svipshipincom国产片| 免费少妇av软件| 黑人猛操日本美女一级片| 99国产精品免费福利视频| 99国产精品99久久久久| 国产有黄有色有爽视频| 亚洲精品一卡2卡三卡4卡5卡| 国产av又大| 免费看a级黄色片| 午夜久久久在线观看| 日韩欧美三级三区| 91在线观看av| 中亚洲国语对白在线视频| 老司机靠b影院| 亚洲免费av在线视频| 婷婷六月久久综合丁香| 国产精品电影一区二区三区| 日本a在线网址| 国产精品国产高清国产av| 亚洲国产精品一区二区三区在线| 韩国av一区二区三区四区| 嫩草影院精品99| 欧美乱码精品一区二区三区| 国产亚洲欧美在线一区二区| 国产99久久九九免费精品| 在线免费观看的www视频| 久久久久精品国产欧美久久久| 亚洲国产看品久久| 国产97色在线日韩免费| 日韩欧美国产一区二区入口| 在线观看免费午夜福利视频| 亚洲成人久久性| 麻豆国产av国片精品| 天堂俺去俺来也www色官网| 十八禁人妻一区二区| 亚洲人成网站在线播放欧美日韩| 中国美女看黄片| 麻豆成人av在线观看| 这个男人来自地球电影免费观看| 亚洲欧美精品综合一区二区三区| 日韩人妻精品一区2区三区| 成人永久免费在线观看视频| 久久中文字幕一级| 日韩免费高清中文字幕av| 日韩欧美免费精品| 欧美人与性动交α欧美软件| 中文字幕另类日韩欧美亚洲嫩草| 国产伦一二天堂av在线观看| 香蕉丝袜av| 国产成+人综合+亚洲专区| 免费观看人在逋| 在线十欧美十亚洲十日本专区| 夜夜爽天天搞| 亚洲专区国产一区二区| 亚洲精华国产精华精| 777久久人妻少妇嫩草av网站| 中国美女看黄片| 50天的宝宝边吃奶边哭怎么回事| 每晚都被弄得嗷嗷叫到高潮| 国产精品偷伦视频观看了| 欧美日韩黄片免| 久久精品成人免费网站| 亚洲精品国产区一区二| 老汉色av国产亚洲站长工具| 中文字幕高清在线视频| 国产成人精品在线电影| 91在线观看av| 日本免费a在线| 欧美日韩国产mv在线观看视频| 一夜夜www| 水蜜桃什么品种好| 久久九九热精品免费| 亚洲伊人色综图| x7x7x7水蜜桃| 久久狼人影院| www.熟女人妻精品国产| 99精品欧美一区二区三区四区| 中文字幕高清在线视频| 欧美日韩亚洲综合一区二区三区_| 不卡av一区二区三区| av超薄肉色丝袜交足视频| 欧美日韩瑟瑟在线播放| 91av网站免费观看| 亚洲欧美精品综合一区二区三区| 欧美乱妇无乱码| 午夜精品国产一区二区电影| e午夜精品久久久久久久| 日本 av在线| 50天的宝宝边吃奶边哭怎么回事| 国产一区二区激情短视频| 精品久久久精品久久久| 久久亚洲真实| 亚洲欧美激情在线| 久久人妻熟女aⅴ| 水蜜桃什么品种好| 欧美乱妇无乱码| 乱人伦中国视频| 亚洲免费av在线视频| av欧美777| 国产在线精品亚洲第一网站| 亚洲成人国产一区在线观看| 熟女少妇亚洲综合色aaa.| 精品乱码久久久久久99久播| 怎么达到女性高潮| 极品教师在线免费播放| 老熟妇乱子伦视频在线观看| 这个男人来自地球电影免费观看| 日本免费一区二区三区高清不卡 | 操出白浆在线播放| av天堂在线播放| 夫妻午夜视频| 天堂√8在线中文| 99国产精品一区二区三区| 丝袜人妻中文字幕| 波多野结衣高清无吗| 大码成人一级视频| 国产高清激情床上av| 免费在线观看日本一区| 国产精品av久久久久免费| 亚洲专区国产一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品一区av在线观看| 国产精品 欧美亚洲| 成年人免费黄色播放视频| 热re99久久国产66热| cao死你这个sao货| 亚洲精品在线美女| 日韩一卡2卡3卡4卡2021年| 最好的美女福利视频网| 国产人伦9x9x在线观看| 国产成人精品在线电影| 一边摸一边抽搐一进一出视频| 桃红色精品国产亚洲av| 一本大道久久a久久精品| 日韩人妻精品一区2区三区| 国产成人欧美| 精品熟女少妇八av免费久了| 97碰自拍视频| www国产在线视频色| 欧美在线黄色| 国产精品永久免费网站| 日韩三级视频一区二区三区| 欧美成人免费av一区二区三区| 国产精品影院久久| 高清av免费在线| 精品乱码久久久久久99久播| 脱女人内裤的视频| 色综合站精品国产| 国产伦一二天堂av在线观看| 麻豆av在线久日| 一进一出抽搐gif免费好疼 | 亚洲欧美激情在线| 男人操女人黄网站| 波多野结衣av一区二区av| 丰满人妻熟妇乱又伦精品不卡| 在线天堂中文资源库| 又黄又粗又硬又大视频|