• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extremum seeking-based optimal EGR set-point design for combustion engines in lean-burn mode

    2021-10-13 07:16:40HaoyunShiYahuiZhangTielongShen
    Control Theory and Technology 2021年3期

    Haoyun Shi·Yahui Zhang·Tielong Shen

    Abstract In lean combustion mode,exhaust gas ratio (EGR) is a significant factor that affects fuel economy and combustion stability.A proper EGR level is beneficial for the fuel economy;however,the combustion stability (coefficient of variation (COV)in indicated mean effective pressure (IMEP)) deteriorated monotonously with increasing EGR.The aim of this study is to achieve a trade-off between the fuel economy and combustion stability by optimizing the EGR set-point.A cost function (J)is designed to represent the trade-off and reduce the calibration burden for optimal EGR at different engine operating conditions.An extremum-seeking (ES) algorithm is adopted to search for the extreme value of J and obtain the optimal EGR at an operating point.Finally,a map of optimal EGR set-value is designed and experimentally validated on a real driving cycle.

    Keywords Extremum seeking·EGR optimization·Lean burn mode

    1 Introduction

    An internal combustion engine generates vehicle propulsion power as an energy conversation device by burning the mixture of air with fuel in the cylinder.Thus,the efficiency of the energy conversation and the emission performance are influenced by the in-cylinder state of the gas mixture and its component.In the last 3 decades,many actuation factors have been developed to improve efficiency and emission by controlling the state of the in-cylinder gas mixture.For example,the exhaust gas recirculation (EGR) system is one of the effective technologies developed to mitigate the engine-out NOxand improve efficiency.However,managing the EGR fraction of inlet gas in a cylinder is challenging due to the complicated dynamics of the air intake and the fueling path,especially for the engines with an EGR loop.

    Indeed,in the past two decades,various strategies have been proposed to model the dynamics or control the EGR rate with the actuator of the EGR valve.A survey on the EGR loop control has been given in [1].A nonlinear dynamic model for describing the gas flow dynamics is proposed for the intake,and exhaust manifold,enabling the transient control for optimization of pumping loss and emissions [2].A multi-variable control scheme is also proposed in [3,4].Focusing on the coupling of the EGR loop with the other intake path,a decoupling control approach is presented in [5].A model predictive control scheme is developed in [6],which focused on the torque generation and fuel consumption by introducing a balanced cost function.Meanwhile,modeling the dynamical behavior of the intake and the exhaust manifold pressure,which leads to a much simpler model structure,is challenged in [7].With the proposed simple model,a nonlinear feedback regulation scheme is further developed in [8,9].However,almost literature above targeted the transient control of the engines with the EGR system.How to decide the set-point for the EGR fraction with coordination with the other actuation factors is still an open issue.

    When only limited plant knowledge is available,the method of self-optimizing control,extremum-seeking (ES)control,has been an effective method to address the online optimization problem [10].In the previous research,the common method of utilizing zero-mean periodic dithers such as sinusoids to obtain a gradient estimation has proven to be effective and robust in extremum determination of static maps and dynamic systems.However,the periodic dither may lead to corrupted control inputs that are undesirable for some online optimization applications such as tracking control [11].Moreover,the fact that the dithers are uniformly bounded may restrict the algorithm’s region of application.One prior approach is a stochastic spark advance self-optimizing control algorithm using a probabilistic guaranteed gradient learning method [12].Using noisy observations,the gradient is estimated by stochastic approximation methods,such as the Kiefer–Wolfowitz finite-difference stochastic approximation (FDSA)[13,14],random direction stochastic approximation [15],and simultaneous perturbation stochastic approximation[16,17].

    Numerous applications of SOC methods for engine calibration and control have recently been published,including SA calibration [18–20],diesel engine exhaust gas recirculation control [21],fuel injection control [22],homogeneous charge compression ignition engine combustion timing control [23],and multi-variable calibrations [24,25].Some studies use the performance indicator,and combustion phase information besides [26,27].Corti and Forte [26] propose an SA proportion–integration–differentiation controller to maximize the indicated mean effective pressure (IMEP) for SA calibration based on the IMEP-CA50 distribution over the pastNcycles,and they suggest that the acceptable range forNshould be between 50 and 100.

    This paper will address this issue with the extremum seeking method.First,the potential in improving the fuel efficiency by the EGR set-point decision is shown based on the observation of the experiment.Then,an extremumseeking algorithm is constructed to seek the optimal setvalue for the EGR valve.However,the feasible domain is constraint according to the limitation of the combustion variation,represented by the coefficient of variation (COV)of the indicated mean effective pressure (IMEP).With the extremum-seeking algorithm,a map-based EGR control system is designed.Finally,experimental validation results of the proposed scheme are given to show the effectiveness of the proposed approach.

