• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Detection and Depth Estimation of Microdefects on Sapphire Substrate Surface

    2021-09-26 09:43:38CUIChangcaiYANGChengLIZiqing
    關(guān)鍵詞:刻線標(biāo)準(zhǔn)件干涉儀

    CUI Changcai, YANG Cheng, LI Ziqing

    (Institute of Manufacturing Engineering, Huaqiao University, Xiamen 361021, China)

    Abstract: Using the linear-array camera scanning technology and the vertical-scanning white-light interference technology, the microdefects on sapphire substrate surfaces were located and their depths were assessed. First, the full-field scanning was carried out with linear-array camera measurement equipment to obtain full-field images of the substrate; then, the position coordinates of the microdefects were detected by extracting their centroid coordinates; finally,the three-dimensional morphology of microdefects was reconstructed to identify the type of defects,and extract the defect depth using white-light interferometry system. It takes only about 10 seconds to scan a diameter 10.16 cm sapphire substrate surface by the linear-array camera measurement system. It takes about 76 seconds to detect one microdefect by the white-light interferometry system. The deepest defect was with a depth of 7.09 μm, and a total of 13 defects (10 pits and 3 cracks or scratches) were identified and localized. The experimental results show that the proposed method can accurately locate microdefects and extract their depths on sapphire substrate surfaces.

    Keywords: sapphire substrate; microdefect localization; depth estimation; linear-array camera; white-light interferometry

    Sapphire substrates serve as foundations for optoelectronic product manufacturing because of their advantages including high hardness, stable chemical properties, and excellent electrical insulation[1]. It′s used in applications of national defense, aerospace systems, solar cells[2-3], chip manufac-turing, light-emitting diodes (LED)[4-6], and other fields. Since the beginning of the 21st century, the rapid developments in manufacturing technologies have increased the quality requirements for end products. In particular, higher requirements are imposed on the quality of sapphire substrate surfaces. As the substrate material of the chip, sapphire substrate will inevitably produce defects in the process of processing. Once the defects exist, there will be hidden dangers of fragments in the subsequent chip manufacturing process, which will cause huge waste. Therefore, the detection of surface micro defects is particularly important. The detection of such microdefects not only facilitates the substrate quality evaluation but also provides a basis for optimizing the substrate processing techniques. The typical substrate size increased from 2 to 8 inches (1 inch=2.54 cm), so fast and accurate detection of microdefects is very important. Microdefects can be characterized mainly by the defect depth, because a deep defect causes disastrous substrate fracture and the depth represents a useful index for subsequent processing.

    Common types of microdefects on sapphire substrate surfaces include pits and cracks. In general, defect measurement and detection methods can be categorized either as destructive or non-destructive[7-8]. For destructive methods[9], the substrate samples are destroyed in the measurement process, which is also complicated and expensive. Non-destructive methods include ones based on optical interferometry[10-12], laser scattering[13-14], linear charge-coupled device (CCD) scanners[15-16], detection technology of bright-field and dark-field[17-19], scanning electron microscopy[20], scanning acoustic microscopy[21-22], laser-acoustic method[23-24]and so on. The while light interferometry and confocal scattering can detect the depth of defects, they have very high measuring accuracy, their horizontal resolution is determined by the displacement stage, which is micron level, and the axial resolution is nanometer level. If the confocal laser microscope is used to locate and measure the surface defects in the whole field, it is necessary to scan in axial direction and horizontally. For the larger sample, the efficiency is low. The white light interferometry can identify the defect position, but it is difficult to keep the interference fringe in the image at all times when scanning horizontally[25]. Besides, the field of view of traditional optical microscope is very small, so it will take a lot of time to scan the substrate surface in full field. The traditional optical microscopy methods can detect defects and extract their depths, but the defect positions on large substrates are difficult to locate. For the linear CCD scanning methods, the surface defects can be identified in large fields, but the defect depths cannot be accurately detected. The location of surface defects can be obtained by light and dark field illumination detection, but it is smaller sensitive to the depth of defects than while light interferomety. The resolution of scanning electron microscopy can reach nanometer level, but it has a high requirement for measuring environment, and the preparation of samples is complex, besides, it can not measure the depth information of defects. The scanning acoustic microscope can scan the surface of substrate in full field and locate the defects, but it can only obtain one-dimensional information of the defects in the scanning direction, and can′t restore the three-dimensional morphology. The field of view of laser acoustic method is small, so it is difficult to meet the needs of large area scanning. Compared with interferometry, the accuracy of laser acoustic method is low.

