• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Three Novel Luminescent Zinc(II) Compounds Constructed by Employing Mixed-ligand Strategy①

    2021-09-26 02:39:22ZHUKunYANGJinXiQINYeYnYAOYunGen
    結(jié)構(gòu)化學(xué) 2021年9期

    ZHU Kun YANG Jin-Xi QIN Ye-Yn YAO Yun-Gen②

    a (Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China)

    b (University of Chinese Academy Sciences, Beijing 100039, China)

    ABSTRACT Three novel coordination polymers, [Zn(suc)(o-bix)]n (1), [Zn(suc)(m-bix)·H2O]n (2) and[Zn2(suc)2(p-bix)2·4H2O]n (3) (H2suc = succinic acid, o-bix = 1,2-bis(imidazol-1-ylmethyl)-benzene, m-bix =1,3-bis(imidazol-1-ylmethyl)-benzene, p-bix = 1,4-bis(imidazol-1-ylmethyl)-benzene), have been synthesized and structurally characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray diffraction. These three coordination polymers present various structures originated from auxiliary N-donor ligands with different configurations. Compound 1 shows a 2D network with 44-sql topology. Compound 2 exhibits an infinite chain, and the adjacent chains are extended into a 2D sheet by π-π stacking interactions. Changing the conformation of the N-donor ligand leads to 3 featuring a 3D framework with a novel 4-connected (65·8) topology. In addition, the solid-state photoluminescent properties of compounds 1~3 are investigated.

    Keywords: zinc(II) compounds, hydrothermal reaction, aliphatic dicarboxylates, mix-ligand, luminescence;

    1 INTRODUCTION

    Coordination polymers have been recognized as an excellent material due to their interesting network structures and potential applications such as gas storage, magnetism,luminescent sensing, electrochemistry, catalysis, and so on[1-11]. Herein, the rational design and construction of CPs have attracted significant interest. To date, many interesting CPs have been designed and synthesized by using molecular design and crystal engineering methods. However, the accurate control of structural dimensionality of CPs with predictable potential properties has been highly influenced by various factors and is still a significant challenge fraught with difficulties. Among these factors, the mixed polycarboxylate and N-donor ligands have been proven to an effective approach to achieve novel CPs[12-18]. Inspired by this consideration, our synthetic strategy is reasonable selection of polycarboxylate and N-donor ligands to construct desired CPs with novel structures and unique properties. For polycarboxylate ligand, a common selection is aromatic carboxylate ligands which have been justified as efficient and versatile candidates. Compared with aromatic carboxylate ligands, little attention has been paid to aliphatic carboxylate ligands even though their flexibility and conformational freedoms can offer a greater degree of structural diversity. In our previous reports[19,20], we investigated a series of Zn(II)/Cd(II) CPs constructed using different aliphatic dicarboxylates and auxiliary N-donor ligands. As a continuation of this attractive subject, we chose aliphatic dicarboxylate ligand-succinic acid (H2suc) as a flexible linear dicarboxylate to construct novel coordination networks due to their flexibility and conformational freedoms[21]. As we know,in the generation of ternary CPs, N-donor ligands play a dual role of building units and templates. Therefore, here we selected three semirigid isomers of bis(1,2,4-triazol-1-ylmethyl)benzene (o-bix,m-bix,p-bix) ligands viewing the influence of different configurations on the final structures.The bix ligand has more advantages in the assembly of versatile structures, mainly because it possessescisandtransconformations as a result of the free rotation of two methylene groups, which facilitates the assembly of various CPs[22-25]. When adopting acis-conformation, the bix ligands prefer to form a M2(bix)2metallocyclic ring to generate the polyrotaxane and polycatenate nets, whereas it will lead to higher dimensional networks when adopting thetransconformations.

    Fortunately, we applied this strategy and obtained three new CPs, namely, [Zn(suc)(o-bix)]n(1), [Zn(suc)(m-bix)·H2O]n(2), and [Zn2(suc)2(p-bix)2·4H2O]n(3). As expected, the self-assembly of mixed aliphatic dicarboxylate and N-donor ligands is an effective method to generate unique architectures and topologies. In a word, a systematic study was carried out in this work by using varied carboxylate ligands,and CPs with different structures and topology were obtained.The results provide a nice example of the construction of CPs using mix ligand strategy, and their syntheses, crystal structures, topologies, thermal stabilities, and photoluminescence properties are reported in this paper.

    2 EXPERIMENTAL

    2. 1 Materials and equipments

    The bix ligands were synthesized by the literature method[26].All other starting materials used in this work were commercially purchased and used without further purification.Elemental analyses of C, H and N were performed on an EA1110 CHNS-0 CE elemental analyzer. Infrared spectra of solid samples were recorded on a Nicolet Magna 750 FT-IR spectrometer in the range of 400~4000 cm-1. PXRD patterns were performed on a Rigaku Dmax2500 X-ray diffractometer with CuKαradiation (λ= 1.54056 ?) with a step size of 0.05°.Thermogravimetric analyses were carried out on a NetzschSTA499C integration thermal analyzer under a nitrogen atmosphere from 30 to 900 °C at a heating rate of 10°C/min. The luminescence spectra were recorded on an Edinburgh FLS1000 TCSPC fluorescence spectrophotometer at room temperature.