    2 Engine system and motivation

    We start in this section with a brief explanation of the physical background of combustion engines and the experimental set-up,which enable us to understand the engine properties and the control design problem.

    2.1 Combustion engine with EGR loop

    A systematic configuration of the engine control system is sketched in Fig.1,where the attention is focused on the control actuation signals and the measured signals for feedback control.The well-known combustion engine is a device for transforming the fuel energy into mechanical power by managing the four strokes.More precisely,it depends on the ignition timing and the state of the in-cylinder gas mixture,and the combustion process,which is usually represented by the in-cylinder pressure profile.One more critical factor that determines the energy efficiency and the amount of generated thermal energy during one cycle is the amount of mass of the fuel and the fresh gas charged to the cylinder,if we suppose the ignition timing and the fuel mass injection are decided for keeping the maximum brake torque (MBT),and the equivalence ratio to the desired value [28].In this case,the total mass of the fuel,the fresh gas,and the burnt gas will be determined by the operation of the fuel injection,throttle angle,and the opening of the EGR valve.

    Fig.1 Engine control system

    Meanwhile,an alternative way to evaluate the efficiency of the fuel to the mechanical power might be the fuel mass injected during a cycle at a given operating point with a certain torque and rotational speed of the crankshaft.Hence,at the given engine operating point,the efficiency can be improved through minimizing the engine loss per cycle,and at the same time,tuning the actuators such as the ignition timing,fuel injection,and EGR valve,etc.EGR indicates the burnt gas fraction of the total gas charged into the cylinder per cycle.The mechanism of increasing engine effi-ciency can suppress the occurrence of knock by slowing down the speed of combustion,leading the ignition timing of the engine closer to MBT [29].On the other hand,leanburn mode (The ratio of air to fuel is greater than stoichiometry) also improves the efficiency,which can employ higher compression ratios and thus provide better performance[30].Usually,the throttle opening is decided according to the load,and the fuel injection mass is used to control the air–fuel ratio.The spark timing is typically set to the MBT value.In this paper,the EGR valve is used to optimize efficiency.

    2.2 Experiment set-up

    To analyze the physical process of the engine and verify the controller,the experiment is implemented on a real engine test bench.Figs.2 and 3 shows the engine photo and rapid prototype system,respectively.A 1.8 L 4-cylinder engine is equipped in this test bench and coupled with a low-inertia alternating-current (AC) electrical dynamometer.The specification of the gasoline engine is listed in Table 1.The dynamometer is used for emulating the external load in real time.The real-time control system dSPACE 1006 isequipped to fully control the engine via the bypass connection with the engine prototype ECU.The engine ECU can control the engine itself and provides the whole engine sensor signals and actuator signals back to the dSPACE,while the control algorithm can be programmed and downloaded in dSPACE to control the engine through enabling the control channel of the prototype ECU.

    Table 1 Specification of the engine test bench

    2.3 Motivation

    In particular,EGR has provided significant benefits in fuel consumption and emissions.However,it affects the combustion kinetics by reducing the flame growth rate and increasing the combustion variation,which is usually measured by the coefficient of variation (COV) in indicated mean effective pressure (IMEP) [31].Since the fresh gas corresponds to the engine torque generation when the equivalence ratio is fixed,the burnt gas fraction is mainly determined by opening the EGR valve.In practice,the set-point of the EGR valve is previously calibrated as a map that provides a set-value according to the engine operating conditions.However,effi-ciency is influenced by many factors,such as the thermal environment,combustion quality,etc.It is not easy to handle the relations between the factors and efficiency.This implies that at a given engine operating point,usually coordinated by the speed and the torque.There is still freedom in the EGR valve set,which is effective for efficiency.

    The causality of EGR and fuel consumption,EGR,and combustion variation are shown in the experiment data in Fig.4.It can be seen from the experiment that under the constraint of required torque and speed,the fuel consumptionand the IMEP variation is changed according to different values of the EGR and air–fuel ratioλ.This is the potential in minimizing the fuel.It is clear that when the EGR valve open or increase the value ofλ,the fuel consumption rate (BSFC) tends to decrease,but the combustion variation(COVIMEP) significantly increases.Whenλ=1.4,the fuel consumption and the operation state of the engine become worse,which means the opening of the EGR valve is not recommended (see the black line).Here,COVIMEPover 2%can be considered as violent combustion variation.

    In this way a whole year passed; and then one night she vanishedagain, and was not to be found. The whole of the next day was spent in a useless search after her.

    Fig.2 Engine test bench

    Fig.3 Rapid prototype system

    Fig.4 Fuel consumption and combustion variation characteristic under different EGR and λ

    To handle the trade-off of fuel consumption and benefit from this potential and the observation,the following two issues will be solved in the next section:(1) decide the optimal opening of the EGR valve that minimizes the fuel consumption under the constraint of IMEP variation;and (2)design a map-based feedback control system that is applied through a driving cycle.

