• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photo-assisted Deposited Titanium Dioxide Film and the Enhancement of Its Photocatalytic Water Splitting Activity①

    2021-09-26 02:39:12XUChaoShengLVPeiWen
    結(jié)構(gòu)化學(xué) 2021年9期

    XU Chao-Sheng LV Pei-Wen

    a(Fuzhou University, College of Chemical Engineering, Fuzhou 350116, China)

    b (Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)

    ABSTRACT Photo-assisted deposited method is often employed in the metal-organic chemical vapor deposition whose ion source is organic compounds. It has been proved to increase the deposition rate and improve the crystallinity of the films. We demonstrate a photo-assisted sputtering deposited method which is used to prepare high quality TiO2 films. The crystallinity of the films is improved by the photo assistance without changing the morphology. And the structural and optical properties remain the same. The photo-assisted deposited TiO2 film shows a H2 evolution rate of 1.62 μmol·cm-2·h-1 that is about twice more than that of the pristine TiO2 film. It is found the Mott-Schottky effect responds for the photocatalytic activity. Photo-assisted deposited films show an enhanced photocatalytic activity due to the reduction of interface recombination and the high efficiency in the transferring of photo-generated carriers.

    Keywords: TiO2, photo-assisted, Mott-Schottky, photocatalyst;

    1 INTRODUCTION

    As a well-established technology to grow high quality films, magnetron sputtering has now been applied in many industries including solar cells, sensor, thin film transistor(TFT), optical lens, circuits, light-emitting diode (LED),etc[1-4]. Particularly, sputtering has the advantage of low temperature deposition which can be used to deposit lots of inorganic element and compounds on various substrate such as glass, ceramics, metals, textiles and flexible polymer substrate[5,6].

    The development of magnetron sputtering technique experiences several stages. From the classical planar magnetron sputtering, inductively coupled plasma source magnetron sputtering, microwave amplified magnetron sputtering and high power impulse magnetron sputtering,both of them focus on the modification of the flux of ions sputtering from the target[7-10]. Photo-assisted growth methods have been studied since 1980s[11]. Most photoassisted growth methods are metal-organic chemical vapor deposition (MOCVD), sol-gel in which the react species are organic compounds[12]. The photo is induced to activate or decompose the react species[13]. Fujita et al. reduced the growth temperature of ZnSe from 500 to 300 ℃ by photo assisted MOCVD to reduce the defects in the ZnSe epilayers[14]. Li et al. improved the quality ZnO films due to the ethyl radical releasing from the metal atom, thus leading to incorporation into the lattice[15]. However, it is lack of knowledge about the affection of photo on the film’s growth for magnetron sputtering.

    In this work, we induce a photo-assisted magnetron sputtering method to improve the quality of as-grown titanium dioxide film. The influence of incident light on the photocatalytic activity has been studied. And the mechanism of photo-assisted growth has been discussed.

    2 EXPERIMENTAL

    TiO2thin films are deposited on stainless steel substrates(2cm × 2cm) by sputtered titanium target. During the sputtering process, the working gas is a mixture of Ar(99.999% pure) and O2(99.99% pure), and the base vacuum is 3 × 10-5Pa. For all the samples, the sputtering power, total working pressure, Ar flow rate and O2flow rate are set to 140 W, 2.0 Pa, 14 sccm (standard cubic centimeter per minute)and 6 sccm, respectively. The incident light is provided by a 300 W Xenon lamp (PLSSXE300C). The as-prepared samples are labelled as FL, VL, IR and NL for deposition under light with full spectrum, light filtered with UV-cutoff filter (λ≥S420 nm) and light filtered with UV-vis cutoff filter (λ≥600 nm) and without light respectively.

    Crystallinity of the films is determined by Rikagu Miniflex 600 X-ray diffraction. Electron microscope analysis is carried on a JEOLJSM-6700F Scanning electronic microscopy(SEM). The transmittance spectra of the films are obtained via the Shimadzu UV-2500 UV/Vis Spectrometer. The photoelectrochemical measurements of the as-prepared samples are also performed in 4% formaldehyde aqueous solution with 0.1 M K2SO4to increase the conductivity of the solution. All electrochemical measurements are conducted on a CHI 660D electrochemical workstation, using a three-electrode test cell. Transient absorption Spectra are obtained by an ultrafast HELIOS Femtosecond Transient Absorption Spectrometer. XPS measurements are performed in a Thermo Fisher K-Alpha+ system with an AlKαsource.