    To realize fast scanning and positioning of all field microdefects on the substrate surface, and detect the depth of microdefects, we propose a measurement way that combines a linear-array camera scanner with a vertical-scanning white-light interferometer[26]. First, full-field scanning is carried out with linear-array camera measurement equipment to obtain full-field images. Secondly, a horizontal-scanning coordinate system is established by recognizing sapphire substrate boundaries, and extract the centroid coordinates of microdefects. Finally, the coordinates in this horizontal-scanning coordinate system are transformed into the coordinates of a vertical-scanning white-light interferometry system, the coordinates of microfects were obtained in white-light interferometry system, in which the type of a defect is identified based on its three-dimensional morphology. A defect-free area is used as the reference for measuring defect depths in the whole field.The experimental results show that the combination of these two measurement and detection techniques can achieve accurate microdefect localization and detection on substrate surfaces. Indeed, the proposed combined measurement method overcomes the shortcomings of each of the two individual measurement systems.

    The remainder of this paper is organized as follows. Section 2 presents the working principles and the employed methods. Section 3 describes the experimental work, and the associated analysis. Section 4 concludes the paper.

    1 Principles and Methods

    Schematics of thelinear-array camera scanner and the vertical-scanning white-light interferometer are shown in figure 1(a) and figure 1(b), respectively.

    (a) Linear-array camera with substrate loss reduction (b) Schematic of vertical-scanning interferometer based on antenna-on-chip design Fig.1 Schematics of linear-array camera and interferometry measurement systems圖1 線陣相機(jī)和干涉測(cè)量系統(tǒng)的示意圖

    The measurement system of a linear-array scanner consists mainly of a linear-array camera, a linear-array light source, a displacement
    Table and a computer. Because of the high resolution of the linear-array camera, the measurement accuracy of this system can reach the micron level. As shown in figure 1(b), the vertical-scanning white-light interferometry system includes mainly a white-light source, a beam splitter, a CCD camera, a Mirau-type interference objective lens, a displacement stage, a piezoelectric ceramic actuator made from lead zirconate titanate (PZT), and a computer.

    Fig.2 Establishment of coordinate systems for linear-array camera and interferometer圖2 線陣相機(jī)和干涉儀 坐標(biāo)系的建立

    1.1 Coordinate System Setup for Linear-Array Scanner

    After processing the substrate image, the defect coordinates are obtained under the scanning measurement system of the online array camera. Because the coordinate origin of the linear camera measurement system and the substrate surface are not in the same focal plane. In order to facilitate the measurement, the center of the sapphire substrate is taken as the coordinate origin of the white light interference measurement system. Therefore, if the defect is to be detected by vertical scanning, the defect coordinates need to be converted to the coordinates of white light interferometry system. The establishment of the associated coordinate system are demonstrated in figure 2.

    The coordinatesXOYrepresent the coordinate system of the linear-array camera system, while the coordinatesX′O′Y′ constitute the coordinate system of the vertical-scanning white-light interferometry system. The combined measurement system works as follows. First, the linear-array camera scans the surface of the substrate quickly, and acquires a scanning image. Secondly, the boundary of the substrate is extracted by the Canny algorithm of vertical edge. TheXOYcoordinate system is established with the extension lineABtaken as theX-axis, and the tangent line perpendicular to theX-axis as theY-axis. Moreover, the defect is algorithmically detected, and the position of the defect is extracted. Finally, the position of the defect is transformed into the coordinate system of the vertical-scanning white-light interferometry system. In this paper, a 10.16 cm substrate is taken as an example. The diameter of the 10.16 cm substrate is 100 mm, and the distance betweenABand the center of the circle is 48 mm. As shown in figure 2, when the coordinate systemXOYis transformed to the coordinate systemX′O′Y′, theXandYcoordinates are reduced by 50 and 48 mm, respectively.

    1.2 Defect Recognition Algorithm

    The flow chart of the defect recognition algorithm is shown in figure 3.

    Fig.3 Flow chart of defect recognition algorithm圖3 缺陷識(shí)別算法流程圖

    After a scanned image is obtained, pre-processing steps are applied. Because the image generated by the linear-array camera is typically very large, a region of interest (ROI) should be identified to avoid high computational costs. In particular, this ROI, which is the area where the substrate is located, can be extracted by the Canny algorithm of vertical edge. Hence, a coordinate system is established, then, the ROI is segmented by threshold, and the affected region of microdefects is extracted. So the defects within the ROI are detected and recognized, and the centroids of microdefect are extracted. After that, the center of mass coordinate of the defect needs to be converted to the coordinate system of the white light interferometry system, which is used as the basis to control the displacement
    Table of the white light interferometry system to realize the defect location. Finally, the vertical scanning of the defect locations is carried out to extract the defect depths. Recognition of the defect types is then achieved by analyzing the three-dimensional morphology of each defect.

    2 Experiments and Analysis

    The combined measurement system used in the experiments below is shown in figure 4.The actual component models used in the linear-array camera scanning system are listed in
    Table 1, while theguide rails are realized by a programmable logic controller (PLC).

    The resolution ofthe linear array camera measurement system is 1 px×8 192 px, the pixel size is 3.5 μm×3.5 μm, the field of view width of the camera is 22.1 cm, and the lens focal distance is

    51.2 mm, In horizontal scanning measurement, the moving speed of displacement
    Table is 12 mm·s-1, and the scanning speed of camera is 4 444 Hz.