    3 Proposed design approach

    3.1 Extremum-seeking algorithm for EGR set-point

    Extremum seeking (ES) is an iterative optimization process performed on a target system in real time.The static relationship between the system’s input parameter and its performance output is the function being optimized.The function in this study is denoted byJ(?),which is a combination of both fuel economy and combustion variation.SinceJ(?) is unknown,the ES algorithm relies only on its measurements to search for the optimum.Starting from an initial value,the ES algorithm iteratively perturbs the inputs,monitors the performance output,and adjusts the input toward improved performance.

    First,we give some definitions or calculations of physical variables used for the ES algorithm in this study.

    The following equation defines the fuel consumption index BSFC (g·kWh?1) as

    wheremfis the fuel consumption per second (g·s?1),τethe engine brake torque (Nm),andωethe engine speed (r·min?1).

    The combustion variation is measured by the coefficient of variation in IMEP,COVIMEP,which is the standard deviation in IMEP divided by the mean IMEP expressed as a percentage

    where the standard deviationσIMEPand the meanμIMEPare evaluated overNconsecutive combustion cycles.Existing works of the literature suggest that the numberNis usually set to 100–300.The IMEP is calculated by the following equation using in-cylinder pressure

    In this research,a cost function that consists of the fuel economy and combustion stability is constructed as follows:

    whereuEGRis the control input,EGR step.The functionσ(?) is the penalty term for combustion instability,γ>0 the weighting factor for the penalty term.Letthe functionσ(?) is defined as follows:

    The constructed functionJ(?) is chosen as the cost function of the extremum-seeking algorithm for the EGR set-point.Then,the optimization problem can be formulated as follows:

    The ES algorithm iteratively searches for the optimal inputusing a recursion of the form

    wherek=1,2,… is the iteration number,uEGR,kis the current estimate of the optimal control input,the positive numberαkis a step size or gain,and ?J(uEGR,k) is calculated from gradient estimate ofJ(?) atuEGR,k.The algorithm uses symmetric two-sided finite-differences to estimate gradient

    where the perturbationckis a small non-zero constant.Computation of one finite difference requires two new measurements off(?) .Then update the estimates by,first,calculatingwith Eqs.(7) and (8).Then,projectingonto the constrained set

    where the projection operatorπ{?}∶?→Ω∶[0,50] is a simple truncation.

    Several studies recommend thatuEGR,kupdated from Eq.(7) converges toalmost surely ask→∞ if the step sizesαk→0,ck→0 and satisfy specified conditions.Asαk→0 and cck→0,the gradient descent-based recursive form may be acceptable for static problems,but may have limited applicability for real-time optimization applications in which the optimalmay slowly shift.The goal thatuEGR,ktracks a shiftingis beyond the capacity of the convergentαkandck,because the exploratory capability of the slowly time-varying unknown functionJ(uEGR)and the slowly shifted optimalis depressed with convergent step size sequences.Hence,the SOC algorithm for the problem addressed in this paper will adopt constant step sizes.

    The extremum-seeking algorithm for EGR set-point optimization is summarized in Algorithm 1.

    3.2 Proposed control scheme

    The proposed control scheme shown in Fig.5 is a simple feed-forward map-based controller.Besides the basic ECU control loop includes the fuel injection control,spark advance control,and throttle control,the set-value of the EGR valve is determined by a three-dimensional map corresponding to the torque demand and the engine speed.

    Fig.5 The general structure of the proposed control scheme

    This map stores the optimal EGR set-values of full engine operating conditions obtained by the extremum-seeking algorithm.In particular,the map is switched according to differentλ.Using this map,the engine can be operated at a minimum fuel consumption point meanwhile satisfy the combustion variation constraint.In the next section,this controller will be validated through a driving cycle.

    4 Experiment validation

    4.1 Extremum-seeking algorithm validation

    The control experiment applying extremum seeking by directly using the calculated BSFC,COVIMEPsignals as the feedback variables of the seeking scheme is conducted.Two groups of experimental results are shown in Figs.6 and 7.

    These two groups of the experiment were performed under the following steady conditions:engine speed is 1200 r/min and 1600 r/min,water temperature is 80–85?C,oil temperature is 85–90?C,and room temperature is 25–30?C .Experiment results of group 1 are shown in Fig.6.In group 1,the references of ECU control logic are set as follows:the volume charge efficiencythe crank angle position where 50% of the heat is released CA50?=3?,the air–fuel ratioλ?=1.2 .The opening of the EGR valve starts from 2 step .The extremum-seeking algorithm maintains the opening of EGR valve around the optimal value≈10 step after 1800 cycles where the combustion variation COVIMEPis limited under 2%.