    The simulated sunlight is provided by a xenon source lamp.The photocatalytic H2evolution test is conducted in an online photocatalytic hydrogen production system. A xenon arc lamp (Perfect Light PLS-SXE300) is used as a light source and positioned 20 cm away from the film. The sample fixed on bracket made of PTFE is dipped in 100 mL formaldehyde aqueous solution (4%) using a magnetic stirrer.And the hydrogen is analyzed by an online gas chromatograph (GC-2014, Shimadzu) which is equipped with a TCD detector and a packed column (carbon molecular sieve)using Argon (99.999%) as the carrier gas.

    3 RESULTS

    3. 1 Structures of the films

    Fig. 1 shows the XRD pattern of as-grown films. There are only three diffraction peaks listed in the XRD pattern. Except two peaks attributed to the substrate, all films exhibit anatase(101) preferred orientation which is in accordance with our previous study[16]. While inducing light during film growth,the peak intensity of anatase (101) increases. It indicates that the crystallinity of the films is improved with photo assistance.

    Fig. 1. XRD pattern of the as-grown films

    The surface morphology is analyzed by AFM. As shown in Fig. 2, the films show a typical island growth pattern. The surface morphology of the films doesn’t show a remarkable change for depositing with or without photo-assistance. To analyze the microstructure of the films, SEM and TEM tests are carried out and shown in Figs. 3 and 4. SEM images of the films show a columnar structure pattern. Corresponding to island growth pattern observed in AFM, the particle coalescence phenomenon is clearly observed. It is known that the crystal structure of TiO2belongs to tetragonal system with space groupI41/amd, while the steel substrate is of cubic system in space groupFm3m. The films show a typical Volmer-Weber growth mode due to the low substrate temperature and lattice mismatch. TEM image in Fig. 4 clearly shows lattice fringes and the observed lattice fringes of all samples haved-spacing of 0.35 nm, which is in accordance withd(101) of anatase TiO2. TEM images suggest an anatase structure of the films, which is consistent with the XRD results. The morphology and structure of the films remain unchanged, indicating that the film growth is independent to the incident light.

    Fig. 2. AFM images of (a) VL, (b) IR, (c) FL and (d) NL

    Fig. 3. SEM images of (a) NL and (b) FL

    3. 2 Optic properties

    Fig. 5 shows UV-vis absorption spectra of the TiO2films prepared on the glass substrate. All films exhibit the same absorption edge and spectral interference, indicating the same film thickness and refractive index[17,18]. Fig. 6 shows the reflectance spectra of TiO2prepared on the steel substrates.The steel substrate possesses high reflectance rate. After being coated with TiO2films, the reflectance decreases significantly. Consistent with the transmittance spectra, all films show the same spectral interference. The similar spectral interference indicates the film is uniform and homogeneous with the consistent film thickness which is ideal for comparative study on the photocatalytic performance.

    3. 3 Photocatalytic activity

    Fig. 7 shows the photocatalytic H2evolution rate as the function of the wavelength of the incident photon.Interestingly, the photocatalytic performance is changedwhile the morphology and optical properties of the films remain the same. The photocatalytic performance of the film is improved for deposition under infrared light and further enhanced for deposition under visible light. However, the performance reduces while depositing under full spectrum lighting. Electrochemical measurement also shows the different behaviors of the films. The photocurrent response is carried out to analyze the efficient charge separation during photocatalytic activity. As shown in Fig. 8, all films exhibit stable photocurrent response. The photocurrent density increases sharply under each irradiation and recovers rapidly in the dark. The reproducibility of the photocurrent indicates the stability of photocatalytic activity of the films. Compared with NL, the photocurrent density of the photo-assisted deposited films increases for sample VL and drops dramatically for sample FL. Consistent with the photocatalytic H2evolution activity, the results reveal the notable difference in the photocatalytic performance of the films which are dependent to the incident light during photo-assisted deposition.