    2. 2 Synthesis of [Zn(suc)(o-bix)]n (1)

    A mixture of Zn(NO3)2·6H2O (0.120 g, 0.4 mmol), H2suc(0.078 g, 0.4 mmol),o-bix (0.096 g, 0.4 mmol), NaHCO3(0.065 g, 0.8 mmol) and H2O (15 mL) was sealed in a 23 mL Teflon-lined stainless-vessel under autogenous pressure at 100 °C for 72 h and then cooled to room temperature slowly.Colorless prism crystals yield in 45%. Anal. Calcd. (%) for 1 C18H18N4O4Zn: C, 51.45; H, 4.23; N, 13.34. Found (%): C,51.27; H, 4.26; N, 13.17. IR (KBr pellet, cm-1) for 1:3013(w), 2954(w), 1620(s), 1593(s), 1525(m), 1429(m),1396(s), 1294(m), 1240(m), 1108(s), 1026(w), 949(m),881(w), 852(w), 781(w), 715(m), 655(m).

    2. 3 Synthesis of [Zn(suc)(m-bix)·H2O]n (2)

    The preparation of 2 was similar to that of 1 except thatm-bix was used instead ofo-bix. Colorless block crystal yield in 51%. Anal. Calcd. (%) for 2 C18H20N4O5Zn: C, 49.34; H,4.57; N, 12.79. Found (%): C, 49.24; H, 4.64; N, 12.98. IR(KBr pellet, cm-1) for 2: 3115(w), 1595(s), 1523(w), 1394(s),1283(m), 1232(w), 1097(m), 1027(w), 953 (w), 893(w),752(w), 729(w), 658(w).

    2. 4 Synthesis of [Zn2(suc)2(p-bix)2·4H2O]n (3)

    The preparation of 3 was similar to that of 1 except thatp-bix was used instead ofo-bix. Colorless block crystal yield in 39%. Anal. Calcd. (%) for 3 C36H44N8O12Zn2: C, 47.39; H,4.83; N, 12.29. Found (%): C, 47.51; H, 4.62; N, 12.07. IR(KBr pellet, cm-1) for 3: 3450 (s), 1597 (s), 1572 (s), 1518(m), 1427 (m), 1401 (m), 1298 (m), 1232 (w), 1181 (w), 1106(m), 1028(w), 979 (w), 954 (m), 867 (w), 768 (m), 722 (m),655 (m).

    2. 5 Structure determination

    X-ray crystal structure determination and reflection data of compound 1 were collected on a Bruker Smart Apex CCD diffractometer with graphite-monochromated MoKαradiation(λ= 0.71073 ?), 2 on an Oxford Xcalibur E diffractometer,and 3 on a SuperNova (Dual source) diffractometer with graphic-monochromatic CuKαradiation (λ= 1.54178 ?) at room temperature. Absorption corrections were applied using program SADABS[27]. The structure was solved by direct methods using SHELXS-2014 and refined onF2by full-matrix least-squares with SHELXL-2014[28]. All non-hydrogen atoms were refined anistropically, and all hydrogen atoms attached to carbon and nitrogen atoms were placed at their ideal positions. Crystallographic data and structure refinement parameters for compounds 1~3 are collated in Table 1. Selected bond lengths and bond angles are listed in Table 2.

    Table 1. Summary of Crystal Data and Structure Refinements for 1~3

    Table 2. Selected Bond Lengths and Bond Angles for 1~3

    3 RESULTS AND DISCUSSION

    3. 1 Description of structure 1

    X-ray structural analysis reveals that compound 1 crystallizes in monoclinic space groupP21/n, the asymmetric unit of which consists of one crystallographically independent Zn(II) cation, one suc2-anion, and oneo-bix ligand(Fig. 1a). The Zn(II) center displays a slightly distorted tetrahedral [ZnO2N2] geometry via coordinated by two carboxylate oxygen atoms and two imidazole nitrogen atoms.Bond lengths and bond angles within the coordination sphere are listed in Table 2. The suc2-ligands are in aμ2-η1:η0:η1:η0monodentate-bridging fashion to link Zn(II) cations to form interesting left- and right-handed helical [Zn(suc)]nchains with a pitch of 9.299 ? (Fig. 1b and 1c). These chain motifs are connected througho-bix ligands to give a typical 2D layer(Fig. 1d), which span a Zn···Zn contact distance of 11.928 ?.Topological analysis of compound 1 reveals it to be a 4-connected 44-sql network.