    (a) Linear-array camera system (b) Vertical-scanning white-light interferometry system Fig.4 Actual images of combined measurement system圖4 組合測(cè)量系統(tǒng)實(shí)景圖

    The components used in the vertical-scanning white-light interferometry system are listed in
    Table 1.The resolution of the white light interferometer is 0.45 μm, the pixel size is 5.2 μm×5.2 μm, the central wavelength of the white light source is 550 nm, the field of view of the lens is 0.27 mm×0.36 mm, the depth of field is 3.6 μm, the horizontal displacement accuracy of the displacement
    Table is

    0.1 μm, and the velocity is 0.01 mm·s-1. The moving step distance of the piezoelectric ceramic is 40 nm when it is measured by vertical scanning.

    Tab.1 List of components used in linear-array camera scanning system表1 線陣相機(jī)掃描系統(tǒng)所用元器件一覽表

    (a) Square standard pattern (b) Single-groove standard pattern Fig.5 Standard patterns for measurement system calibration圖5 測(cè)量系統(tǒng)校準(zhǔn)的標(biāo)準(zhǔn)件

    In this work, the used measurement sample is a 10.16 cm sapphire substrate wafer, which has some deliberately-added surface defects, where the size of each defect is about one micron. The substrate thickness (d) is 0.56 mm, the surface roughness (Ra) is 0.532 nm, and the length of the corresponding sideABis 30 mm.

    2.1 Measurement System Calibration

    The linear-array camera measurement system and the vertical-scanning white-light interferometry system are respectively calibrated with a square standard pattern of 2-mm width and a single-groove standard pattern of 1.2-micron depth. These patterns are shown in figure 5.

    For the square calibration pattern of the linear-array scanner, the values of occupied pixel are calculated with ten black-and-white squares (whose actual length is 2 cm) as a whole. Seven sets of data are collected as shown in
    Table 2.

    Tab.2 Experimental datasets of square calibration pattern for linear-array camera表2 線陣相機(jī)方形標(biāo)定圖案實(shí)驗(yàn)數(shù)據(jù)集

    From
    Table 3, it can be seen that the actual distance represented by a pixel in the linear-array camera system is about 27 μm.

    For the single-grove calibration pattern of the vertical-scanning interferometry system, the groove depth isH=1.2 μm. Seven sets of data are obtained as shown in
    Table 3.

    Tab.3 Experimental datasets of single-groove calibration pattern for interferometerTab.3 干涉儀單刻線標(biāo)準(zhǔn)件的實(shí)驗(yàn)數(shù)據(jù)集

    From
    Table 3, we can see that the maximum relative error of the seven datasets is 3.08%, which is within the acceptable range. Because the microdefect size in this paper is about one micron, the system measurement accuracy can meet the measurement requirements.

    2.2 Microdefect Localization

    The surface of the substrate sample is scanned by the linear-array camera system. Afterbinarization of the image, it is shown in figure 6.

    Fig.6 Substrate surface scanning outcome圖6 襯底表面掃描結(jié)果

    Fig.7 Image preprocessing outcome for substrate area extract Fig.7 襯底區(qū)域的圖像預(yù)處理結(jié)果

    The binary image is pre-processed by the Canny algorithm of vertical edge to extract the substrate area and extract ROI by rectangle box. The preprocessing outcome is shown in figure 7.

    Fig.8 Locations of microdefects in test sample圖8 試樣中微缺陷的位置

    The ROI is cut from the original image, and it′s segmented by threshold, the affected region of microdefects is extracted. So the defects within the ROI are detected and recognized, and the centroids of defect are extracted. Establish the rectangular coordinate system with the upper left corner of the image as the origin. Finally, the centroid(s) of defect are extracted as the defect coordinates.

    For the given sample, the centroids of defect are shown in figure 8, where the red dots represent the identified microdefects locations. In the current experiment, 13 microdefects were identified. The number in the figure indicates the serial number of the defect.

    The coordinate values are then transformed into the actual distance values combined with the scanning accuracy of the linear-array camera. We get the coordinates of each defect as shown in
    Table 4. In order to facilitate the depth detection of defects, it is necessary to transform the defect coordinates into a coordinate system with the center of the substrate as the origin. Then, these values are associated with the actual input values of the displacement
    Table for the vertical-scanning white-light interferometry.

    Tab.4 Defect location coordinatesTab.4 缺陷位置坐標(biāo)

    3.3 Depth Extraction

    In order to better compare the depth information of different defects, we use the defect-free portion of the surface as a reference datum. This enables us to extract the defect depth information, as shown in figure 9(a). We extract the reference data from the red-box region.