    Fig. 5. UV-vis transmittance spectra of the TiO2 films on the glass substrate

    Fig. 6. Reflectance spectra of TiO2 prepared on the steel substrates

    Fig. 7. Photocatalytic H2 evolution rate of the as-preparedfilms

    Fig. 8. Photocurrent response of the as-prepared films under zero bias (Ag/AgCl as the reference electrode)

    4 DISCUSSION

    We have previously demonstrated that the defects in TiO2thin films could be tuned by the incident photons during sputtering. We now focus on the effects of defects on the photocatalytic activity of TiO2. It is known that defects in TiO2such as Ti3+are beneficial for the utilization of visual light[19,20]. And the hydrogen evolution rate of TiO2nanoparticles grown under 254 nm UV lamp is 3.7 fold compared to that of the normal TiO2[21]. However, we observe a decrease of photocatalytic activity of sample FL.To verify the different behaviors during photocatalytic activity, the electrochemical impedance spectroscopy (EIS) is employed to analyze the carrier transferring mechanism.Fig. 9 shows the Nyquist plots of the impedance data. VL possesses small capacitive arcs, showing that it has higher efficiency in transferring the carriers. The single capacitive arcs are modeled by the simple equivalent circuit (Fig. 9),consisting of a resistorRsin series with a resistorRctand capacitorCPEin parallel, whereRctandCPErepresent the charge transfer resistance and the double layer capacitance,respectively. As shown in Table 1, theRctof FL is higher than that of VL, suggesting the low efficiency in the transferring of photo-generated carriers.

    Fig. 9. Impendence spectra of the as-prepared films

    Table 1. Fitted Parameter of Element in the Equivalent Circuit Model of Steel/TiO2/Solution

    To clarify the impact of the defects induced by UV light on the kinetics of the carriers in TiO2, transient absorption spectra are employed to study the carrier behaviors under excitation. In Fig. 10, the absorption peaks of trapped electrons and holes are clearly shown in the spectra[22,23]. The similar spectrum and lifetime of the trapped state in FL and VL indicate the same type of trapped state in the two samples.FL has much higher absorption peaks than VL, which means the concentration of the trapped states of FL is higher than that of VL. It is known that the trapped states would significantly reduce the carrier mobility and lifetime. The different behaviors of the carrier under excitation in the films which are consistent with the EIS spectra clearly show the influence of defects on the transferring efficiency of the carriers. To study the trapped states in the films, XPS survey are conducted. Fig. 11 shows the Ti 2pspectra of FL and VL.Compared with VL, the Ti 2pspectrum in FL is slightly broadened and exhibits a tail in the region of lower binding energy. It is known that the Ti3+has a lower binding energy than Ti4+, which would result in the shift of peak. The O 1s XPS peak of VL in Fig. 12 is deconvoluted into two peaks at 531 and 529.6 eV attributed to -OH absorbed on the surface and Ti4+-O bond of TiO2, respectively. Additional peak located at 528.7 eV attributed to Ti3+-O bond of TiO2appears in the FL sample[24]. Accordingly, the change of XPS spectra of FL and VL reveals the existence of trapped state which is related to Ti3+defect state.

    Fig. 10. a) Transient absorption spectra of VL and FL after excitation by 300 nm laser pulses,b) Time profiles of transient absorption signals recorded at 500 nm for VL and FL

    Fig. 11. XPS spectrum of Ti 2p

    Fig. 12. XPS spectrum of O 1s

    To reveal the photocatalytic mechanism, the interface contacts of steel/TiO2and TiO2/solution are analyzed. Our previous study demonstrates the ohmic contact between Al and TiO2[16]. As shown in Fig. 13, the I-V characteristics of Al/TiO2/steel also show an ohmic contact between steel and TiO2due to the lower Fermi energy level (EF) of TiO2compared to the work function of steel. The band bending effect would accumulate electron in the steel and block the hole migration. Thus, the hydrogen should generate at the surface of steel. A movie clip filmed during photocatalytic experiment clearly shows the generation of hydrogen bubble at the edge of steel rather than on the TiO2film. As to the interface between TiO2and aqueous solution,a liquid junction is formed between TiO2and the solution redox couple (the potential of the formaldehyde oxidation reaction)[25,26]. Equilibrium could be achieved through the transfer of electrons from TiO2to aqueous solution. The energy band bends owing to electron depletion in TiO2. And a Schottky barrier formed in TiO2is expected. Accordingly,the I-V characteristics of TiO2/solution (Fig. 13) show a rectifying behavior.

    Fig. 13. I-V characteristics of (a) Al/TiO2/steel and (b) steel/TiO2/solution (Ag/AgCl as the reference electrode)

    According to the catalytic performance and I-V characteristics, a possible photocatalytic mechanism for hydrogen evolution is presented in Scheme 1. An ohmic contact is formed at the interface of steel and TiO2film, and Schottky barrier is induced at the interface of TiO2and solution. Photo-generated electrons are driven by the built-in electric field into steel while the holes are transferred to oxidize the formaldehyde. The enhancement of photocatalytic performance is due to high efficiency in the transferring of photo-generated carriers in the photo-assisted deposited samples. Unlike the nanoparticles with a huge specific surface area, the contact interface between thin film and solution is limited. The defects located on the surface of TiO2films would significantly hinder the transfer of photo-induced carriers from TiO2to solution. The ineffective electron transferring would reduce its photocatalytic performance.