    Fig. 1. (a) Coordination environment of the Zn(II) atom in 1 (symmetry codes: a = 1.5-x, 0.5+y, 0.5-z; b = 0.5+x, -0.5-y, -0.5+z).(b) and (c) Perspective views of 1D left- and right-handed helical chains constructed by Zn(II) cations and suc2- ligands.(d) Perspective view of the 2D layer of compound 1

    3. 2 Description of structure 2

    Single-crystal X-ray structural analysis of compound 2 shows that the structure is constructed by one Zn(II) cation,one suc2-anion, onem-bix ligand, and one lattice water molecule (Fig. 2a). Each Zn(II) atom is four-coordinated and exhibits a distorted tetrahedral geometry surrounded by two carboxylic oxygen atoms from two suc2-ligands and two nitrogen atoms from twom-bix ligands. Similar to compound 1, the suc2-ligand in 2 adopts aμ2-η1:η0:η1:η0monodentatebridging mode. On the basis of this connection mode, two suc2-ligands bridge two Zn cations forming a cyclic closed[Zn2(suc)2] structure. And gauche conformationalm-bix ligands candle two Zn(II) atoms to generate a [Zn2(m-bix)2]hexagonal ring. Two types of loop structures are combined together into an infinite 1D chain (Fig. 2b). Furthermore, the adjacent chains are extended into a 2D sheet byπ-πstacking interactions (centroid-to-centroid and perpendicular distances:3.854 and 3.553 ?, dihedral angel: 0.00°) among aromatic cycles ofm-bix ligands (Fig. 2c).

    Fig. 2. (a) Coordination environment of the Zn(II) atom in 2 (symmetry codes: a = 1-x, 1-y, 1-z; b = 2-x, -y, -z). (b) View of 1D chain constructed by two types of cyclic closed structures. (c) 2D layer formed by π-π stacking interactions of neighboring chains

    3. 3 Description of structure 3

    A single-crystal X-ray diffraction study reveals that 3 crystallizes in monoclinic system withP21/nspace group. As shown in Fig. 3a, the asymmetric unit of 3 is composed of two Zn(II) cations, two suc2-anions, one and two halves ofp-bix ligands, and four coordinated water molecules. Both Zn(II) cations possess a distorted {ZnN2O2} tetrahedral coordination environment, which are occupied by two carboxylate oxygens from two suc2-ligands and two nitrogen donors from twop-bix ligands. For convenience, thep-bix ligands containing N(1), N(5), and N(7) are designatedp-bix-A,p-bix-B, andp-bix-C, respectively.

    Fig. 3. (a) Coordination environment of the Zn(II) atom in 3 (symmetry codes: a = 1+x, y, z; b = 0.5+x, 0.5-y, -0.5+z; c = 1-x, 1-y, -z; d = 2-x, -y,-z), (b) Perspective view of the meso-helical chain (top); 2D (4, 4) layer formed by Zn(II) cations, suc2- and p-bix-A ligands (bottom), (c) View of the 2D layers are pillared by p-bix-B ligands into a 3D structure, (d) Perspective view of the 3D framework of 3 along the b axis, highlighting the channels occupied by bidentate pillared coordinated p-bix-C ligands, (e) Schematic description of the 3D framework with (65·8) topology

    Each suc2-anion bridges two Zn(II) atoms with its two carboxylates inμ1-η1:η0fashions to form an infinite 1Dmeso-helical chain with a pitch of 13.095 ? (Fig. 3b top).These adjacentmeso-helical chains are extended to a 2D undulated 44layer with the aid of thep-bix-A ligands (Fig. 3b bottom). Furthermore, the 2D layers are pillared byp-bix-B ligands to generate a 3D open structure. Finally, thep-bix-C molecules further join the Zn1 atoms to finish the coordination sphere of the metal atoms and give a more stabilized 3D framework (Fig. 3d). A better insight into such an involved framework can be accessed by the application of a topological approach, if each Zn(II) cation is considered as a four-connected node and suc2-anions andp-bix ligands are linkers. This framework can be simplified into a fourconnected net with short and long Schlafl¨i symbols 65·8 and 6.6.6.6.62.82, which is clearly different from the CdS topology and represents a new topological prototype (Fig. 3e).

    A close inspection of the structure discloses that the 3D framework contains a small solvent-accessible void space of 11.6% (461.1 ?3per unit cell) of the total crystal volume occupied by the lattice water molecules. The water molecules are connected with the host framework by O-H·O hydrogen bonds between water molecules and the carboxyl groups of suc2-(Table 3), which further stabilizes the 3D structure of 3.

    3. 4 Influence of organic ligands on the structures

    Form the experimental results and structure discussions above, we can see that all Zn(II) atoms in 1~3 are located in a tetrahedral four-coordinated environment, and suc2-ligands show the sameμ2-η1:η0:η1:η0coordinated mode. All the suc2-and different bix ligands act as uniformly 2-connected linkers,so the resulting structural differences of compound 1~3 are evidently associated with the different positions of 2-methylimidazolyl groups and conformations of the three isomeric bis(2-methyl-imidazole) ligands. The geometrical parameters of suc2-ligands and bis(imidazole ) ligands in compounds 1~3 are listed in Table 4. In compound 1, theo-bix ligands exhibittransconformation and extend the 1D[Zn(suc)]nchains into a 2D sheet; while in compound 2, them-bix ligands showcisconformation and cradle the Zn(II)atoms to create metallocycles which inhibit the formation of a higher dimensional structure, thus resulting in an infinite 1D chain. Bothtransandcisconformations ofp-bix ligand coexist in compound 3, which leads to a 3D complicated structure. As a result, the difference in conformation of the bis(imidazole) ligands causes the structural difference of compounds 1~3. Structural comparisons indicate that the positions of the coordinated groups in the ligand backbone and the ligand conformation play an important role in governing the structural dimension and topologies of the final compounds.

