• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Host–Guest Molecular Recognition at Liquid–Liquid Interfaces

    2021-09-24 06:46:54BeibeiWngHoChenTnLiuShoweiShiThomsRussell
    Engineering 2021年5期

    Beibei Wng ,Ho Chen ,Tn Liu ,Showei Shi ,*,Thoms P.Russell *

    a Beijing Advanced Innovation Center for Soft Matter Science and Engineering,College of Materials Science and Engineering,Beijing University of Chemical Technology,Beijing 100029,China

    b Department of Polymer Science and Engineering,University of Massachusetts,Amherst,MA 01003,USA

    c Materials Sciences Division,Lawrence Berkeley National Laboratory,Berkeley,CA 94720,USA

    Keywords:

    ABSTRACT

    1.Introduction

    Supramolecular chemistry,which is based on non-covalent interactions,has attracted a considerable amount of attention in recent years[1–4].Robust supramolecular systems,including complexes and assemblies constructed by electrostatic interactions,host–guest interactions,van der Waals forces,hydrogen bonds,π–πinteractions,and hydrophobic–hydrophilic interactions,have provided a range of potential applications in fields such as selfhealing materials,biosensors,and drug nanocarriers[5–7].Among various non-covalent interactions,host–guest molecular recognition has exhibited fascinating characteristics in the introduction of different host–guest pairs.In general,a host–guest pair includes a macrocyclic host unit as the receptor and a guest unit as the ligand.The receptor and ligand interact with each other via noncovalent bonding,similar to the relationship between a‘‘lock”and‘‘key”[5].Large host units with a hydrophobic or hydrophilic cavity can recognize guest units specifically,allowing the direct embedment of guest units such as organic compounds,macromolecules,metal ions,and even nanoparticles(NPs)[8,9].There are many advantages in using macrocycle-based host–guest interactions.The host or guest molecules can be tailored with specific,targeted functional groups.Moreover,the highly selective,robust,and dynamic host–guest interaction can be exploited to fabricate hierarchical structures that can assemble and disassemble reversibly with external stimuli,including light,redox,and chemical stimuli[5,8].To date,various synthetic host units,such as crown ethers,cucurbit[n]uril,cyclodextrins,pillar[n]arenes,and calixarenes,have been used as molecular receptors for the preparation of supramolecular objects,enabling many fascinating applications in intelligent self-assembling structures,supramolecular polymerization,and molecular machines/switches[10–16].

    A liquid–liquid interface,such as an oil–water interface,provides an attractive platform for the assembly of various materials and the construction of interfacial assemblies[17].By assembling different building blocks at the interface,the interface can be endowed with unique properties,allowing the fabrication of interfacial systems with novel functionalities that can be used in encapsulation,reactive liquid systems,and delivery vehicles[18–23].Numerous studies have been devoted to the construction of supramolecular interfaces via electrostatic interactions or hydrogen bonding,and considerable advances have been achieved[24–30].On the other hand,by taking advantage of host–guest chemistry,a versatile strategy to construct dynamic interfacial systems with multiple stimuli-responsiveness can be provided.

    In recent years,colloidal particles and polymers grafted with host or guest units have been exploited to form supramolecular systems at the oil–water interface,leading to the successful preparation of interfacial films,microcapsules,and structured liquids,which display potential applications in many areas including material engineering and life sciences[31–33].Here,we briefly summarize the current development in supramolecular interfacial systems constructed by host–guest molecular recognition,including the preparation,characteristics,and applications of supramolecular colloidal interfaces,supramolecular polymeric interfaces,and supramolecular colloidal jammed interfaces that have recently emerged.

    2.Supramolecular colloidal interfaces

    Ramsden[34]and Pickering[35]were the first to identify and describe Pickering emulsions.Generally,for a typical oil–water Pickering emulsion system,colloidal particles tend to migrate to the interface,forming either water-in-oil(w/o)or oil-in-water(o/w)emulsions,in order to minimize the interfacial energy of immiscible liquids[36].According to the theoretical model established by Pieranski[37],with a single particle at the oil–water interface,the reduced interfacial energy,ΔE,can be described by the following formula:

    where r is the effective radius of the particle,andγO/W,γP/W,andγP/Orepresent the interfacial tensions that arise from the oil–water interface,particle–water interface,and particle–oil interface,respectively.Eq.(1)shows thatΔE is highly correlated to the particle size.The interfacial energy decreases less for small particles than for large particles.This effect is more significant when using NPs,whereΔE is comparable to thermal energy.As a result,thermal fluctuations can easily weaken the confinement of NPs at the interface and lead to the eventual detachment of NPs from the interface[38].