    Scheme 1. Energy diagram of TiO2/steel in the formaldehyde solution

    5 CONCLUSION

    TiO2thin films are deposited on the steel with photo assistance. The columnar grain structure and the nanoparticle morphology show a typical Volmer-Weber growth mode.The films exhibit (101) anatase preferred orientation and a sharp absorption edge. All films demonstrate photocatalytic H2evolution activity. The Mott-Schottky effect is supposed to promote the separation of photo-generated carrier.Photo-assisted deposited films show an enhanced photocatalytic activity due to the reduction of interface recombination and the high efficiency in the transferring of photo-generated carriers.

    黄色 视频免费看| 免费女性裸体啪啪无遮挡网站| 国产亚洲精品第一综合不卡| 每晚都被弄得嗷嗷叫到高潮| 欧美不卡视频在线免费观看 | 久久性视频一级片| 国产欧美日韩一区二区精品| 麻豆av在线久日| 中国美女看黄片| 亚洲精品色激情综合| 99国产精品一区二区三区| 午夜久久久在线观看| 亚洲人成电影免费在线| 国产色视频综合| 亚洲五月婷婷丁香| 俺也久久电影网| 久久久久久久精品吃奶| 精品国产一区二区三区四区第35| 欧美不卡视频在线免费观看 | 亚洲人成网站高清观看| 国内久久婷婷六月综合欲色啪| 九色国产91popny在线| 丰满人妻熟妇乱又伦精品不卡| svipshipincom国产片| 男女之事视频高清在线观看| 嫩草影院精品99| 免费看美女性在线毛片视频| 亚洲久久久国产精品| 成人国产一区最新在线观看| 悠悠久久av| 天天躁夜夜躁狠狠躁躁| 婷婷精品国产亚洲av在线| 侵犯人妻中文字幕一二三四区| 国产视频内射| 久久久久久国产a免费观看| 国产精品免费一区二区三区在线| 白带黄色成豆腐渣| 一边摸一边抽搐一进一小说| av中文乱码字幕在线| 亚洲电影在线观看av| 又黄又粗又硬又大视频| 亚洲 欧美一区二区三区| www.熟女人妻精品国产| 97超级碰碰碰精品色视频在线观看| 国产精品 国内视频| 琪琪午夜伦伦电影理论片6080| 国产精品自产拍在线观看55亚洲| 韩国精品一区二区三区| 国产免费男女视频| 国产人伦9x9x在线观看| 老司机在亚洲福利影院| 老司机午夜福利在线观看视频| 一级片免费观看大全| 国产精品九九99| avwww免费| 亚洲全国av大片| 亚洲av五月六月丁香网| 国产激情欧美一区二区| 人妻久久中文字幕网| 精品欧美国产一区二区三| 搡老妇女老女人老熟妇| 天堂动漫精品| 一a级毛片在线观看| 精品电影一区二区在线| 免费无遮挡裸体视频| 丁香六月欧美| 黄色丝袜av网址大全| 两人在一起打扑克的视频| 国产真实乱freesex| 免费看十八禁软件| 欧美黑人巨大hd| 日韩大码丰满熟妇| 欧美乱妇无乱码| 给我免费播放毛片高清在线观看| 精品久久久久久久毛片微露脸| 久久精品aⅴ一区二区三区四区| 久久人人精品亚洲av| 精品人妻1区二区| 啦啦啦免费观看视频1| 欧美在线黄色| 欧美日本亚洲视频在线播放| 欧美在线黄色| 