    For the given substrate sample, the 13 defects were scanned vertically, and the acquired topographies were reconstructed. The three-dimensional morphology surface of the tenth pit-type defect is shown in figure 10(a), while a cross-sectional view corresponding to the deepest pit position is shown in figure 10(b). The depth of the pit relative to the reference datum is 4.92 μm.

    (a) Three-dimensional reconstructed pit (b) Cross-sectional pit view Fig.10 Reconstruction of 10th pit-type defect圖10 第10個(gè)缺陷凹坑的形貌恢復(fù)

    The three-dimensional morphology of the eighth crack-type defect is shown in figure 11(a), and a cross-sectional crack view corresponding toX=300 is shown in figure 11(b). In figure 11,Dis expressed as the depth value.

    (a) Three-dimensional parallel to Y-axis (b) Crack profiles reconstruction of crack (c) Trend diagram of crack depth projected onX-axis (along crack valley) Fig.11 Reconstruction of 8th crack-type defect圖11 第8個(gè)缺陷裂紋的形貌恢復(fù)

    Tab.5 Depths of microdefects on surface of sapphire substrateTab.5 藍(lán)寶石襯底表面微缺陷的深度

    Taking theX-axis as the sampling direction, we obtain the lowest point of each section relative to the reference datum. As shown in figure 9(b), the coordinates of the 800 lowest points are projected on theX-axis direction, and the crack depth trend is obtained, as shown in figure 9(c). The crack depth relative to the reference datum was 4.04 μm.

    The defect coordinates are transformed and detected by the vertical-scanning white-light interferometer. The results for the 13 sample defects are shown in
    Table 5. In
    Table 5,Ais expressed as area.

    Table 5 shows that the sixth defect is the deepest (with a depth of 7.09 μm), while the eleventh defect is the shallowest (with a depth of 2.50 μm).

    4 Conclusions

    Combining the linear-array camera scanning technology with the vertical-scanning white-light interference technology, we can locate and detect surface defects of sapphire substrates, reconstruct the three-dimensional defect morphology, identify the type of defects, and extract the defect depth information.

    In this paper, a 10.16 cm sapphire substrate is used as the detection object. It only takes about 10 s for a 10.16 cm substrate surface to be scanned and localized by the linear-array camera measurement system. A total of 13 defects (including 10 pits and 3 scratches or cracks) were detected and identified on the substrate surface, with the deepest defect of a depth that is equal to 7.09 μm. It takes about 76s for the white-light interferometry system to detect one microdefect. Combining the two measurement methods effectively overcomes the shortcomings of a single measurement system.