    Table 3. Hydrogen-bonding Geometrical Parameters (?, °) of Compound 3

    Table 4. Geometrical Parameters of Bis(imidazole) and suc2- Ligands in Compounds 1~3

    3. 5 PXRD patterns

    The powder X-ray diffractions (PXRD) for compounds 1~3 were performed to characterize their purity. As depicted in Fig. 4, the peak positions of simulated and experimental patterns are in good agreement, demonstrating the phase purity. The difference in reflection intensities was due to the variation in preferred orientation of the powder samples during the collection of the experimental PXRD data.

    Fig. 4. XRD patterns of compounds 1~3

    3. 6 Thermal analysis

    thermogravimetric analysis (TGA) in nitrogen gas from 30 to 900 °C (Fig. 5). Compound 1 does not contain guest molecules, so there is no obvious weight loss before 310 °C.Then the framework begins to collapse, accompanying the loss of organic ligands. The TGA curve of 2 shows a one-step weight loss process from 120 to 160 °C, corresponding to the release of lattice water molecules (obsd. 4.22%, calcd.The thermostability of these compounds is explored by 4.11%). The overall framework of 2 begins to collapse at 310 °C. For 3, the weight loss due to the departure of lattice water molecule is observed from 30 to 105 °C (obsd. 7.74%,calcd. 7.90%). Then the compound reaches a plateau with no further weight loss up to 310 °C. Upon further heating, the host framework begins to decompose.

    Fig. 5. TGA curves of compounds 1~3

    3. 7 Luminescence property

    CPs based on Zn(II) ions are of great interest due to their potential applications in photochemistry, chemical optical sensors and electroluminescent devices. Therefore, the photoluminescence spectra of compounds 1~3 are measured at room temperature. In order to understand the origin of emissions, the solid-state luminescence of free ligandso-bix,m-bix,p-bix, as well as H2suc are investigated. As shown in Fig. 6, all as-synthesized compounds exhibit broad and strong luminescence emission. Excitation at 360 nm leads to intense violet luminescent emissions with the maxima at 434 nm for 1, 431 nm for 2, and 435 nm for 3, respectively. The freeo-bix,m-bix, andp-bix ligands show intense emission bands at 426 nm (λex= 360 nm), 435 nm (λex= 360 nm), and 434 nm (λex= 360 nm), respectively. And there was no obvious emission observed for free H2suc ligands under the same experimental conditions[29]. As we know, the Zn(II) ion is difficult to oxidize or reduce due to itsd10configuration[30].Therefore, compared to the emission spectra between compounds 1~3 and the free bix ligands, the similar adsorption peak positions indicate that their most possible luminescent mechanism originates from theπ*→πtransitions ofo-bix,m-bix, andp-bix ligands. In addition, further investigation indicates that the luminescent intensities of compounds 1~3 dramatically decrease compared with that of corresponding bix ligands. It may be attributed to the coordination action of N-donor ligands to the Zn(II) ions,which lowers the rigidity of the ligands and increase the loss of energy via vibration motions.

    4 CONCLUSION

    In summary, three novel luminescent Zn(II) compounds have been successfully synthesized and structurally characterized. They display various structural motifs,including the 2D layer (1), 1D chain (2), and 3D network with novel (65·8) topology (3). The structural differences of the compounds demonstrate that variations of the conformations of auxiliary ligands are critical to the assembly of CPs in some particular systems.

    Fig. 6. Solid-state luminescence emission spectra of compounds 1~3 and the bix ligands