国产精品二区激情视频| 久久亚洲精品不卡| 国产在线观看jvid| 男女下面进入的视频免费午夜 | 久久久精品欧美日韩精品| 日日干狠狠操夜夜爽| 亚洲狠狠婷婷综合久久图片| 亚洲第一青青草原| 此物有八面人人有两片| 国产高清视频在线播放一区| 此物有八面人人有两片| 国产一区在线观看成人免费| 国产一区在线观看成人免费| 欧美av亚洲av综合av国产av| 精品不卡国产一区二区三区| 色婷婷久久久亚洲欧美| 女性被躁到高潮视频| 欧美绝顶高潮抽搐喷水| 搞女人的毛片| 侵犯人妻中文字幕一二三四区| 身体一侧抽搐| 亚洲专区中文字幕在线| 亚洲一区二区三区色噜噜| 丝袜在线中文字幕| 97碰自拍视频| 国产精品综合久久久久久久免费| 亚洲精品在线观看二区| 国产av一区二区精品久久| 国产精品,欧美在线| 一个人免费在线观看的高清视频| 19禁男女啪啪无遮挡网站| 亚洲第一av免费看| 国产高清视频在线播放一区| 亚洲精品一区av在线观看| 亚洲第一av免费看| 亚洲第一青青草原| 国产精品久久久久久精品电影 | 国产伦人伦偷精品视频| 午夜福利免费观看在线| 国产亚洲欧美在线一区二区| 国产精品九九99| 国产三级黄色录像| 19禁男女啪啪无遮挡网站| 国产精品日韩av在线免费观看| 天堂√8在线中文| 亚洲av成人av| 亚洲av成人av| 无遮挡黄片免费观看| 国产精品野战在线观看| 亚洲第一欧美日韩一区二区三区| 欧美黑人巨大hd| av视频在线观看入口| 成在线人永久免费视频| 国产精品九九99| АⅤ资源中文在线天堂| 国产精品免费一区二区三区在线| 一a级毛片在线观看| 亚洲第一av免费看| 在线视频色国产色| 久久人人精品亚洲av| 日韩精品青青久久久久久| 午夜视频精品福利| 精品国产一区二区三区四区第35| 亚洲久久久国产精品| 国产野战对白在线观看| 夜夜看夜夜爽夜夜摸| 欧美日韩黄片免| 婷婷精品国产亚洲av在线| 久久天堂一区二区三区四区| 日韩三级视频一区二区三区| 一级片免费观看大全| 两性夫妻黄色片| 午夜老司机福利片| 欧美另类亚洲清纯唯美| 中文字幕久久专区| 精品福利观看| 午夜免费成人在线视频| 亚洲国产精品999在线| 91成人精品电影| 精品电影一区二区在线| 91成人精品电影| 国产免费av片在线观看野外av| 啦啦啦 在线观看视频| 性色av乱码一区二区三区2| 视频在线观看一区二区三区| 真人一进一出gif抽搐免费| 国产亚洲av嫩草精品影院| 中文字幕人妻熟女乱码| 老司机午夜福利在线观看视频| 黄色丝袜av网址大全| 黑人操中国人逼视频| 欧美日韩黄片免| 一a级毛片在线观看| 啦啦啦 在线观看视频| 听说在线观看完整版免费高清| 亚洲五月天丁香| 99久久精品国产亚洲精品| 级片在线观看| 免费在线观看视频国产中文字幕亚洲| 国语自产精品视频在线第100页| 午夜两性在线视频| 亚洲全国av大片| 黄色女人牲交| 国产伦人伦偷精品视频| bbb黄色大片| 亚洲天堂国产精品一区在线| 久久久久免费精品人妻一区二区 | 在线国产一区二区在线| 久热爱精品视频在线9| 国产精品影院久久| 黄片小视频在线播放| 午夜亚洲福利在线播放| 母亲3免费完整高清在线观看| 嫁个100分男人电影在线观看| 国产亚洲av嫩草精品影院| 最近在线观看免费完整版| 国产视频内射| 日本三级黄在线观看| 啦啦啦观看免费观看视频高清| 成人精品一区二区免费| 国产成+人综合+亚洲专区| 亚洲午夜精品一区,二区,三区| 999久久久国产精品视频| 中文字幕人妻丝袜一区二区| 欧美黑人巨大hd| 老司机午夜福利在线观看视频| 一级毛片女人18水好多| 久久国产亚洲av麻豆专区| 午夜日韩欧美国产| 熟妇人妻久久中文字幕3abv| 在线十欧美十亚洲十日本专区| 精品福利观看| 妹子高潮喷水视频| 日韩欧美国产一区二区入口| 美女大奶头视频| 久久99热这里只有精品18| 国产精品一区二区三区四区久久 | 色精品久久人妻99蜜桃| 国产av又大| 女警被强在线播放| 老司机午夜福利在线观看视频| 欧美国产日韩亚洲一区| 中文字幕久久专区| 国产熟女xx| 老司机在亚洲福利影院| 成人国产一区最新在线观看| 999久久久国产精品视频| av在线播放免费不卡| 淫秽高清视频在线观看| 麻豆国产av国片精品| 熟女少妇亚洲综合色aaa.