    Fig.6 Group 1 experimental extremum seeking results

    In group 2 which is shown in Fig.7,the ECU control logic references are set as the volume charge efficiencyCA50?=3?,the air–fuel ratioλ?=1.4 .The opening of the EGR valve starts from 4 step .In this case,the effect of EGR on BSFC is insignificant.The reason is the combustion speed becomes very slow whenλ?=1.4,expand EGR make combustion unstable,leading the fuel consumption increase.The extremum-seeking algorithm catches the phenomenon that BSFC does not change obviously when open EGR valve at this operating condition,so the algorithm maintains the opening of EGR valve around the optimal value 6–8 step after 1800 cycles.In these cycles,COVIMEPis limited under the threshold.It should be noted that when the local minimum of the cost function is not obvious,the extremum-seeking algorithm can not make the EGR set-value converge to a constant.In this case,the step size should be carefully adjusted,but it will lead to a timeconsuming extremum-seeking process.

    Fig.7 Group 2 experimental extremum seeking results

    Once all the optimal opening of the EGR valve is found using the extremum-seeking algorithm,we can obtain a map of the EGR set-value.To validate the effectiveness of the EGR set-valued map,a driving cycle called the UDDS cycle is used to check the performance of torque tracking and BSFC.The experiment is conducted on an engine test bench,in which the dynamometer controls the driving force generated by a real engine and the engine speed corresponding to the specified driving cycle.Fig.8 shows the comparison of 3 differentλperformances of the UDDS cycle (40–120 s).With the increase ofλ,the throttle valve needs a larger opening to achieve the same engine torque output,while EGR has to reduce the opening to avoid severe combustion variation.In particular,compared to the stoichiometry (λ=1),the BSFC is significantly reduced by increasing theλalthough the opening of the EGR valve decrease (see the red line).From this experiment,a simple controller with an EGR set-valued map is validated on a real driving cycle.The extremum-seeking algorithm can be applied to different torque,speed,and air–fuel ratio conditions.

    Fig.8 The validation of the extremum-seeking algorithm by UDDS driving cycle (40–120 s)

    5 Conclusions

    This paper proposed a map-based EGR control design system under the different air–fuel ratio by the extremumseeking method.The design process involves two phases,EGR set-value seeking and map-based EGR control system designing.The former is formulated as a static optimization problem for the cost function of fuel consumption rate with the constraint of combustion variation.The latter is a map-based EGR control design that tracks the engine torque demand and reduces the fuel consumption rate.The effectiveness of the presented control scheme can be claimed with the demonstrated experiment results.

    From the experiment,we can get the following two conclusions.First,the extremum-seeking algorithm can search the optimal EGR set-value while satisfying the combustion variation threshold.Second,the map-based EGR controller can be applied on a real driving cycle,the fuel consumption improvement of lean-burn mode is validated through the deriving cycle.

    Moreover,the single control input seeking is investigated in this paper;however,the increase of control inputs make the need for multivariate optimization.This issue will be continued as further research of the next stage.