    3wmmmm亚洲av在线观看| 视频在线观看一区二区三区| 久久综合国产亚洲精品| 伦理电影大哥的女人| 91精品国产国语对白视频| 欧美三级亚洲精品| 伊人久久国产一区二区| 男女边吃奶边做爰视频| 伊人亚洲综合成人网| 少妇 在线观看| 中国三级夫妇交换| 成人免费观看视频高清| 高清在线视频一区二区三区| 亚洲欧洲日产国产| 久久久国产欧美日韩av| 2018国产大陆天天弄谢| 亚洲人成网站在线观看播放| 一区二区三区四区激情视频| 高清午夜精品一区二区三区| 美女xxoo啪啪120秒动态图| 日本免费在线观看一区| 晚上一个人看的免费电影| 各种免费的搞黄视频| www.av在线官网国产| 亚洲国产精品成人久久小说| 汤姆久久久久久久影院中文字幕| 在线免费观看不下载黄p国产| 国产精品久久久久久久电影| 久久久久国产精品人妻一区二区| 91aial.com中文字幕在线观看| 精品亚洲成国产av| 天美传媒精品一区二区| 国产成人午夜福利电影在线观看| 午夜91福利影院| 久久久久久久久大av| 男的添女的下面高潮视频| kizo精华| 午夜精品国产一区二区电影| 999精品在线视频| 91精品国产国语对白视频| 精品久久蜜臀av无| 日韩人妻高清精品专区| 日韩成人伦理影院| 国产精品国产三级国产专区5o| 搡老乐熟女国产| 日韩中字成人| 亚洲精华国产精华液的使用体验| 亚洲人与动物交配视频| 美女内射精品一级片tv| 国产亚洲精品久久久com| 亚洲av.av天堂| 国产一区二区三区综合在线观看 | 成年美女黄网站色视频大全免费 | 日韩熟女老妇一区二区性免费视频| 99久久精品国产国产毛片| 大片电影免费在线观看免费| 男女啪啪激烈高潮av片| 亚洲国产毛片av蜜桃av| 亚洲欧美日韩另类电影网站| 热re99久久国产66热| 一区二区av电影网| 看免费成人av毛片| 在线亚洲精品国产二区图片欧美 | 亚洲国产毛片av蜜桃av| 内地一区二区视频在线| 国产日韩欧美视频二区| 欧美日韩视频高清一区二区三区二| 亚洲国产av新网站| av播播在线观看一区| 免费av不卡在线播放| 午夜视频国产福利| 精品亚洲成国产av| 蜜桃久久精品国产亚洲av| 欧美亚洲日本最大视频资源| 成人二区视频| 水蜜桃什么品种好| 在线 av 中文字幕| 国产精品99久久99久久久不卡 | 少妇人妻久久综合中文| 亚洲av国产av综合av卡| 国产精品一区二区在线观看99| 精品一品国产午夜福利视频| 欧美 日韩 精品 国产| 一级毛片我不卡| 观看美女的网站| 丰满乱子伦码专区| 这个男人来自地球电影免费观看 | 日本欧美视频一区| 蜜桃久久精品国产亚洲av| 日本黄色片子视频| 美女cb高潮喷水在线观看| 国产精品久久久久久av不卡| 中文精品一卡2卡3卡4更新| 伦理电影大哥的女人| 五月天丁香电影| 亚洲综合色网址| 久久99蜜桃精品久久| 夜夜看夜夜爽夜夜摸| 在线精品无人区一区二区三| 亚洲不卡免费看| 妹子高潮喷水视频| 一本一本综合久久| 一区二区三区四区激情视频| 国产男女内射视频| 亚洲熟女精品中文字幕| av网站免费在线观看视频| .国产精品久久| 国产色爽女视频免费观看| 久久精品国产亚洲网站| 丝袜脚勾引网站| a 毛片基地| 国产精品久久久久久久久免| 高清不卡的av网站| 九色成人免费人妻av| 极品人妻少妇av视频| 亚洲美女黄色视频免费看| 交换朋友夫妻互换小说| 亚洲人成网站在线观看播放| 欧美 日韩 精品 国产| 精品人妻熟女av久视频| 大香蕉97超碰在线| 中文字幕精品免费在线观看视频 | 自线自在国产av| 3wmmmm亚洲av在线观看| 不卡视频在线观看欧美| 在线观看www视频免费| av电影中文网址| 免费观看无遮挡的男女| 最近中文字幕高清免费大全6| 男女边吃奶边做爰视频| 成人国语在线视频| 搡女人真爽免费视频火全软件| 黄片无遮挡物在线观看| 人妻 亚洲 视频| 国产亚洲一区二区精品| 丰满少妇做爰视频| 色婷婷av一区二区三区视频| 在线观看免费日韩欧美大片 | 有码 亚洲区| 九九久久精品国产亚洲av麻豆| 制服诱惑二区| 91国产中文字幕| 国产精品偷伦视频观看了| 我的老师免费观看完整版| 精品人妻偷拍中文字幕| 欧美精品人与动牲交sv欧美| 91国产中文字幕| 国产伦精品一区二区三区视频9| av又黄又爽大尺度在线免费看| 亚洲欧洲日产国产| av国产精品久久久久影院| 日韩成人av中文字幕在线观看| 成人影院久久| 