    猜你喜歡
    刻線標(biāo)準(zhǔn)件干涉儀
    復(fù)合式量具刻線工藝研究
    標(biāo)準(zhǔn)件庫的建立與應(yīng)用
    基于改進(jìn)的邁克爾遜干涉儀對(duì)熱變形特性的研究
    泥板的疊加、拼合、包裹與刻線
    用于原子干涉儀的光學(xué)鎖相環(huán)系統(tǒng)
    非對(duì)稱干涉儀技術(shù)及工程實(shí)現(xiàn)
    基于最優(yōu)模糊的均勻圓陣干涉儀測(cè)向算法
    CATIA V5標(biāo)準(zhǔn)件庫的創(chuàng)建與使用
    汽車零部件(2014年5期)2014-11-11 12:24:34
    基于知識(shí)的組合機(jī)床夾具可擴(kuò)充標(biāo)準(zhǔn)件庫的開發(fā)
    古代建筑的標(biāo)準(zhǔn)件
    亚洲精品自拍成人| 一区二区av电影网| 亚洲欧洲日产国产| 久久精品亚洲熟妇少妇任你| 免费黄频网站在线观看国产| 色网站视频免费| 两性夫妻黄色片| 超色免费av| 国产精品秋霞免费鲁丝片| 又大又黄又爽视频免费| 欧美日韩视频高清一区二区三区二| 九色亚洲精品在线播放| 午夜福利乱码中文字幕| 亚洲av日韩在线播放| 日韩制服骚丝袜av| 一级毛片我不卡| 国产精品蜜桃在线观看| 老汉色av国产亚洲站长工具| 欧美日韩一级在线毛片| 中国国产av一级| 老司机在亚洲福利影院| 80岁老熟妇乱子伦牲交| 交换朋友夫妻互换小说| 国产亚洲午夜精品一区二区久久| 一级a爱视频在线免费观看| 无遮挡黄片免费观看| 午夜福利在线免费观看网站| 国产精品无大码| 伦理电影免费视频| 激情视频va一区二区三区| 亚洲人成网站在线观看播放| 高清黄色对白视频在线免费看| 一级毛片 在线播放| 91精品伊人久久大香线蕉| 婷婷成人精品国产| 美女高潮到喷水免费观看| 男人操女人黄网站| av在线播放精品| 老汉色∧v一级毛片| 亚洲,欧美,日韩| 欧美日韩成人在线一区二区| 日本av手机在线免费观看| 丰满饥渴人妻一区二区三| 热99久久久久精品小说推荐| 免费高清在线观看视频在线观看| 天美传媒精品一区二区| 亚洲av综合色区一区| 亚洲国产精品999| 18在线观看网站| 欧美精品av麻豆av| 999精品在线视频| 欧美人与善性xxx| 超色免费av| 中国国产av一级| 国产乱来视频区| 另类亚洲欧美激情| 亚洲美女黄色视频免费看| 亚洲av电影在线观看一区二区三区| 日韩 亚洲 欧美在线| avwww免费| 在线看a的网站| 自拍欧美九色日韩亚洲蝌蚪91| 无限看片的www在线观看| 97在线人人人人妻| 天天操日日干夜夜撸| 777米奇影视久久| 久久精品亚洲熟妇少妇任你| 午夜免费男女啪啪视频观看| 两性夫妻黄色片| 黄色怎么调成土黄色| 另类精品久久| 国产成人精品在线电影| 国产精品人妻久久久影院| 亚洲欧美一区二区三区久久| 精品一区二区三卡| 十八禁人妻一区二区| 成人影院久久| 中文字幕亚洲精品专区| 欧美日韩亚洲综合一区二区三区_| 精品久久久久久电影网| 不卡av一区二区三区| 美女午夜性视频免费| 亚洲一码二码三码区别大吗| 制服人妻中文乱码| 夜夜骑夜夜射夜夜干| 午夜91福利影院| 免费人妻精品一区二区三区视频| 满18在线观看网站| 亚洲精品视频女| 午夜av观看不卡| 男人操女人黄网站| 精品国产一区二区久久| 色婷婷av一区二区三区视频| 午夜激情久久久久久久| 日韩成人av中文字幕在线观看| 亚洲欧美一区二区三区久久| 黄色视频在线播放观看不卡| 18禁动态无遮挡网站| 男女午夜视频在线观看| 欧美在线一区亚洲| 成人黄色视频免费在线看| 女人精品久久久久毛片| 国产精品一区二区在线不卡| 又黄又粗又硬又大视频| 999久久久国产精品视频| 久久久精品免费免费高清| 99精国产麻豆久久婷婷| 国产 一区精品| 亚洲av成人精品一二三区| 交换朋友夫妻互换小说| 在线观看免费午夜福利视频| 制服人妻中文乱码| 五月天丁香电影| 久热爱精品视频在线9| 国产成人系列免费观看| 五月开心婷婷网| 91国产中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 最黄视频免费看| av一本久久久久| 亚洲精品日本国产第一区| 久久久久久久大尺度免费视频| 国产毛片在线视频| 久久性视频一级片| 观看美女的网站| 欧美精品亚洲一区二区| 美女中出高潮动态图| 黄色视频不卡| 亚洲第一区二区三区不卡| 观看av在线不卡| 国产人伦9x9x在线观看| 久久精品国产综合久久久| 国产精品久久久久久久久免| 熟女av电影| 日韩av不卡免费在线播放| 狂野欧美激情性xxxx| 欧美日韩国产mv在线观看视频| 黑人巨大精品欧美一区二区蜜桃| 岛国毛片在线播放| 国产黄色免费在线视频| 午夜久久久在线观看| 最近手机中文字幕大全| 丝瓜视频免费看黄片| www.av在线官网国产| 只有这里有精品99| 国产激情久久老熟女| netflix在线观看网站| 99热全是精品| 午夜影院在线不卡| 亚洲中文av在线| 欧美精品人与动牲交sv欧美| 午夜老司机福利片| 熟女少妇亚洲综合色aaa.