    To realize the stable assembly of NPs at the oil–water interface,as well as the generation of macroscopic assemblies,it is both crucial and challenging to suppress the thermally activated desorption of NPs.The crosslinking of interfacial NPs by covalent bonds,such as ring-opening metathesis polymerization,‘‘click”chemistry,and coordination chemistry,provides a feasible strategy to achieve this purpose[39–43].Given the dynamic nature of assemblies at the interface, the non-covalent-interaction-mediated interfacial assembly of NPs based on host–guest interactions can be used as an alternative strategy that provides a promising pathway to generate novel functional materials.

    In earlier work,Wang et al.[31]reported the fabrication of macroscopic NP monolayers at the interface usingβ-cyclodextrins(β-CDs)or their derivatives dissolved in water and CoPt3NPs capped with 1-adamantylcarboxylic acid dispersed in oil.Furthermore,by introducing functional groups ontoβ-CDs,macroscopic heterogeneous NP multilayers were generated in a stepwise manner.In comparison with two-dimensional(2D)films,much more attention has been focused on the construction of dynamic three-dimensional(3D)colloidal microcapsules,which have broad application potential in biomedicine,cargo release,and microreactors[44–46].In this section,we will introduce two approaches for fabricating robust colloidal microcapsules using host–guest interactions at the oil–water interface.

    2.1.Microcapsules fabricated by classical emulsion templates

    With Pickering emulsions as templates,Patra et al.[47]reported the fabrication of stimuli-responsive colloidal microcapsules via the recognition ofβ-CD and adamantane(ADA)at the toluene–water interface.Robust and stable microcapsules were generated by vigorously shaking an aqueous solution of β-CD-functionalized gold(Au)NPs and a toluene solution of ADA-functionalized Au NPs,forming a crosslinked NP layer as the shell of microcapsules at the interface(Figs.1(a)and(b)).Unlike microcapsules fabricated using covalent crosslinking,the host–guest interaction endows the microcapsules with size tunability,which can be triggered by introducing the external competing guest ligand adamantane tetraethylene glycol(ADA-TEG-OH)to the system.As shown in Fig.1(c),with the addition of ADA-TEGOH,partial disassembly of the interface is observed,resulting in the coalescence of small microcapsules and the eventual formation of larger microcapsules.

    In addition to cyclodextrins,cucurbit[n]urils(CB[n],n=5–8,10),a large family of macrocyclic molecules,are popular as hosts and have attracted a great deal of attention.CB[n]are macrocyclic oligomers of glycoluril with a hydrophobic cavity,and the portals are surrounded by carbonyl groups.Taking advantage of the discrimination originating from different portal and cavity sizes,specific host–guest complexation can be achieved between CB[n]and different guests[1,9].Meethal et al.[38]reported a method to generate a colloidal film and control-released microcapsules by using cucurbit[7]uril(CB[7])-mediated host–guest interactions at the chloroform–water interface.In their study,aminohexylterminated Au NPs(Hex-AuNPs)dispersed in chloroform and complementary CB[7]dissolved in the aqueous phase interacted at the interface,significantly enhancing the interfacial binding energy of the NPs and forming stable microcapsules,which could be used to encapsulate cargo(Fig.2(a)).In addition,due to the cationic Hex-AuNPs at the interface,macromolecules with negative charge could be immobilized on the surface of the microcapsule.Fig.2(b)shows dual cargo loading in which the fluorescein-conjugated bovine serum albumin(BSA)proteins are selectively absorbed onto the shell of the microcapsule,while the hydrophobic Nile red are encapsulated inside.Microcapsules with a dynamic nature can be achieved by introducing a competing ADA guest that has a higher affinity with CB[7]than Hex-AuNPs.Using hydrophilic doxorubicin as a model cargo,the microcapsule structure is disturbed by the addition of ADA,triggering the release of doxorubicin(Figs.2(c)–(e)).

    Fig.1.(a)Schematics of the formation and size tunability of the microcapsules fabricated using classical emulsion templates.(b)NP structures modified with different ligands and the host–guest interactions in the system.(c)Disassembly and coalescence of microcapsules after adding the competing guest ADA-TEG-OH.Reproduced from Ref.[47]with permission of American Chemical Society,?2009.

    Using specific host–guest chemistries,the mechanical strength of NP films assembled at the microdroplet surface can also be effectively controlled.Jeong et al.[48]reported the fabrication of buckled microparticles using three different guest linkers dissolved in chloroform andβ-CD-functionalized Au NPs dispersed in water(Fig.3).Guest linkers in oil,taking AB-Hex-AB as an example,crosslink the interfacial NPs via the host–guest interaction,producing stable microcapsules with a robust NP membrane shell(Fig.3(d)).When the oil phase is replaced with a mixture solution of the linker,dicyclopentadiene,and catalyst,the dicyclopentadiene in the inner phase is polymerized,generating stable microparticles with measurable buckled surfaces(Fig.3(c)).The surface buckling of microparticles is the result of the contraction of the oil phase,which is caused by the removal of chloroform and the reduced volume of the polymer relative to its monomers(Fig.3(e)).Finally,the researchers demonstrated that the characteristic lengths of periodic buckling,which can be used to estimate the elastic modulus by means of numerical simulations and experimental observation,are related to the binding affinities between the host NPs and the guest linkers,making manipulation of the mechanical strength of NP films possible.