    www.www免费av| 国内精品美女久久久久久| 搡老妇女老女人老熟妇| 赤兔流量卡办理| 国产一区二区在线av高清观看| 亚洲av成人精品一区久久| 亚洲av.av天堂| 久久人妻av系列| 搡老妇女老女人老熟妇| 色综合婷婷激情| 亚洲性夜色夜夜综合| 看片在线看免费视频| 亚洲国产欧美人成| 欧美潮喷喷水| 十八禁网站免费在线| 精品久久久噜噜| 床上黄色一级片| 麻豆一二三区av精品| 国国产精品蜜臀av免费| 色综合婷婷激情| 国产精品爽爽va在线观看网站| 成人欧美大片| 国产精品日韩av在线免费观看| 波多野结衣巨乳人妻| 国产精品爽爽va在线观看网站| 国产一区二区三区在线臀色熟女| 国产成人a区在线观看| 亚洲熟妇熟女久久| 国产伦精品一区二区三区视频9| 亚洲精品日韩av片在线观看| 精品福利观看| 成人欧美大片| 色av中文字幕| 欧美xxxx性猛交bbbb| 97人妻精品一区二区三区麻豆| 亚洲精品乱码久久久v下载方式| 国产精品人妻久久久影院| 午夜日韩欧美国产| 嫩草影院新地址| 97热精品久久久久久| 日韩 亚洲 欧美在线| 久久精品国产亚洲av天美| 国产aⅴ精品一区二区三区波| 精品久久久久久成人av| 亚洲第一电影网av| 亚洲av中文字字幕乱码综合| 精品久久久久久久久av| 乱人视频在线观看| 午夜福利视频1000在线观看| 亚洲一区高清亚洲精品| 最近最新中文字幕大全电影3| 成人永久免费在线观看视频| 欧美三级亚洲精品| 精品人妻视频免费看| 亚洲熟妇中文字幕五十中出| 久久6这里有精品| 国产成人aa在线观看| 内地一区二区视频在线| 色综合婷婷激情| 夜夜看夜夜爽夜夜摸| 欧美国产日韩亚洲一区| 亚洲熟妇熟女久久| 国内精品一区二区在线观看| 国内精品宾馆在线| 日韩强制内射视频| 精品欧美国产一区二区三| 91麻豆av在线| 精品久久久久久久久久免费视频| 色5月婷婷丁香| 色哟哟哟哟哟哟| 一a级毛片在线观看| a级毛片免费高清观看在线播放| 性插视频无遮挡在线免费观看| 美女cb高潮喷水在线观看| 麻豆av噜噜一区二区三区| 老女人水多毛片| 国产精品不卡视频一区二区| 国产精品久久久久久久电影| 嫩草影视91久久| 亚洲美女黄片视频| 色综合亚洲欧美另类图片| a级毛片a级免费在线| 国产精品久久视频播放| 欧美xxxx性猛交bbbb| 色尼玛亚洲综合影院| 美女被艹到高潮喷水动态| 两性午夜刺激爽爽歪歪视频在线观看| 欧美不卡视频在线免费观看| 国产爱豆传媒在线观看| 婷婷六月久久综合丁香| 床上黄色一级片| 精品免费久久久久久久清纯| 一边摸一边抽搐一进一小说| 欧美丝袜亚洲另类 | 天堂网av新在线| 熟妇人妻久久中文字幕3abv| 亚洲专区国产一区二区| 成人毛片a级毛片在线播放| 国产精品福利在线免费观看| 国内揄拍国产精品人妻在线| 久久精品国产清高在天天线| 亚洲自偷自拍三级| 俄罗斯特黄特色一大片| 日本欧美国产在线视频| 少妇的逼水好多| av中文乱码字幕在线| 在线观看美女被高潮喷水网站| 国产v大片淫在线免费观看| 成人高潮视频无遮挡免费网站| 村上凉子中文字幕在线| 久久久久久久精品吃奶| 最近最新中文字幕大全电影3| 三级国产精品欧美在线观看| av在线天堂中文字幕| 极品教师在线视频| 女同久久另类99精品国产91| 成人特级av手机在线观看| xxxwww97欧美| 看十八女毛片水多多多| 亚洲内射少妇av| 亚洲人成伊人成综合网2020| 黄色日韩在线| 国产高清视频在线观看网站| 亚洲精品456在线播放app | 亚洲欧美清纯卡通| 久久久久免费精品人妻一区二区| 97人妻精品一区二区三区麻豆| 嫩草影院入口| 国产在线男女| 国产一区二区在线观看日韩| 麻豆国产av国片精品| 18+在线观看网站| 一级a爱片免费观看的视频| 毛片一级片免费看久久久久 | 国产真实伦视频高清在线观看 | 国产女主播在线喷水免费视频网站 | 久久国产乱子免费精品| 亚洲精品久久国产高清桃花| 免费av观看视频| 婷婷色综合大香蕉| 亚洲欧美日韩高清专用| 国产精品人妻久久久久久| 91av网一区二区| 国模一区二区三区四区视频| 国产亚洲精品av在线| 少妇被粗大猛烈的视频| 免费观看的影片在线观看| 精品国内亚洲2022精品成人| 久久精品国产自在天天线| 国模一区二区三区四区视频| 在线观看舔阴道视频| 最新中文字幕久久久久| 乱系列少妇在线播放| 欧美人与善性xxx| 