成人漫画全彩无遮挡| 黄片播放在线免费| 亚洲欧洲日产国产| 夫妻午夜视频| 国产综合精华液| 日韩中文字幕视频在线看片| 亚洲av.av天堂| 一本—道久久a久久精品蜜桃钙片| 午夜久久久在线观看| 精品久久国产蜜桃| 成人国语在线视频| 桃花免费在线播放| 又大又黄又爽视频免费| 午夜影院在线不卡| 青春草国产在线视频| 亚洲精品乱久久久久久| 天天躁夜夜躁狠狠久久av| 老司机影院毛片| 国产成人精品一,二区| 女的被弄到高潮叫床怎么办| 99热6这里只有精品| 亚洲精品国产av成人精品| 大片免费播放器 马上看| 国产免费视频播放在线视频| 91精品国产国语对白视频| 国产高清有码在线观看视频| 综合色丁香网| 国产视频首页在线观看| 91久久精品国产一区二区三区| 97超视频在线观看视频| 在线观看美女被高潮喷水网站| 最后的刺客免费高清国语| 亚洲国产色片| 亚洲不卡免费看| 韩国av在线不卡| 亚洲五月色婷婷综合| 麻豆精品久久久久久蜜桃| 少妇人妻精品综合一区二区| 精品人妻熟女av久视频| 丝袜脚勾引网站| 在线观看www视频免费| 在线亚洲精品国产二区图片欧美 | 在线观看一区二区三区激情| 男人添女人高潮全过程视频| 亚洲人成网站在线观看播放| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产老妇伦熟女老妇高清| 日本av手机在线免费观看| 一本大道久久a久久精品| 秋霞在线观看毛片| 亚洲精品国产av成人精品| 中文字幕最新亚洲高清| 制服人妻中文乱码| 美女xxoo啪啪120秒动态图| 观看美女的网站| 日日爽夜夜爽网站| 精品少妇内射三级| 精品卡一卡二卡四卡免费| 日韩欧美精品免费久久| 美女国产高潮福利片在线看| 少妇 在线观看| 水蜜桃什么品种好| xxx大片免费视频| 欧美亚洲 丝袜 人妻 在线| 亚洲精品视频女| 2022亚洲国产成人精品| 91aial.com中文字幕在线观看| 亚洲美女黄色视频免费看| 18在线观看网站| 国产一区二区三区av在线| 91aial.com中文字幕在线观看| 日日撸夜夜添| 99热网站在线观看| 亚洲欧洲精品一区二区精品久久久 | 黄色视频在线播放观看不卡| 精品人妻一区二区三区麻豆| 久久久精品免费免费高清| 大香蕉久久网| 久久热精品热| 精品国产乱码久久久久久小说| 自拍欧美九色日韩亚洲蝌蚪91| 丰满迷人的少妇在线观看| 18禁在线无遮挡免费观看视频| 免费日韩欧美在线观看| 久久精品久久久久久久性| 国产深夜福利视频在线观看| 免费人成在线观看视频色| 国产成人精品福利久久| 交换朋友夫妻互换小说| 久久精品国产自在天天线| 一本—道久久a久久精品蜜桃钙片| 日韩欧美精品免费久久| 香蕉精品网在线| 一级爰片在线观看| 国产成人一区二区在线| 夫妻性生交免费视频一级片| 我的老师免费观看完整版| 欧美人与性动交α欧美精品济南到 | 在线看a的网站| 观看av在线不卡| av天堂久久9| 2021少妇久久久久久久久久久| 欧美 日韩 精品 国产| 亚洲欧美成人精品一区二区| 国产高清不卡午夜福利| 亚洲精品日韩在线中文字幕| 99热国产这里只有精品6| 黑人猛操日本美女一级片| 91精品伊人久久大香线蕉| 五月天丁香电影| 亚洲精品国产av蜜桃| 在线观看免费视频网站a站| 黄色配什么色好看| 免费观看在线日韩| 中文欧美无线码| 日韩av免费高清视频| 国产在视频线精品| 女的被弄到高潮叫床怎么办| 成年女人在线观看亚洲视频| 99视频精品全部免费 在线| 亚洲av中文av极速乱| 日韩中文字幕视频在线看片| 黄片播放在线免费| videossex国产| 亚洲人与动物交配视频| 成年av动漫网址| 成人综合一区亚洲| 人妻一区二区av| 亚洲第一区二区三区不卡| 日产精品乱码卡一卡2卡三| 久久久久久久久大av| 青春草亚洲视频在线观看| 午夜激情av网站| 日韩一区二区三区影片| 又黄又爽又刺激的免费视频.