    2.2.Microcapsules fabricated by microfluidic devices

    In general, colloidal microcapsules made by classical emulsification approaches tend to have a fairly broad size range distribution[49].To decrease the size distribution,many investigators have begun to use microfluidics to generate microcapsules[50–52].Zhang et al.[32]reported a one-step method to generate hollow and uniform microcapsules using host–guest chemistry and a four-channel microfluidic device(Fig.4).In their study,microcapsules were produced when the oil phase sheared off the water phase,which contained three materials:CB[8],methyl viologen(MV)-functionalized Au NPs, and naphthol-functionalized polymers(Fig.4(a)).Au NPs tend to segregate to the water–oil interface,directing host–guest recognition with the complementary polymers and resulting in the formation of the microcapsule membrane.The monodispersed microcapsules can be easily separated after the water droplets evaporate,and maintain a spherical shape in the subsequent rehydration process(Figs.4(e)and(f)).During the formation of the microcapsules,the highyield encapsulation of different cargos can be easily achieved(Figs.4(b)–(d)).Also,due to the dynamic nature of the host–guest interactions,the supramolecular interface can be disrupted by external stimuli,and the on-demand release of cargos can be triggered.

    Subsequently,the same group[53]extended this method to a CB[8]-mediated supramolecular system,in which MV-functionalized NPs were reversibly crosslinked via a naphthol-functionalized polyacrylamide linker at the oil–water interface to produce stimuli-responsive microcapsules.Water-soluble cargo could be encapsulated during the formation of microcapsules,which could be triggered to release by adding a competitive guest to disrupt the supramolecular shell. The researchers also prepared dual-responsive supramolecular colloidal microcapsules in a similar way[54].In that study,the shell of the microcapsules was a CB[8]-mediated complex consisting of thermo-responsive particles functionalized with MV(MCP)and photoresponsive azobenzene(Azo)-functionalized poly(vinyl alcohol)(AP)(Fig.5(a)).Poly(N-isopropylacrylamide)(PNIPAM),which is responsive to temperature,was used to form the shell of the particles.Above the lower critical solution temperature(LCST)of PNIPAM,the shell of the particles collapsed with increasing temperature,introducing larger gaps between particles and leading to the release of the encapsulated cargo(Fig.5(b)).Moreover,AP imparted the microcapsules with photoresponsiveness.Upon exposure to ultraviolet(UV)light,the photoisomerization of Azo units caused the dissociation of supramolecular complexes at the interface,and a light-triggered release of the cargo was achieved(Fig.5(c)).This bottom-up assembly approach for fabricating microcapsules makes it possible to obtain a wide range of uniform and intelligent microencapsulation materials.

    Fig.2.(a)Schematics of the preparation of microcapsules using interfacial molecular recognition between CB[7]and Hex-AuNPs.(b)Dual cargo loading of the microcapsules.(c–e)Disassembly of microcapsules and release of cargo after adding the competing guest ADA.Reproduced from Ref.[38]with permission of American Chemical Society,?2018.

    Fig.3.(a)Schematics of the formation of microcapsules.(b)Structures ofβ-CD-functionalized Au NPs and different guest linkers.(c)Fabrication of microparticles with buckled surfaces by polymerizing the inner phase.(d)Optical images of the microcapsules before(top)and after(bottom)drying in chloroform.(e)Scanning electron microscopy(SEM)images of microparticles with specific bulking patterns when using different guest linkers(top:AB-Hex-AB;middle:AB-Hex-AD;bottom:AD-Hex-AD).AB:azobenzene;AD:1-adamantyl methyl ketone;DCPD:dicyclopentadiene;pDCPD:poly(dicyclopentadiene);=E/(1-ν2),E is the elastic modulus,νis the Poisson’s ratio,and the subscripts f and s represent film and substrate,respectively;liq.:liquid;cat.:catalyst.Reproduced from Ref.[48]with permission of WILEY-VCHVerlag GmbH&Co.KGaA,?2014.