男人舔女人下体高潮全视频| 人妻少妇偷人精品九色| 网址你懂的国产日韩在线| 亚洲精品色激情综合| 51国产日韩欧美| 在线国产一区二区在线| 国产精品久久久久久精品电影| 在现免费观看毛片| 少妇熟女aⅴ在线视频| 国产精品,欧美在线| 可以在线观看的亚洲视频| 内射极品少妇av片p| 搡女人真爽免费视频火全软件 | 一个人观看的视频www高清免费观看| 国产视频内射| 国产白丝娇喘喷水9色精品| 男女做爰动态图高潮gif福利片| 国产欧美日韩一区二区精品| 欧美人与善性xxx| 亚洲综合色惰| 国产淫片久久久久久久久| 中文资源天堂在线| 亚洲18禁久久av| 啦啦啦啦在线视频资源| 亚洲电影在线观看av| 露出奶头的视频| 色av中文字幕| 神马国产精品三级电影在线观看| 久久久久九九精品影院| 熟妇人妻久久中文字幕3abv| 有码 亚洲区| 婷婷丁香在线五月| 日本免费一区二区三区高清不卡| 久久午夜福利片| 成人欧美大片| 在线观看一区二区三区| 在线免费十八禁| 日韩国内少妇激情av| 国产高清激情床上av| 精品欧美国产一区二区三| 亚洲,欧美,日韩| 久久人人爽人人爽人人片va| 久久99热6这里只有精品| 国产老妇女一区| 日韩强制内射视频| 在线播放国产精品三级| 色在线成人网| 午夜老司机福利剧场| 日韩欧美在线乱码| 高清日韩中文字幕在线| 精品日产1卡2卡| 国产一级毛片七仙女欲春2| av在线天堂中文字幕| 级片在线观看| av在线观看视频网站免费| 少妇猛男粗大的猛烈进出视频 | 欧美极品一区二区三区四区| 身体一侧抽搐| 搡老妇女老女人老熟妇| 国产精品电影一区二区三区| 免费av毛片视频| 亚洲人成伊人成综合网2020| 色哟哟哟哟哟哟| 天美传媒精品一区二区| 99精品在免费线老司机午夜| 一进一出好大好爽视频| 特大巨黑吊av在线直播| 99久久九九国产精品国产免费| 久久婷婷人人爽人人干人人爱| 日韩av在线大香蕉| 干丝袜人妻中文字幕| 国产av麻豆久久久久久久| 九九在线视频观看精品| 少妇被粗大猛烈的视频| 中文字幕熟女人妻在线| 亚洲五月天丁香| 欧洲精品卡2卡3卡4卡5卡区| 色综合色国产| 午夜a级毛片| 免费人成视频x8x8入口观看| 欧美国产日韩亚洲一区| 一级黄色大片毛片| 丰满的人妻完整版| 久久天躁狠狠躁夜夜2o2o| 精品久久久久久久久久久久久| 婷婷精品国产亚洲av| 午夜福利欧美成人| 亚洲精华国产精华精| 精品久久久久久久久久久久久| 亚洲中文字幕日韩| 99久久中文字幕三级久久日本| 日本撒尿小便嘘嘘汇集6| 国产亚洲精品久久久久久毛片| av在线天堂中文字幕| 国产精品一区二区免费欧美| 婷婷色综合大香蕉| 99热这里只有是精品在线观看| av.在线天堂| 搡老妇女老女人老熟妇| 亚洲精华国产精华液的使用体验 | 在线观看av片永久免费下载| 一本久久中文字幕| 一个人看的www免费观看视频| or卡值多少钱| 国产又黄又爽又无遮挡在线| 草草在线视频免费看| 麻豆精品久久久久久蜜桃| 一个人看的www免费观看视频| 舔av片在线| 国产在线精品亚洲第一网站| 免费av毛片视频| 久久久国产成人精品二区| 国产免费一级a男人的天堂| 毛片一级片免费看久久久久 | 欧美精品国产亚洲| 直男gayav资源| 2021天堂中文幕一二区在线观| 午夜精品在线福利| 夜夜看夜夜爽夜夜摸| 欧美zozozo另类| 国产精品不卡视频一区二区| 亚洲av日韩精品久久久久久密| 在线播放国产精品三级| 亚洲国产精品sss在线观看| 国产真实乱freesex| 波野结衣二区三区在线| 免费人成视频x8x8入口观看| 日韩,欧美,国产一区二区三区 | 国产午夜精品久久久久久一区二区三区 | 给我免费播放毛片高清在线观看| 精品99又大又爽又粗少妇毛片 | 午夜福利在线观看吧| 亚洲一区高清亚洲精品| 小蜜桃在线观看免费完整版高清| 不卡一级毛片| 变态另类丝袜制服| 桃色一区二区三区在线观看| 黄色配什么色好看| eeuss影院久久| 一边摸一边抽搐一进一小说| 国产在视频线在精品| 精品一区二区三区人妻视频| 久久久久久久午夜电影| 国产精品伦人一区二区| 网址你懂的国产日韩在线| 88av欧美| 亚洲人成伊人成综合网2020| 亚洲欧美日韩东京热| 欧美黑人欧美精品刺激| 精品一区二区三区视频在线| 女同久久另类99精品国产91| 国产精品日韩av在线免费观看| 亚洲不卡免费看| 深夜a级毛片| 