| 在线看三级毛片| 日韩欧美在线二视频| 国产1区2区3区精品| 国产一区二区三区视频了| 一区二区日韩欧美中文字幕| 黄频高清免费视频| 久久性视频一级片| 色av中文字幕| 91在线观看av| 自线自在国产av| 国产精品免费一区二区三区在线| 久久久久久久精品吃奶| 亚洲成av人片免费观看| 欧美成人一区二区免费高清观看 | 一本综合久久免费| 妹子高潮喷水视频| 1024香蕉在线观看| 亚洲国产精品成人综合色| 女人高潮潮喷娇喘18禁视频| av有码第一页| 色播亚洲综合网| 色av中文字幕| 成人永久免费在线观看视频| 午夜福利高清视频| 深夜精品福利| 国产亚洲av嫩草精品影院| 久久午夜综合久久蜜桃| 欧美精品啪啪一区二区三区| 日韩欧美 国产精品| 国产成年人精品一区二区| 成人手机av| 熟女少妇亚洲综合色aaa.| 精品久久久久久久人妻蜜臀av| 国产午夜福利久久久久久| 99热只有精品国产| 给我免费播放毛片高清在线观看| 九色国产91popny在线| 亚洲成人免费电影在线观看| 国产真人三级小视频在线观看| 国产精品自产拍在线观看55亚洲| 又大又爽又粗| 成人国语在线视频| 色播在线永久视频| www.自偷自拍.com| 欧美日韩亚洲综合一区二区三区_| 日本一区二区免费在线视频| 亚洲精品国产一区二区精华液| 男男h啪啪无遮挡| 国产亚洲av高清不卡| 国产成人系列免费观看| 亚洲精品美女久久av网站| 一个人观看的视频www高清免费观看 | 国产成人欧美| 国产午夜精品久久久久久| 成年人黄色毛片网站| 欧美大码av| 一进一出抽搐gif免费好疼| 18禁国产床啪视频网站| 午夜亚洲福利在线播放| 最近在线观看免费完整版| 99热这里只有精品一区 | 午夜两性在线视频| 久久久国产欧美日韩av| 亚洲精品色激情综合| 日本a在线网址| 操出白浆在线播放| 精品久久久久久久久久久久久 | 天天躁夜夜躁狠狠躁躁| 岛国视频午夜一区免费看| 亚洲国产精品成人综合色| 法律面前人人平等表现在哪些方面| 午夜激情av网站| 一进一出好大好爽视频| 国产精品自产拍在线观看55亚洲| 真人一进一出gif抽搐免费| 国产人伦9x9x在线观看| 婷婷亚洲欧美| 久久亚洲精品不卡| 日韩大码丰满熟妇| 一级毛片女人18水好多| 国内少妇人妻偷人精品xxx网站 | 精品第一国产精品| 亚洲专区国产一区二区| 日韩欧美三级三区| 国产成人一区二区三区免费视频网站| 韩国av一区二区三区四区| 欧美av亚洲av综合av国产av| 欧美zozozo另类| 久久草成人影院| 亚洲午夜理论影院| 黄色成人免费大全| 91成人精品电影| 国产高清有码在线观看视频 | 国产高清有码在线观看视频 | 亚洲精品中文字幕一二三四区| 在线观看免费午夜福利视频| 国产在线精品亚洲第一网站| 女同久久另类99精品国产91| 国产主播在线观看一区二区| 色综合站精品国产| 99精品久久久久人妻精品| 欧美最黄视频在线播放免费| 天天躁夜夜躁狠狠躁躁| 亚洲狠狠婷婷综合久久图片| aaaaa片日本免费| 亚洲av片天天在线观看| 人人妻,人人澡人人爽秒播| 黄频高清免费视频| 午夜成年电影在线免费观看| 在线十欧美十亚洲十日本专区| 成人三级黄色视频| 国产高清有码在线观看视频 | 国产主播在线观看一区二区| cao死你这个sao货| 午夜激情福利司机影院| 久久伊人香网站| 亚洲专区国产一区二区| av中文乱码字幕在线| a级毛片a级免费在线| 国产精品亚洲av一区麻豆| 亚洲最大成人中文| 国产av一区二区精品久久| 又大又爽又粗| 