    3.Supramolecular polymeric interface

    The unique properties of polymers and the rapid progress that has been achieved with them have promoted the emergence of hollow structures formed by polymer-only materials.Layer-bylayer(LbL)self-assembly provides a successful strategy to construct polymeric microcapsules with multilayers utilizing particles as templates,driven by electrostatic interaction,hydrogen bonding,base-pair interactions,or host–guest interactions[55–60].However,the typical LbL method is usually procedurally complex and time consuming,as polymers is sequentially deposited onto a sacrificial template.Zheng et al.[61]reported the interfacial self-assembly of two copolymers functionalized with different guest groups and the generation of multilayer supramolecular microcapsules by taking advantage of host–guest interactions mediated by CB[8]and microfluidic devices(Fig.6).In their study,P1(MV-containing copolymer)and CB[8]were dissolved in the water phase,while P2(naphthol-containing copolymer)was dissolved in chloroform,forming the ternary supramolecular complex at the interface,and leading to the production of microcapsules within a microfluidic device(Figs.6(a)and(b)).Microcapsules can be generated using either chloroform-in-water or water-inchloroform droplets.Fluorescein-labeled P1(green fluorescence)and Rhodamine B-labeled P2(red fluorescence)assemble at the interface of the microdroplet to form the double layer of microcapsule shell(Fig.6(d)).In addition,when replacing P2 with highly branched H1 during the formation of microcapsules,the microcapsules produced can be used to encapsulate hydrophilic small molecules due to the unique 3D and dendritic nanoscale structure of H1(Fig.6(c)).Under UV irradiation,the multilayer microcapsule skin is disassembled by the photoisomerization of Azo units,triggering the release of small molecule cargo.Owing to the diversity of synthetic polymer materials,the properties and functions such as shell thickness,permeability,and the restriction of molecular weight for cargos can be well controlled.More importantly,the double-layer microcapsules provide a powerful way to quantitatively understand the mechanism and kinetics of the molecular recognition of prefabricated polymers at the interface,which is of great significance in the chemical or biological fields.

    Parker et al.[62]reported another strategy to construct the supramolecular polymeric shell of microcapsules,in which the microcapsule-forming materials are directly segregated to the oil–water interface by electrostatic interactions.In their study,aqueous microdroplets were fabricated using a microfluidic device.The continuous oil phase contained a charged surfactant and the dispersed aqueous phase consisted of two complementary charged copolymers functionalized with guests and CB[8](Figs.7(a)and(b)).The low concentration of the copolymer solution prevents gelation of the aqueous phase after adding CB[8].Charged surfactants assemble at the oil–water interface first,making the interface positively charged or negatively charged.Then,copolymers with complementary charges are attracted to the interface due to electrostatic interactions,forming robust interfacial host–guest complexes that lead to the generation of supramolecular microcapsules(Fig.7(c)).With only anionic copolymer 1A(-)dissolved in the aqueous phase,as the concentration of the positively charged surfactant K(+)increases,more 1A(-)segregates to the interface.However,when using a negatively charged surfactant K(-),1A(-)tends to be uniformly dissolved in the droplet,demonstrating that the interfacial assembly of the copolymer is driven by electrostatic interactions(Figs.7(d)and(e)).With CB[8],1A(-),and 1B(-)dissolved in the aqueous phase,as the concentration of the positively charged surfactant K(+)increases,a morphology variation from microparticles to robust microcapsules can be achieved during the evaporation of microdroplets(Fig.7(e)).Moreover,with a mixture of competing copolymers dissolved in the aqueous phase,more complex architectures can be obtained.As shown in Fig.7(f),with 1A(-),1B(-),2A(+),2B(+),and CB[8]dissolved in water,only homogenous microparticles can be obtained with a neutral surfactant dissolved in the oil.With K(+)dissolved in the oil,microcapsules with a 1A(-)–CB[8]–1B(-)shell and a 2A(+)–CB[8]–2B(+)hydrogel core can be generated.Microcapsules with an inverted structure can also be produced by replacing K(+)with K(-).

    Fig.4.(a)Schematics of the formation of microdroplets using microfluidic devices.(b)Laser scanning confocal microscope images of empty microcapsules with 2b assembled at the interface.Laser scanning confocal microscope images of(c)microcapsules with fluorescein isothiocyanate labeled dextran(FITC-dextran)or(d)Escherichia coli cells encapsulated inside.(e)Optical images of microcapsules.(f)The dehydration process for microcapsules.UVA:ultraviolet A.Reproduced from Ref.[32]with permission of American Association for the Advancement of Science,?2012.

    Fig.5.(a)Schematics of the generation of CB[8]-mediated supramolecular microcapsules and structures of MCP,AP,and CB[8].(b)Thermal-controlled cargo release.(c)Photo-controlled cargo release.FC40:flouriner FC-40(3M,USA).Reproduced from Ref.[54]with permission of the Royal Society of Chemistry,?2016.