韩国av在线不卡| 一进一出抽搐gif免费好疼| 亚洲va在线va天堂va国产| 婷婷亚洲欧美| 免费观看人在逋| 小蜜桃在线观看免费完整版高清| 色综合站精品国产| 日韩一区二区视频免费看| 丰满人妻一区二区三区视频av| 日韩欧美在线二视频| 又粗又爽又猛毛片免费看| 久久国内精品自在自线图片| 亚洲国产高清在线一区二区三| 最近最新免费中文字幕在线| av福利片在线观看| 99国产精品一区二区蜜桃av| 久久久久久久久中文| 天堂动漫精品| 大又大粗又爽又黄少妇毛片口| 色吧在线观看| 又爽又黄a免费视频| 久久精品久久久久久噜噜老黄 | 久久精品国产清高在天天线| 又爽又黄a免费视频| 日本 av在线| 特大巨黑吊av在线直播| 在线观看一区二区三区| 欧美高清性xxxxhd video| 婷婷色综合大香蕉| 一卡2卡三卡四卡精品乱码亚洲| 最好的美女福利视频网| 亚洲人与动物交配视频| 男人舔奶头视频| 国产麻豆成人av免费视频| 成人av一区二区三区在线看| 好男人在线观看高清免费视频| av.在线天堂| 99riav亚洲国产免费| 国语自产精品视频在线第100页| 亚洲性夜色夜夜综合| 级片在线观看| 午夜影院日韩av| 变态另类成人亚洲欧美熟女| 3wmmmm亚洲av在线观看| 嫩草影院新地址| 亚洲国产精品久久男人天堂| 精品一区二区三区视频在线观看免费| 欧美一区二区国产精品久久精品| 日本黄色片子视频| 国产熟女欧美一区二区| 听说在线观看完整版免费高清| 日本在线视频免费播放| 午夜福利高清视频| 观看美女的网站| 黄色欧美视频在线观看| 亚洲欧美日韩无卡精品| 美女cb高潮喷水在线观看| 欧美高清成人免费视频www| 亚洲av.av天堂| 日本黄色片子视频| 不卡一级毛片| 一区二区三区四区激情视频 | 亚洲av免费在线观看| av黄色大香蕉| 亚洲av免费在线观看| 久久人妻av系列| 久久久久久久久久黄片| 国内精品久久久久精免费| 亚洲自偷自拍三级| 亚洲在线观看片| 亚洲国产欧洲综合997久久,| 亚洲三级黄色毛片| 九九热线精品视视频播放| 色综合婷婷激情| 中文字幕熟女人妻在线| 内射极品少妇av片p| 精品免费久久久久久久清纯| a级一级毛片免费在线观看| 色综合站精品国产| av在线亚洲专区| 我要搜黄色片| 少妇高潮的动态图| 亚洲精品久久国产高清桃花| 999久久久精品免费观看国产| 在现免费观看毛片| 亚洲 国产 在线| 很黄的视频免费| 最好的美女福利视频网| 亚洲欧美精品综合久久99| 欧美bdsm另类| 天堂影院成人在线观看| 亚洲国产欧洲综合997久久,| 免费一级毛片在线播放高清视频| 国产精品精品国产色婷婷| 亚洲无线观看免费| 亚洲国产精品成人综合色| 国产精品1区2区在线观看.| 亚洲精品影视一区二区三区av| 精品不卡国产一区二区三区| 日韩亚洲欧美综合| 亚洲专区中文字幕在线| 美女高潮的动态| 日韩中字成人| 天堂影院成人在线观看| 变态另类丝袜制服| 国产av麻豆久久久久久久| 久久久久久大精品| 赤兔流量卡办理| 美女xxoo啪啪120秒动态图| 不卡视频在线观看欧美| 精品久久久久久久末码| 久久精品91蜜桃| 1024手机看黄色片| av天堂在线播放| 老司机午夜福利在线观看视频| 一a级毛片在线观看| 99久久成人亚洲精品观看| 99热只有精品国产| 日日摸夜夜添夜夜添小说| 亚洲狠狠婷婷综合久久图片| 特级一级黄色大片| 一个人观看的视频www高清免费观看| 国产高清不卡午夜福利| 欧美色视频一区免费| 91午夜精品亚洲一区二区三区 | 黄色女人牲交| 免费观看精品视频网站| 国产精品精品国产色婷婷| 久久久久久久久久成人| 男女视频在线观看网站免费| 精品一区二区三区视频在线观看免费| 能在线免费观看的黄片| 无遮挡黄片免费观看| 蜜桃久久精品国产亚洲av| 99久久中文字幕三级久久日本| 午夜精品一区二区三区免费看| 九色成人免费人妻av| 亚洲成av人片在线播放无| 18禁在线播放成人免费| 国产精品98久久久久久宅男小说| 午夜精品在线福利| 日本五十路高清| 校园春色视频在线观看| 深夜精品福利| 欧美日本视频| 高清毛片免费观看视频网站| 成人特级黄色片久久久久久久| 99精品久久久久人妻精品| 久久久午夜欧美精品| 国产视频内射| 国产蜜桃级精品一区二区三区| 淫妇啪啪啪对白视频| a级毛片a级免费在线| 不卡视频在线观看欧美| 一边摸一边抽搐一进一小说| 