| 久久 成人 亚洲| 侵犯人妻中文字幕一二三四区| 超碰97精品在线观看| 国产乱人偷精品视频| 午夜福利,免费看| 交换朋友夫妻互换小说| 69精品国产乱码久久久| 午夜激情久久久久久久| 丝袜美足系列| 黄色视频在线播放观看不卡| 亚洲三区欧美一区| 亚洲av成人不卡在线观看播放网 | 国产精品 欧美亚洲| 一级毛片我不卡| 伊人久久大香线蕉亚洲五| 热99久久久久精品小说推荐| 国产成人精品久久二区二区91 | 黄色视频在线播放观看不卡| 精品视频人人做人人爽| 最近中文字幕2019免费版| 亚洲一卡2卡3卡4卡5卡精品中文| 国产人伦9x9x在线观看| 国产老妇伦熟女老妇高清| 国产在线一区二区三区精| 岛国毛片在线播放| 欧美日韩成人在线一区二区| 日本猛色少妇xxxxx猛交久久| 精品久久久精品久久久| 18禁动态无遮挡网站| 亚洲久久久国产精品| 最新的欧美精品一区二区| 2018国产大陆天天弄谢| 高清不卡的av网站| 在线观看www视频免费| 国产精品久久久人人做人人爽| 你懂的网址亚洲精品在线观看| 国产欧美日韩综合在线一区二区| 久久影院123| 日韩 亚洲 欧美在线| 尾随美女入室| 男人操女人黄网站| 欧美日韩视频精品一区| 观看美女的网站| 狠狠精品人妻久久久久久综合| 黄色视频不卡| 国产熟女午夜一区二区三区| 最近中文字幕高清免费大全6| 97人妻天天添夜夜摸| 女的被弄到高潮叫床怎么办| 女人高潮潮喷娇喘18禁视频| 80岁老熟妇乱子伦牲交| 久久国产精品大桥未久av| 伊人亚洲综合成人网| 亚洲一卡2卡3卡4卡5卡精品中文| 成人国语在线视频| 欧美国产精品一级二级三级| 精品少妇内射三级| 9热在线视频观看99| 亚洲精品国产av蜜桃| 日韩 欧美 亚洲 中文字幕| 电影成人av| 少妇被粗大猛烈的视频| 精品一区二区三区av网在线观看 | 这个男人来自地球电影免费观看 | 亚洲伊人色综图| 久久国产精品大桥未久av| 久久精品久久久久久噜噜老黄| 最近中文字幕高清免费大全6| 18禁观看日本| 赤兔流量卡办理| 国产精品一区二区在线观看99| 久久久亚洲精品成人影院| 一级片'在线观看视频| 老司机影院成人| av在线app专区| 色网站视频免费| 一级毛片 在线播放| 丰满少妇做爰视频| 考比视频在线观看| 久久久久国产一级毛片高清牌| 国产精品久久久久久精品古装| 90打野战视频偷拍视频| 精品一区二区三区av网在线观看 | 大香蕉久久成人网| 在线 av 中文字幕| av有码第一页| 欧美少妇被猛烈插入视频| 丝瓜视频免费看黄片| 亚洲av中文av极速乱| 日韩欧美精品免费久久| 亚洲国产精品999| 大码成人一级视频| 纯流量卡能插随身wifi吗| 色网站视频免费| 亚洲av男天堂| 亚洲色图综合在线观看| 国产乱来视频区| 亚洲人成网站在线观看播放| 操美女的视频在线观看| 久久久久久人人人人人| 欧美日韩成人在线一区二区| 欧美精品亚洲一区二区| 亚洲av日韩在线播放| 91精品国产国语对白视频| 人妻 亚洲 视频| 国产精品秋霞免费鲁丝片| 亚洲三区欧美一区| 久久天躁狠狠躁夜夜2o2o | 如何舔出高潮| 久久99精品国语久久久| 97人妻天天添夜夜摸| 大香蕉久久网| 亚洲国产中文字幕在线视频| 韩国精品一区二区三区| 人成视频在线观看免费观看| 久久韩国三级中文字幕| 国产精品国产av在线观看| 日韩伦理黄色片| www日本在线高清视频| a级片在线免费高清观看视频| 操出白浆在线播放| 另类精品久久| 日韩一本色道免费dvd| 高清不卡的av网站| 亚洲第一青青草原| 久久久国产一区二区| 悠悠久久av| 国产有黄有色有爽视频| 校园人妻丝袜中文字幕| 少妇被粗大的猛进出69影院| 桃花免费在线播放| 亚洲av综合色区一区| 黄频高清免费视频| 欧美久久黑人一区二区| 国产精品一二三区在线看| 香蕉丝袜av| 国产一区二区 视频在线| 午夜福利视频在线观看免费| 