伦理电影免费视频| 白带黄色成豆腐渣| 国产又色又爽无遮挡免费看| 狠狠狠狠99中文字幕| 精品午夜福利视频在线观看一区| 欧美国产精品va在线观看不卡| 巨乳人妻的诱惑在线观看| 国产成人精品无人区| 特大巨黑吊av在线直播 | 黄色a级毛片大全视频| 中文字幕精品免费在线观看视频| 久久久国产欧美日韩av| 男女视频在线观看网站免费 | 国产精品永久免费网站| 欧美精品亚洲一区二区| 久久狼人影院| 欧美在线一区亚洲| 色综合欧美亚洲国产小说| av电影中文网址| 男女午夜视频在线观看| 精品久久久久久久毛片微露脸| 国产成人av教育| 精品高清国产在线一区| 韩国精品一区二区三区| 国产精品av久久久久免费| 日本撒尿小便嘘嘘汇集6| 精品卡一卡二卡四卡免费| 国产男靠女视频免费网站| 国产黄色小视频在线观看| svipshipincom国产片| 午夜两性在线视频| 国产精品,欧美在线| 在线观看免费日韩欧美大片| 精品国产乱子伦一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 性色av乱码一区二区三区2| 久久人妻av系列| 自线自在国产av| 欧美在线一区亚洲| 99精品在免费线老司机午夜| 国产男靠女视频免费网站| 亚洲性夜色夜夜综合| 国产亚洲欧美精品永久| 丝袜在线中文字幕| 亚洲av熟女| 怎么达到女性高潮| 啦啦啦免费观看视频1| 欧美色视频一区免费| 精品高清国产在线一区| 欧美日本亚洲视频在线播放| 久久久精品欧美日韩精品| 欧美人与性动交α欧美精品济南到| 国产av一区在线观看免费| 亚洲色图av天堂| 天堂√8在线中文| 99久久综合精品五月天人人| 精品不卡国产一区二区三区| 国产精品九九99| 国产亚洲欧美精品永久| 日韩免费av在线播放| 国产成人精品无人区| 中文字幕久久专区| 国产高清激情床上av| 别揉我奶头~嗯~啊~动态视频| 久久精品国产综合久久久| 久久欧美精品欧美久久欧美| 香蕉丝袜av| svipshipincom国产片| 丝袜在线中文字幕| 国产成人精品无人区| 怎么达到女性高潮| 国产在线观看jvid| 别揉我奶头~嗯~啊~动态视频| 色老头精品视频在线观看| 天堂√8在线中文| 国产精品久久电影中文字幕| 悠悠久久av| 久久精品国产亚洲av高清一级| 中文字幕最新亚洲高清| 午夜免费成人在线视频| 18禁裸乳无遮挡免费网站照片 | 欧美 亚洲 国产 日韩一| 久久婷婷人人爽人人干人人爱| 午夜激情福利司机影院| 女同久久另类99精品国产91| 国内毛片毛片毛片毛片毛片| 亚洲人成网站高清观看| 欧美在线黄色| 国产极品粉嫩免费观看在线| 女性被躁到高潮视频| 波多野结衣高清作品| 欧美人与性动交α欧美精品济南到| 久久天堂一区二区三区四区| 欧美zozozo另类| 淫妇啪啪啪对白视频| 亚洲 国产 在线| 久久久久久久精品吃奶| 久久久久久久久免费视频了| 亚洲专区中文字幕在线| 亚洲欧美一区二区三区黑人| 亚洲欧洲精品一区二区精品久久久| 日韩欧美 国产精品| 国产黄色小视频在线观看| 国产精品久久电影中文字幕| 色哟哟哟哟哟哟| 中文字幕另类日韩欧美亚洲嫩草| 高清在线国产一区| 自线自在国产av| 一边摸一边抽搐一进一小说| 在线观看舔阴道视频| 日本精品一区二区三区蜜桃| 一卡2卡三卡四卡精品乱码亚洲| 久久久久久人人人人人| 99riav亚洲国产免费| 欧美国产精品va在线观看不卡| 日韩三级视频一区二区三区| 91麻豆av在线| 精品一区二区三区视频在线观看免费| 亚洲性夜色夜夜综合| 黄色a级毛片大全视频| 国产主播在线观看一区二区| 免费在线观看成人毛片| 久久婷婷成人综合色麻豆| 啪啪无遮挡十八禁网站| 亚洲国产日韩欧美精品在线观看 | 欧美激情 高清一区二区三区| 少妇的丰满在线观看| 亚洲全国av大片| tocl精华| 成人特级黄色片久久久久久久| 国产成人精品无人区| 中文字幕精品免费在线观看视频| 