    Fig.6.(a)Schematics of microcapsule generation.(b)Structures of the P1,P2,and CB[8].(c)Schematics of microcapsules prepared using dendritic copolymer H1 as one of the interfacial components.(d)Laser scanning confocal microscope images of the monodisperse microdroplets generated using either chloroform-in-water or water-in-chloroform droplets.Reproduced from Ref.[61]with permission of Springer Nature,?2014.

    Using a similar strategy,Yu et al.[63]reported the generation of polymeric microcapsules with UV-controlled permeability by means of host–guest and electrostatic interactions,and cargo release was triggered from the microcapsules when a competitive ADA guest was added(Figs.8(a)–(d)).In general,the permeability of an interfacial shell after microcapsule generation is unchangeable.However,in this study,the researchers overcame this obstacle by regulating the covalent crosslinking degree of the guests inside the CB[8].Upon exposure to UV light,two anthracene groups(guests)embedded in the CB[8]transformed to a[4+4]-photo-dimer,providing a strategy to manipulate the permeability of the microcapsule shell.As shown in Figs.8(e)and(f),the release rate of cargo can be significantly reduced during longer UV irradiation.

    Fig.7.(a)Optical image of the generation of microdroplets using a microfluidic device.(b)Schematics of the prepared microcapsules.(c)Optical image of microcapsules after drying.(d)Structures of functionalized copolymers and charged surfactants.(e)Laser scanning confocal microscope images(top)of aqueous microdroplets containing 1A(-)with the increasing concentration of K(+);optical images(bottom)of evaporated aqueous microdroplets containing 1A(-),1B(-),and CB[8]with the increasing concentration of K(+).(f)Distribution of functional polymers with different fluorescence in microdroplets(left),with the aqueous phase containing 1A(-),1B(-),2A(+),2B(+),and CB[8]and the oil phase dissolving different surfactants;resultant microdroplet morphology during evaporation(right).Reproduced from Ref.[62].

    Charged polymer micelles and supramolecular hyperbranchedlike polymers(SHPs)were also used to locate materials at the interface of a microdroplet directed by electrostatic interactions,forming a non-covalently crosslinked interfacial layer via CB[8]-mediated host–guest interaction[64,65].Yu et al.[64]fabricated novel hierarchical microcapsules made by polymer micelles selfassembled from linear amphiphilic block copolymers(Fig.9(a)).For the prepared microcapsules,the ability of dual cargo loading is quite attractive,and can be achieved in two steps.The first step is the fabrication of micelles in water,where the hydrophobic cargo(Nile red,red fluorescence)is loaded within the hydrophobic core of the micelles.The second step is the assembly of microcapsules,where a water-soluble cargo(fluorescein isothiocyanate labeled dextran(FITC-dextran),green fluorescence)is encapsulated into the microcapsules(Figs.9(b)–(d)).This strategy allows the microcapsules to load hydrophobic cargo in the shell and encapsulate hydrophilic cargo in the core simultaneously,and release the cargos synergistically under external multi-stimuli.

    Fig.8.(a)Schematics of the generation of microcapsules via microfluidic devices and the structure of the supramolecular polymeric shell at the interface(anthracenefunctionalized hydroxyethyl cellulose(Ant-HEC)).(b)Optical images of dried microcapsules with cargo encapsulated inside.(c)Optical and(d)fluorescent images of rehydrated microcapsules in ADA solution.(e)Schematics of the disassembly of supramolecular assembly upon the addition of ADA and the[4+4]-photo-dimerization of anthracene groups in the cavity of CB[8].(f)Release rate of cargo at different UV irradiation times.Reproduced from Ref.[63]with permission of the Royal Society of Chemistry,?2015.

    Fig.9.(a)Schematics of supramolecular microcapsules with hierarchical structure.(b)Fluorescent image of hierarchical microcapsules with hydrophobic cargo(Nile red)loaded in the shell and water-soluble cargo(FITC-dextran)encapsulated in the core.(c)Optical image of dried microcapsules and(d)fluorescent image of rehydrated microcapsules.Reproduced from Ref.[64].

    Groombridge et al.[65]reported the preparation of aqueous interfacial gels based on SHPs.The cationic SHP is prepared from small molecules by supramolecular polymerization,which is dual responsive,exhibiting dynamic properties upon exposure to UV light or the addition of competitive guests.Also,no supramolecular precipitation can be observed at low concentrations of SHP.Using microfluidic devices,interfacial gels of SHP can be generated in the presence of an anionic surfactant dissolved in the oil(Figs.10(a)–(d)).Measurements investigated using a pendant drop demonstrated that the interfacial system undergoes a gel transformation within a very short time(~2 s)(Fig.10(e)).The buckled interface recovers to a smooth shape within a minute due to the self-healing property of the supramolecular interfacial gel.In addition,buckling is not observed after adding ADA as a competitive guest to disassemble the supramolecular polymers.This work presented a method to synthesize stimuli-responsive SHPs and construct a dynamic interfacial gel that can be used as a barrier to suppress the coalescence of microdroplets.Furthermore,Salmon et al.[66]confirmed that phase transformation(gelation)occurred under compression,leading to the buckling at the interface.During evaporation,the density and thickness of the interfacial film increase until the critical density is reached.