99香蕉大伊视频| 精品卡一卡二卡四卡免费| 十八禁高潮呻吟视频| 国产免费现黄频在线看| 最新在线观看一区二区三区 | 色吧在线观看| 亚洲精品中文字幕在线视频| 1024视频免费在线观看| 99久国产av精品国产电影| 亚洲精品美女久久av网站| 美女扒开内裤让男人捅视频| 在线亚洲精品国产二区图片欧美| 1024视频免费在线观看| 黄色怎么调成土黄色| 中文字幕亚洲精品专区| 我的亚洲天堂| 免费黄色在线免费观看| 国产探花极品一区二区| 日本午夜av视频| 国产精品熟女久久久久浪| 免费少妇av软件| 99精国产麻豆久久婷婷| 黑人猛操日本美女一级片| 97精品久久久久久久久久精品| 久久鲁丝午夜福利片| 亚洲av男天堂| 一级黄片播放器| 亚洲av电影在线进入| 日韩中文字幕视频在线看片| a级毛片黄视频| 亚洲国产精品999| 亚洲国产av新网站| 水蜜桃什么品种好| 蜜桃在线观看..| 欧美日韩一级在线毛片| 免费日韩欧美在线观看| 精品一品国产午夜福利视频| 国产黄色免费在线视频| 欧美久久黑人一区二区| 亚洲美女搞黄在线观看| 夫妻性生交免费视频一级片| 一本色道久久久久久精品综合| 黄色视频在线播放观看不卡| 欧美人与善性xxx| 观看av在线不卡| 国产免费一区二区三区四区乱码| 天天影视国产精品| 天天躁夜夜躁狠狠久久av| 国产精品 欧美亚洲| 激情视频va一区二区三区| 九草在线视频观看| 国产成人91sexporn| 又黄又粗又硬又大视频| 婷婷色av中文字幕| 夫妻性生交免费视频一级片| 国产亚洲午夜精品一区二区久久| 午夜精品国产一区二区电影| 亚洲精品久久久久久婷婷小说| 亚洲精品国产av成人精品| 亚洲精华国产精华液的使用体验| 国产精品免费大片| 考比视频在线观看| 欧美少妇被猛烈插入视频| 天天躁夜夜躁狠狠躁躁| 香蕉国产在线看| 啦啦啦啦在线视频资源| 亚洲色图 男人天堂 中文字幕| 国产黄色视频一区二区在线观看| 亚洲精品视频女| 一二三四在线观看免费中文在| 久久久久久久久久久久大奶| 亚洲五月色婷婷综合| 中文天堂在线官网| 日韩 亚洲 欧美在线| 母亲3免费完整高清在线观看| a级毛片黄视频| 午夜福利网站1000一区二区三区| 下体分泌物呈黄色| 一级,二级,三级黄色视频| 亚洲欧美一区二区三区国产| 亚洲精品日韩在线中文字幕| 亚洲三区欧美一区| 成人黄色视频免费在线看| 精品国产超薄肉色丝袜足j| 国产精品偷伦视频观看了| 亚洲熟女毛片儿| 亚洲一区二区三区欧美精品| 性色av一级| 免费人妻精品一区二区三区视频| 国产成人欧美| 一区二区av电影网| 久久久国产欧美日韩av| 成年女人毛片免费观看观看9 | 丰满饥渴人妻一区二区三| 国产精品偷伦视频观看了| 久久久精品区二区三区| 男人操女人黄网站| 中文字幕亚洲精品专区| 国产一区二区在线观看av| 精品国产超薄肉色丝袜足j| 欧美精品一区二区大全| 欧美日韩福利视频一区二区| 美女扒开内裤让男人捅视频| 久久精品亚洲熟妇少妇任你| 国产毛片在线视频| 各种免费的搞黄视频| 黄色 视频免费看| 久久天躁狠狠躁夜夜2o2o | 久久人人爽av亚洲精品天堂| 亚洲国产毛片av蜜桃av| 国产精品国产三级专区第一集| 不卡av一区二区三区| 免费高清在线观看日韩| 天美传媒精品一区二区| 秋霞伦理黄片| 色婷婷av一区二区三区视频| 国产亚洲一区二区精品| 日韩熟女老妇一区二区性免费视频| xxx大片免费视频| 国产欧美日韩一区二区三区在线| 日韩av不卡免费在线播放| 99久国产av精品国产电影| 香蕉丝袜av| 毛片一级片免费看久久久久| 日本黄色日本黄色录像| 亚洲精品国产色婷婷电影| 亚洲精品在线美女| 免费观看av网站的网址| 日日摸夜夜添夜夜爱| 亚洲精品一二三| 成年女人毛片免费观看观看9 | 久久精品久久久久久噜噜老黄| 亚洲综合精品二区| 久久鲁丝午夜福利片| 国产亚洲最大av| 亚洲国产看品久久| 日日撸夜夜添| 国产精品久久久久久久久免| 男女边摸边吃奶| 色婷婷久久久亚洲欧美| 不卡视频在线观看欧美| 欧美中文综合在线视频| 国产一区有黄有色的免费视频| 久久精品久久久久久噜噜老黄| 日韩中文字幕欧美一区二区 | 久久99精品国语久久久| www日本在线高清视频| 精品国产一区二区三区久久久樱花| 午夜免费鲁丝| 亚洲成人国产一区在线观看 | 人人澡人人妻人| 午夜福利一区二区在线看| 久久久久国产一级毛片高清牌| 国产精品国产av在线观看| 国产av精品麻豆| 看免费av毛片| 国产av一区二区精品久久| 中文字幕色久视频| 日日啪夜夜爽| 国产国语露脸激情在线看| 