亚洲熟妇熟女久久| 精品久久蜜臀av无| 国内少妇人妻偷人精品xxx网站 | 黄色视频不卡| 午夜久久久在线观看| 国产亚洲精品第一综合不卡| 欧美日韩一级在线毛片| 精品少妇一区二区三区视频日本电影| 日韩欧美免费精品| 日日摸夜夜添夜夜添小说| 国产精品免费一区二区三区在线| 亚洲第一欧美日韩一区二区三区| 不卡一级毛片| 最近最新免费中文字幕在线| 一本综合久久免费| 亚洲精品粉嫩美女一区| svipshipincom国产片| 男女下面进入的视频免费午夜 | 91大片在线观看| 国产精品香港三级国产av潘金莲| 成人国语在线视频| 韩国精品一区二区三区| 精品熟女少妇八av免费久了| 亚洲 欧美 日韩 在线 免费| 国产高清有码在线观看视频 | 在线观看免费午夜福利视频| 日本黄色视频三级网站网址| 欧美zozozo另类| 国产精品亚洲美女久久久| 成人免费观看视频高清| 男女那种视频在线观看| 两个人免费观看高清视频| 99热6这里只有精品| 日韩免费av在线播放| 欧美色视频一区免费| 亚洲成人免费电影在线观看| 亚洲国产精品成人综合色| 国产精品亚洲美女久久久| 日本精品一区二区三区蜜桃| 人妻久久中文字幕网| 神马国产精品三级电影在线观看 | 亚洲人成电影免费在线| 亚洲国产高清在线一区二区三 | 欧洲精品卡2卡3卡4卡5卡区| 人人妻人人澡欧美一区二区| 成年人黄色毛片网站| 老司机在亚洲福利影院| 国产精品av久久久久免费| 日日摸夜夜添夜夜添小说| 久久久久久久久久黄片| 国产精品一区二区免费欧美| 日韩欧美三级三区| 高潮久久久久久久久久久不卡| 天堂动漫精品| 午夜久久久久精精品| 国内揄拍国产精品人妻在线 | 看片在线看免费视频| 国产成年人精品一区二区| 日韩欧美国产在线观看| 男女做爰动态图高潮gif福利片| 91麻豆av在线| 亚洲自拍偷在线| 欧美日韩一级在线毛片| 亚洲电影在线观看av| 母亲3免费完整高清在线观看| 婷婷亚洲欧美| 人成视频在线观看免费观看| 欧美精品亚洲一区二区| 精品久久久久久久末码| 欧美不卡视频在线免费观看 | 国产欧美日韩精品亚洲av| 中文字幕最新亚洲高清| 欧美黑人精品巨大| 欧美成人免费av一区二区三区| 99国产极品粉嫩在线观看| 国产极品粉嫩免费观看在线| 欧美亚洲日本最大视频资源| 18禁裸乳无遮挡免费网站照片 | 日韩欧美 国产精品| 青草久久国产| 国产亚洲精品久久久久久毛片| 国产精品久久久久久人妻精品电影| 亚洲va日本ⅴa欧美va伊人久久| 国产精品精品国产色婷婷| 男男h啪啪无遮挡| 国产一区二区激情短视频| 欧美久久黑人一区二区| 在线永久观看黄色视频| 色尼玛亚洲综合影院| 日韩欧美一区二区三区在线观看| 国产久久久一区二区三区| 午夜福利一区二区在线看| www.熟女人妻精品国产| 欧美黑人欧美精品刺激| 亚洲欧美日韩高清在线视频| 在线天堂中文资源库| 免费观看精品视频网站| 亚洲国产欧洲综合997久久, | 美女免费视频网站| 欧美色欧美亚洲另类二区| 成人av一区二区三区在线看| 美女 人体艺术 gogo| av天堂在线播放| 久久精品国产99精品国产亚洲性色| 成人三级黄色视频| 亚洲精品国产一区二区精华液| 婷婷六月久久综合丁香| 最近最新中文字幕大全电影3 | www.www免费av| 黄网站色视频无遮挡免费观看| 真人一进一出gif抽搐免费| 麻豆久久精品国产亚洲av| 久久这里只有精品19| 日韩成人在线观看一区二区三区| 久久草成人影院| 国产高清激情床上av| 欧美久久黑人一区二区| 天堂√8在线中文| 国产成人精品久久二区二区免费| 一个人免费在线观看的高清视频| 香蕉久久夜色| 国产伦人伦偷精品视频| 欧美性长视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 久久精品亚洲精品国产色婷小说| 中文字幕另类日韩欧美亚洲嫩草| 免费在线观看视频国产中文字幕亚洲|