    Fig.10.(a)Schematics of the preparation of dual-responsive SHP.(b)Schematics of the assembly process from dilute A2–B3–CB[8]solution to an interfacial supramolecular gel,directed by electrostatic interaction.(c)Schematics of the generation of monodisperse microdroplets via microfluidic devices.(d)Optical image of the dried microdroplets.(e)Morphology evolution of the pendent droplet under compression.UVA:ultraviolet A.Reproduced from Ref.[65]with permission of the Royal Society of Chemistry,?2017.

    Engineered patterned surfaces provide an attractive pathway for self-assembly,due to characteristics such as high specificity,controlled affinity,and reversibility[67,68].Recently,Zhang et al.[69]presented a method to generate patterned microcapsule arrays with a supramolecular shell,which can be used for delivery systems and sensors.In this study,a positively charged supramolecular complex consisting of CB[8]-threaded highlybranched polyrotaxanes(HBP-CB[8])and hydroxyethyl cellulose with naphthyl moieties(HEC-Np)was formed initially by host–guest interaction in the sessile droplet.When a layer of oil containing a complementary charged surfactant covered the surface of the microdroplet,the complex was drawn to the oil–water interface,driven by electrostatic interactions.A robust hydrogel shell formed at the interface,which could be used to encapsulate cargo(Figs.11(a)–(c)).Taking the linear analogue poly(N-hydroxylethyl acrylamide-co-methyl viologen-styrene)as a control,it was found that microcapsule patterns made by highly branched HBP-CB[8]had a better sustained release effect under the external stimulus(Fig.11(d)).Moreover,when Au NPs were loaded,the prepared microcapsule substrates could be used for surface-enhanced Raman spectroscopy sensing.The microcapsule arrays fabricated by this simple self-assembly can be responsive to multiple stimuli including competitive guests,light,and temperature.

    4.Supramolecular jammed colloidal interface

    Interfacial jamming,which is caused by the increased density of colloidal particles at the liquid–liquid interface,generates crowded interfacial assemblies with a loss of mobility[26].In the jammed state,NPs are densely aggregated at the interface,transforming the interface monolayer from‘‘liquid-like”to‘‘solid-like,”accompanied by increased mechanical properties[70–74].Using the interfacial jamming of nanoparticle surfactants(NPSs),which are formed via cooperative assembly between NPs and polymer ligands at the oil–water interface,a strategy to structure liquids was reported[24,75,76].Tremendous applications of structured liquids in encapsulation,delivery systems,and all-liquid chemical reactors have been explored in recent years[77–81].At present,however,electrostatic interaction has been the dominant force used for the formation and assembly of NPSs.As a result,only pH-,ionic strength-,and temperature-responsiveness can be achieved.

    Recently,Sun et al.[33]reported a new type of photoresponsive NPSs based on host–guest chemistry at the oil–water interface and realized the construction of photoresponsive structured liquids.In this study,α-CD-functionalized Au NPs are dispersed in water and Azo-terminated polystyrene(Azo-PS)or Azo-terminated poly(Llactide)(Azo-PLLA)are dissolved in oil,forming NPSs at the interface(Fig.12(a)).In comparison with the system using Azo-PS as the ligand,the Azo-PLLA-based NPSs are more interfacially active due to the hydrogen bonding interaction between poly(L-lactide)(PLLA)and water/α-CD.The hydrogen bonding locates NPs and ligands at the interface,increasing the probability of collision between host and guest units,which leads to an enhanced binding energy of NPs at the interface(Fig.12(b)).With photoresponsive NPSs at the interface,the jamming and unjamming of NPSs can be reversibly controlled using light as the trigger,which can be demonstrated by the morphology change of the pendant drop with jammed NPSs at the interface.As shown in Figs.12(c)and(d),under visible light,no morphology changes of the wrinkled droplet are observed.Under UV irradiation,the wrinkles on the droplets disappear,and the droplet shape returns to spherical(an unjammed state of NPSs),which can be re-jammed under visible light.Photoresponsiveness of structured liquids can also be achieved using a droplet with a more complex shape(Fig.12(e)).