| 熟女电影av网| 日韩制服骚丝袜av| 国产精品久久久久久av不卡| 国产精品久久久久久久久免| 麻豆成人av视频| 国产成人精品无人区| 欧美日韩在线观看h| 夫妻午夜视频| 99久国产av精品国产电影| 超碰97精品在线观看| 亚洲国产精品999| 亚洲精品日韩在线中文字幕| 国产一区亚洲一区在线观看| 日韩免费高清中文字幕av| 亚洲国产欧美日韩在线播放| 少妇被粗大的猛进出69影院 | 久久久久人妻精品一区果冻| 美女内射精品一级片tv| 天堂俺去俺来也www色官网| 高清在线视频一区二区三区| 伦精品一区二区三区| 三级国产精品欧美在线观看| 人人妻人人澡人人看| 狂野欧美激情性xxxx在线观看| 国产老妇伦熟女老妇高清| 一区二区三区乱码不卡18| 丝袜脚勾引网站| 亚洲图色成人| 18+在线观看网站| 日本-黄色视频高清免费观看| 日韩中字成人| 精品国产乱码久久久久久小说| 中文精品一卡2卡3卡4更新| 男男h啪啪无遮挡| 国产精品久久久久久精品古装| 日日啪夜夜爽| 国产不卡av网站在线观看| 91午夜精品亚洲一区二区三区| 日本午夜av视频| 男女边吃奶边做爰视频| 丰满少妇做爰视频| 久久久久久久大尺度免费视频| 日韩欧美一区视频在线观看| 黑丝袜美女国产一区| 制服诱惑二区| 男女边吃奶边做爰视频| 亚洲国产最新在线播放| 少妇人妻精品综合一区二区| av黄色大香蕉| 一个人看视频在线观看www免费| a级毛片在线看网站| 成人国产麻豆网| 久久久久久久久大av| 中文字幕最新亚洲高清| 国产视频首页在线观看| 日韩,欧美,国产一区二区三区| av播播在线观看一区| 18禁在线无遮挡免费观看视频| 夜夜爽夜夜爽视频| 亚洲精品自拍成人| 美女xxoo啪啪120秒动态图| 麻豆精品久久久久久蜜桃| 亚洲欧美成人精品一区二区| 婷婷色麻豆天堂久久| 免费av中文字幕在线| 麻豆精品久久久久久蜜桃| 欧美老熟妇乱子伦牲交| 亚洲av国产av综合av卡| 黑人猛操日本美女一级片| 最近的中文字幕免费完整| 国产又色又爽无遮挡免| 人成视频在线观看免费观看| 高清av免费在线| 国产精品国产三级国产专区5o| 久久人人爽人人片av| 日日摸夜夜添夜夜添av毛片| 亚洲在久久综合| 成人手机av| 精品久久久精品久久久| 久热这里只有精品99| 最新的欧美精品一区二区| 久久影院123| 如何舔出高潮| 日韩成人伦理影院| 看非洲黑人一级黄片| 美女福利国产在线| 国产av一区二区精品久久| 亚洲,一卡二卡三卡| 婷婷色综合www| 亚洲精品中文字幕在线视频| 在线观看免费视频网站a站| 日韩av在线免费看完整版不卡| 在线观看三级黄色| 99九九在线精品视频| 亚洲国产精品国产精品| 欧美日本中文国产一区发布| 国产精品一国产av| 天美传媒精品一区二区| 一边摸一边做爽爽视频免费| 久久毛片免费看一区二区三区| 国产极品天堂在线| 狂野欧美激情性xxxx在线观看| 国产精品久久久久久精品电影小说| h视频一区二区三区| 你懂的网址亚洲精品在线观看| 69精品国产乱码久久久| 亚洲欧洲日产国产| 久久97久久精品| 啦啦啦啦在线视频资源| 久久av网站| 久久久久久久久久久久大奶| 日韩大片免费观看网站| 国产成人免费无遮挡视频| 蜜桃国产av成人99| 久久久久国产网址| 一区二区av电影网| 插阴视频在线观看视频| 香蕉精品网在线| 国产白丝娇喘喷水9色精品| 国产欧美日韩综合在线一区二区| xxxhd国产人妻xxx| 中文字幕免费在线视频6| 精品酒店卫生间| 亚洲国产av影院在线观看| 插阴视频在线观看视频| 精品人妻一区二区三区麻豆| 亚洲精品美女久久av网站| 又大又黄又爽视频免费| 精品卡一卡二卡四卡免费| 精品亚洲乱码少妇综合久久| 永久免费av网站大全| 校园人妻丝袜中文字幕| 91成人精品电影| 在线观看免费日韩欧美大片 | 性色avwww在线观看| 亚洲不卡免费看| 精品人妻偷拍中文字幕| 午夜免费鲁丝| 亚洲av成人精品一区久久| 在线看a的网站| 亚洲国产精品一区三区| 亚洲精品乱码久久久v下载方式| 午夜福利在线观看免费完整高清在| 九色成人免费人妻av| 天堂俺去俺来也www色官网| 伦理电影大哥的女人| 日韩大片免费观看网站| 最近的中文字幕免费完整| 黄色配什么色好看| 爱豆传媒免费全集在线观看| 亚洲精品第二区| 国产成人精品福利久久| 亚洲精品色激情综合| 韩国av在线不卡| 国产成人精品在线电影| 777米奇影视久久| 超碰97精品在线观看| 精品国产露脸久久av麻豆| 国产亚洲午夜精品一区二区久久| 国产日韩欧美视频二区| 国产一区二区三区综合在线观看 | 超色免费av| 人妻人人澡人人爽人人| 中文字幕久久专区| 免费播放大片免费观看视频在线观看| 美女cb高潮喷水在线观看| 熟妇人妻不卡中文字幕| 亚洲国产精品999| 一级毛片aaaaaa免费看小| 91aial.com中文字幕在线观看| 国模一区二区三区四区视频| 午夜免费观看性视频| 日本与韩国留学比较| 