飞空精品影院首页| 另类亚洲欧美激情| 亚洲av中文av极速乱| av不卡在线播放| 天堂中文最新版在线下载| 中文字幕高清在线视频| 亚洲在久久综合| 亚洲国产精品一区三区| 久久国产精品男人的天堂亚洲| 中文天堂在线官网| 中文字幕精品免费在线观看视频| 亚洲国产精品999| 高清av免费在线| 少妇精品久久久久久久| 一区二区av电影网| 国产乱人偷精品视频| 日本vs欧美在线观看视频| 91成人精品电影| 国产一区二区在线观看av| 老司机靠b影院| 亚洲精品视频女| 婷婷色综合www| 久久久国产精品麻豆| xxxhd国产人妻xxx| 在线观看免费高清a一片| h视频一区二区三区| 大片电影免费在线观看免费| 免费黄频网站在线观看国产| 女人精品久久久久毛片| 人人妻,人人澡人人爽秒播 | 丝瓜视频免费看黄片| 欧美精品人与动牲交sv欧美| 日本欧美国产在线视频| 精品国产露脸久久av麻豆| 人人妻人人添人人爽欧美一区卜| 在线天堂中文资源库| 国产成人a∨麻豆精品| 久久鲁丝午夜福利片| 激情五月婷婷亚洲| 午夜福利乱码中文字幕| av又黄又爽大尺度在线免费看| 丁香六月天网| 99精品久久久久人妻精品| 亚洲精品国产区一区二| 又大又爽又粗| 一本久久精品| 天天添夜夜摸| 麻豆乱淫一区二区| 男女边摸边吃奶| 天天躁日日躁夜夜躁夜夜| 国产男女超爽视频在线观看| 王馨瑶露胸无遮挡在线观看| 午夜福利免费观看在线| 91精品伊人久久大香线蕉| 成人免费观看视频高清| 丁香六月欧美| 久久久久久久久久久免费av| 国产成人a∨麻豆精品| 伦理电影大哥的女人| 卡戴珊不雅视频在线播放| 久久久久久久久久久免费av| 亚洲成人手机| 肉色欧美久久久久久久蜜桃| 久久精品亚洲熟妇少妇任你| 国产免费福利视频在线观看| 亚洲欧美一区二区三区久久| 天天添夜夜摸| 日韩欧美精品免费久久| 亚洲精品自拍成人| 乱人伦中国视频| 黑人猛操日本美女一级片| 精品酒店卫生间| 曰老女人黄片| 国产欧美日韩综合在线一区二区| 日韩精品免费视频一区二区三区| 亚洲色图综合在线观看| 男女下面插进去视频免费观看| 妹子高潮喷水视频| 可以免费在线观看a视频的电影网站 | 又大又黄又爽视频免费| 亚洲精品久久成人aⅴ小说| 国产99久久九九免费精品| 天堂中文最新版在线下载| 妹子高潮喷水视频| 国产精品人妻久久久影院| 亚洲久久久国产精品| 超碰成人久久| 哪个播放器可以免费观看大片| 一个人免费看片子| 色视频在线一区二区三区| 免费观看人在逋| 韩国高清视频一区二区三区| 亚洲一级一片aⅴ在线观看| 国产毛片在线视频| 超碰成人久久| 69精品国产乱码久久久| 日韩电影二区| 久久 成人 亚洲| 国产精品 国内视频| 亚洲美女搞黄在线观看| 中国三级夫妇交换| 人人妻人人爽人人添夜夜欢视频| 欧美 亚洲 国产 日韩一| 只有这里有精品99| 欧美精品高潮呻吟av久久| 久久人人爽av亚洲精品天堂| 制服丝袜香蕉在线| 中文字幕亚洲精品专区| 免费久久久久久久精品成人欧美视频| 99re6热这里在线精品视频| 欧美 亚洲 国产 日韩一| 亚洲天堂av无毛| 国产日韩欧美在线精品| 国产av国产精品国产| 美女大奶头黄色视频| 韩国精品一区二区三区| 欧美另类一区| 看十八女毛片水多多多| 免费黄色在线免费观看| 亚洲免费av在线视频| 亚洲成av片中文字幕在线观看| 在现免费观看毛片| 日本午夜av视频| 午夜福利乱码中文字幕| 99久久99久久久精品蜜桃| 18在线观看网站| 一个人免费看片子| 久久青草综合色| 老鸭窝网址在线观看| 亚洲av在线观看美女高潮| av天堂久久9| 欧美激情高清一区二区三区 | 亚洲激情五月婷婷啪啪| 国产精品久久久久久精品古装| 久久久久视频综合| 日韩,欧美,国产一区二区三区| 亚洲国产最新在线播放| 欧美精品一区二区大全| 另类精品久久| av网站在线播放免费| 午夜福利免费观看在线| 一区二区三区激情视频| xxx大片免费视频| 女性生殖器流出的白浆| 国产乱来视频区| 国产精品人妻久久久影院| 精品酒店卫生间| 一边摸一边做爽爽视频免费| 99久久精品国产亚洲精品| 亚洲国产精品999| 中文乱码字字幕精品一区二区三区| 99热国产这里只有精品6| 考比视频在线观看| 夜夜骑夜夜射夜夜干| 99精品久久久久人妻精品| 热99久久久久精品小说推荐| 最近手机中文字幕大全| 99精品久久久久人妻精品| 国产成人午夜福利电影在线观看| 女人爽到高潮嗷嗷叫在线视频| 这个男人来自地球电影免费观看 | 又粗又硬又长又爽又黄的视频| 色94色欧美一区二区| 韩国高清视频一区二区三区|