    5.Conclusion and outlook

    In this review,we summarized recent developments in host–guest chemistry at liquid–liquid interfaces,provided a brief overview of the self-assembly strategy of various supramolecular interfaces,including colloidal and polymeric interfaces,described the unique properties of these interfaces,and emphasized applications in encapsulation and cargo release.Host–guest molecular recognition provides a powerful approach for the construction of a dynamic interface,allowing the resultant assemblies to be structurally manipulated in size and shape;thus,it opens up a pathway to construct smart supramolecular systems with interfacial multiresponsiveness.

    In comparison with numerous studies on supramolecular systems related to host–guest chemistry,studies focused on liquid–liquid interfaces are much sparser,leaving a large workspace that can be exploited.Fabricating supramolecular interfacial systems with well-defined structures,permeability,and mechanical strength is still challenging.The size of the microcapsules fabricated using either Pickering emulsions or the microfluidic technique is usually large,which limits their efficiency when used for cargo delivery.Future studies need to focus on producing microcapsules with exceptionally small sizes,down to the nanoscale.In addition to oil–water systems,host–guest molecular recognition can be extended to aqueous two-phase systems(ATPSs),which show promising applications in areas including biology,cosmetics,and food.By using the interfacial jamming of colloidal particles and host–guest chemistries,it should be possible to produce structured all-liquid systems by means of 3D printing or all-liquid molding,which can be used to prepare complex microfluidics and biphasic reaction systems.Solving these issues will be beneficial for the production of next-generation dynamic soft materials with novel functions.

    Fig.11.(a)Schematics of the generation of patterned microcapsule arrays.(b)Structures of HBP-CB[8],HEC-Np,CB[8],and anionic surfactant.(c)Optical and fluorescent images of cargo-loaded microcapsules in a bright field.(d)The cargo release profiles of microcapsule arrays.Reproduced from Ref.[69].

    Fig.12.(a)Schematics of the formation of photoresponsive NPSs.(b)Assembly kinetics of photoresponsive NPSs using either Azo-PS or Azo-PLLA as the ligand.(c,d)Morphology evolution of the pendent droplet with jammed NPSs at the interface under different light(visible light or UV light).(e)Morphology evolution of the highly deformed microdroplet under visible light or UV light.α-CD-SH:thiolatedα-cyclodextrin.Reproduced from Ref.[33]with permission of American Chemical Society,?2020.

    Acknowledgements

    This work was supported by National Natural Science Foundation of China(51903011).Thomas P.Russell was supported by the US Department of Energy,Office of Science,Office of Basic Energy Sciences,Materials Sciences and Engineering Division under Contract No.DE-AC02-05-CH11231 within the Adaptive Interfacial Assemblies Towards Structuring Liquids program(KCTR16).

    Compliance with ethics guidelines

    Beibei Wang,Hao Chen,Tan Liu,Shaowei Shi,and Thomas P.Russell declare that they have no conflict of interest or financial conflicts to disclose.