国产毛片在线视频| 在线观看三级黄色| 日韩一区二区三区影片| 免费观看av网站的网址| 免费大片18禁| 伊人久久国产一区二区| 久久久亚洲精品成人影院| 久久久久久久精品精品| 日本欧美视频一区| 人成视频在线观看免费观看| 校园人妻丝袜中文字幕| 欧美精品高潮呻吟av久久| 一级,二级,三级黄色视频| 亚洲欧美日韩卡通动漫| 美女中出高潮动态图| 国产精品一国产av| 欧美日韩av久久| 国产免费福利视频在线观看| 国产黄片视频在线免费观看| 国产精品麻豆人妻色哟哟久久| 街头女战士在线观看网站| av不卡在线播放| 五月开心婷婷网| 亚洲欧洲精品一区二区精品久久久 | 免费大片黄手机在线观看| 日韩av免费高清视频| 18禁观看日本| 这个男人来自地球电影免费观看 | 精品卡一卡二卡四卡免费| 午夜视频国产福利| 日本vs欧美在线观看视频| 少妇熟女欧美另类| 美女脱内裤让男人舔精品视频| 一级二级三级毛片免费看| 少妇精品久久久久久久| 五月伊人婷婷丁香| 狂野欧美激情性bbbbbb| 永久网站在线| 91精品国产国语对白视频| 欧美人与善性xxx| 九色成人免费人妻av| av黄色大香蕉| 少妇丰满av| 欧美3d第一页| 亚洲精品久久久久久婷婷小说| 99久久精品国产国产毛片| 久久久久久久久久人人人人人人| 久久 成人 亚洲| 国产毛片在线视频| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品456在线播放app| 国产黄色免费在线视频| 五月天丁香电影| 精品国产一区二区三区久久久樱花| 免费观看性生交大片5| h视频一区二区三区| 国产精品人妻久久久影院| 老女人水多毛片| 国产成人91sexporn| 欧美亚洲日本最大视频资源| 国产精品成人在线| 下体分泌物呈黄色| 久久女婷五月综合色啪小说| 一级毛片电影观看| 亚洲国产精品国产精品| av福利片在线| 国产精品一二三区在线看| 制服丝袜香蕉在线| 高清不卡的av网站| 午夜视频国产福利| 久久久国产一区二区| 欧美亚洲日本最大视频资源| 免费观看在线日韩| 亚洲av电影在线观看一区二区三区| 乱人伦中国视频| 欧美人与性动交α欧美精品济南到 | 亚洲国产精品专区欧美| 三级国产精品片| 亚洲精品aⅴ在线观看| 久久韩国三级中文字幕| 午夜福利,免费看| √禁漫天堂资源中文www| tube8黄色片| 日韩制服骚丝袜av| 新久久久久国产一级毛片| 免费播放大片免费观看视频在线观看| 三上悠亚av全集在线观看| 久久热精品热| 国产精品嫩草影院av在线观看| 最近中文字幕2019免费版| 丰满少妇做爰视频| videosex国产| 黄色毛片三级朝国网站| 久久鲁丝午夜福利片| 久久影院123| 国产精品国产av在线观看| 久久ye,这里只有精品| 日日摸夜夜添夜夜添av毛片| 丰满迷人的少妇在线观看| 97超碰精品成人国产| 国产高清国产精品国产三级| 午夜免费观看性视频| 国产精品三级大全| 日本欧美视频一区| 精品午夜福利在线看| 乱人伦中国视频| 精品久久久久久久久亚洲| 建设人人有责人人尽责人人享有的| 成年美女黄网站色视频大全免费 | 日日啪夜夜爽| 免费播放大片免费观看视频在线观看| 婷婷成人精品国产| 免费人妻精品一区二区三区视频| 男人爽女人下面视频在线观看| 中文字幕人妻丝袜制服| 国产av国产精品国产| 欧美+日韩+精品| 成人漫画全彩无遮挡| 国产又色又爽无遮挡免| 国产亚洲午夜精品一区二区久久| 亚洲第一av免费看| 爱豆传媒免费全集在线观看| 国产免费又黄又爽又色| 高清av免费在线| 久久这里有精品视频免费| 日韩强制内射视频| 考比视频在线观看| 狂野欧美激情性xxxx在线观看| 18+在线观看网站| 久久影院123| 亚洲国产精品999| 最近中文字幕高清免费大全6| 十八禁网站网址无遮挡| 一二三四中文在线观看免费高清| 成人免费观看视频高清| 久久午夜福利片| 免费观看av网站的网址| 亚洲av免费高清在线观看| 满18在线观看网站| 男人爽女人下面视频在线观看| 天天操日日干夜夜撸| 狂野欧美激情性bbbbbb| 亚洲精品乱码久久久v下载方式| 欧美精品一区二区免费开放| 精品99又大又爽又粗少妇毛片| 亚洲国产av新网站| 美女中出高潮动态图| 一级二级三级毛片免费看| 岛国毛片在线播放| 美女福利国产在线| 人体艺术视频欧美日本| 欧美 亚洲 国产 日韩一| 满18在线观看网站| 欧美精品亚洲一区二区|