久久久久久九九精品二区国产| 日本黄色片子视频| 久久99热这里只有精品18| 精品久久久久久久久久免费视频| 最近视频中文字幕2019在线8| 欧美日韩瑟瑟在线播放| 国内精品宾馆在线| 日本五十路高清| 亚洲人成网站在线播| 国产精品国产三级国产av玫瑰| 天堂av国产一区二区熟女人妻| 免费观看人在逋| 搞女人的毛片| 久久久久久大精品| 午夜视频国产福利| 久久人人爽人人爽人人片va| 别揉我奶头 嗯啊视频| 亚洲国产精品sss在线观看| 少妇人妻精品综合一区二区 | 美女免费视频网站| 在现免费观看毛片| 黄色日韩在线| 久久久久久久精品吃奶| 伦精品一区二区三区| 中文字幕熟女人妻在线| 国产激情偷乱视频一区二区| 国产av不卡久久| 国产在线精品亚洲第一网站| 国产91精品成人一区二区三区| 精品久久久久久成人av| 美女免费视频网站| 亚洲精品456在线播放app | 夜夜夜夜夜久久久久| 人人妻,人人澡人人爽秒播| 无人区码免费观看不卡| 免费在线观看影片大全网站| 久久国内精品自在自线图片| 亚洲成人免费电影在线观看| 高清毛片免费观看视频网站| 亚洲国产高清在线一区二区三| a在线观看视频网站| av福利片在线观看| a在线观看视频网站| 成人特级黄色片久久久久久久| 国产中年淑女户外野战色| 男人舔女人下体高潮全视频| 人妻丰满熟妇av一区二区三区| 超碰av人人做人人爽久久| 国产老妇女一区| 亚洲人成伊人成综合网2020| 国产蜜桃级精品一区二区三区| 国产激情偷乱视频一区二区| 久久6这里有精品| 午夜福利在线观看免费完整高清在 | 美女高潮喷水抽搐中文字幕| 亚洲午夜理论影院| 久久久久国内视频| av在线观看视频网站免费| 高清在线国产一区| 国产精品爽爽va在线观看网站| 国产白丝娇喘喷水9色精品| 国产精品一区www在线观看 | 久久久精品大字幕| 我要搜黄色片| 999久久久精品免费观看国产| 色视频www国产| 国产精品国产三级国产av玫瑰| 欧美日本视频| 春色校园在线视频观看| 午夜福利18| 亚洲人成网站高清观看| 少妇裸体淫交视频免费看高清| 亚洲第一区二区三区不卡| 亚洲一区高清亚洲精品| 欧美黑人欧美精品刺激| 伊人久久精品亚洲午夜| 亚洲国产色片| 欧美bdsm另类| 成人精品一区二区免费| 国产精品久久视频播放| 国产男靠女视频免费网站| 老师上课跳d突然被开到最大视频| 乱人视频在线观看| 亚洲成人免费电影在线观看| 久久久国产成人精品二区| 88av欧美| 亚洲国产精品合色在线| 99精品久久久久人妻精品| 久久精品夜夜夜夜夜久久蜜豆| 亚洲最大成人中文| 毛片一级片免费看久久久久 | 桃红色精品国产亚洲av| 亚洲成人精品中文字幕电影| 久久久精品大字幕| 亚洲欧美日韩卡通动漫| 日韩一本色道免费dvd| 高清在线国产一区| 俄罗斯特黄特色一大片| 午夜福利在线观看免费完整高清在 | 国产精品精品国产色婷婷| 在线天堂最新版资源| 性欧美人与动物交配| 亚洲av成人av| 伦理电影大哥的女人| 少妇人妻精品综合一区二区 | 一级黄色大片毛片| 99热这里只有是精品在线观看| 亚洲av美国av| 看免费成人av毛片| 国产成人aa在线观看| 日韩欧美一区二区三区在线观看| 中国美白少妇内射xxxbb| 美女cb高潮喷水在线观看| 搡老岳熟女国产| 国产精品野战在线观看| 亚洲精华国产精华精| 人人妻人人澡欧美一区二区| 国产成人a区在线观看| 99国产精品一区二区蜜桃av| 欧美+亚洲+日韩+国产| 国产aⅴ精品一区二区三区波| 观看美女的网站| 成人毛片a级毛片在线播放| 别揉我奶头 嗯啊视频| 美女xxoo啪啪120秒动态图| 身体一侧抽搐| 国产久久久一区二区三区| 亚洲性夜色夜夜综合| 日本黄大片高清| 精品午夜福利视频在线观看一区| 欧美日韩中文字幕国产精品一区二区三区| 黄色日韩在线| 久久久国产成人精品二区| 精品久久久久久久久av| 在线观看66精品国产| 日韩 亚洲 欧美在线| 免费电影在线观看免费观看| 特级一级黄色大片| 能在线免费观看的黄片| 国产91精品成人一区二区三区| 精华霜和精华液先用哪个| 精品一区二区三区av网在线观看| 夜夜爽天天搞| 村上凉子中文字幕在线| 美女被艹到高潮喷水动态| 亚洲精品久久国产高清桃花| 一级a爱片免费观看的视频| 真人做人爱边吃奶动态| 禁无遮挡网站| 日韩精品有码人妻一区| 欧美日韩国产亚洲二区| 成人性生交大片免费视频hd|