    亚洲精品乱码久久久v下载方式| 中文字幕av成人在线电影| 老司机福利观看| 国产亚洲91精品色在线| 亚洲综合色惰| 国产精品伦人一区二区| 高清av免费在线| 26uuu在线亚洲综合色| 国产午夜精品久久久久久一区二区三区| 国产不卡一卡二| 国产一区二区在线观看日韩| 亚洲真实伦在线观看| 亚洲成人av在线免费| 插逼视频在线观看| 国产成人精品久久久久久| 午夜福利在线观看免费完整高清在| 日韩国内少妇激情av| 亚洲色图av天堂| 大话2 男鬼变身卡| 亚洲av免费在线观看| 男女视频在线观看网站免费| 久久精品国产鲁丝片午夜精品| 搞女人的毛片| 免费av不卡在线播放| 中文字幕熟女人妻在线| 精华霜和精华液先用哪个| 国产亚洲5aaaaa淫片| 亚洲一级一片aⅴ在线观看| 夜夜看夜夜爽夜夜摸| av.在线天堂| 日本-黄色视频高清免费观看| 自拍偷自拍亚洲精品老妇| 亚洲成人精品中文字幕电影| 一区二区三区高清视频在线| 22中文网久久字幕| 国产极品精品免费视频能看的| 精品午夜福利在线看| 欧美三级亚洲精品| 麻豆精品久久久久久蜜桃| 国产精品久久久久久久久免| 国产在线一区二区三区精 | 国产真实乱freesex| av线在线观看网站| 神马国产精品三级电影在线观看| 蜜桃久久精品国产亚洲av| 亚洲国产精品国产精品| 免费人成在线观看视频色| 亚洲性久久影院| 你懂的网址亚洲精品在线观看 | 日韩av在线大香蕉| 禁无遮挡网站| 桃色一区二区三区在线观看| 尤物成人国产欧美一区二区三区| 日本熟妇午夜| 99视频精品全部免费 在线| 亚洲色图av天堂| 天堂网av新在线| 国产精品一区二区在线观看99 | 精品久久久久久成人av| 一级毛片aaaaaa免费看小| 最近中文字幕2019免费版| av在线观看视频网站免费| 久久久成人免费电影| 日韩欧美三级三区| 91在线精品国自产拍蜜月| 一本久久精品| 国产在视频线在精品| 99热这里只有是精品50| 中文资源天堂在线| 免费无遮挡裸体视频| 成人毛片60女人毛片免费| 欧美日本亚洲视频在线播放| 日韩欧美三级三区| 免费看美女性在线毛片视频| 一级毛片我不卡| 国产精品一二三区在线看| 又黄又爽又刺激的免费视频.| 国产精品不卡视频一区二区| 国产精品一区二区性色av| 亚洲真实伦在线观看| 黑人高潮一二区| 好男人视频免费观看在线| 亚洲一区高清亚洲精品| 黄色欧美视频在线观看| 一级爰片在线观看| 国产淫语在线视频| 最近最新中文字幕大全电影3| 国产激情偷乱视频一区二区| 亚洲最大成人中文| 99视频精品全部免费 在线| 国产亚洲5aaaaa淫片| 3wmmmm亚洲av在线观看| 国产亚洲91精品色在线| 综合色丁香网| 99久久精品国产国产毛片| 亚洲人与动物交配视频| 中文字幕制服av| 男女那种视频在线观看| 伦精品一区二区三区| 日本黄大片高清| 黄片wwwwww| 一二三四中文在线观看免费高清| 亚洲人成网站高清观看| 人人妻人人澡欧美一区二区| 国产精品久久久久久av不卡| 看片在线看免费视频| 男人舔奶头视频| 中国国产av一级| 麻豆av噜噜一区二区三区| 熟妇人妻久久中文字幕3abv| 久久久久久伊人网av| 日本一二三区视频观看| 日韩成人伦理影院| 99久久精品热视频| 国产人妻一区二区三区在| 日韩成人伦理影院| 七月丁香在线播放| 国产黄色视频一区二区在线观看 | 国产黄片视频在线免费观看| 欧美成人午夜免费资源| 国产精品99久久久久久久久| 国产精品国产三级专区第一集| 国产成人91sexporn| 少妇裸体淫交视频免费看高清| 一区二区三区免费毛片| 99热这里只有是精品在线观看| 亚洲丝袜综合中文字幕| 老司机影院毛片| 亚洲精品aⅴ在线观看| 26uuu在线亚洲综合色| 高清av免费在线| 毛片一级片免费看久久久久| 精品人妻熟女av久视频| 高清毛片免费看| 亚洲国产日韩欧美精品在线观看| av福利片在线观看| 亚洲精品久久久久久婷婷小说 | 好男人视频免费观看在线| 成人鲁丝片一二三区免费| 国产欧美日韩精品一区二区| 99久久九九国产精品国产免费| 亚洲经典国产精华液单| 国产一级毛片七仙女欲春2| 26uuu在线亚洲综合色| 成人午夜高清在线视频| 在线免费十八禁| 十八禁国产超污无遮挡网站| 国产精品.久久久| av在线老鸭窝| 男人狂女人下面高潮的视频| 亚洲在线自拍视频| 联通29元200g的流量卡| 久久精品国产鲁丝片午夜精品| 中文字幕av在线有码专区| 久久久久久久久久久免费av| 欧美一区二区精品小视频在线| 最新中文字幕久久久久| 国产精品三级大全| 少妇猛男粗大的猛烈进出视频 | 一级黄色大片毛片| 国产三级中文精品| 亚洲国产欧美在线一区| 欧美成人一区二区免费高清观看| 在线免费十八禁| 亚洲国产精品久久男人天堂| 日日摸夜夜添夜夜添av毛片| 免费观看在线日韩| 亚洲欧洲国产日韩| 久久久久精品久久久久真实原创| 淫秽高清视频在线观看| 国产精品熟女久久久久浪| 国产精品久久电影中文字幕| 天天一区二区日本电影三级| 国产乱人视频| 日韩欧美三级三区| 91久久精品国产一区二区成人| 国产精品国产三级国产专区5o | 国产不卡一卡二| 视频中文字幕在线观看| 久久久久性生活片| 国产伦精品一区二区三区四那| 免费av观看视频| 99视频精品全部免费 在线| av免费观看日本| 日本av手机在线免费观看| 三级国产精品片| 亚洲丝袜综合中文字幕| 特级一级黄色大片| 亚洲精品自拍成人| 99久久中文字幕三级久久日本| 卡戴珊不雅视频在线播放| 女人被狂操c到高潮| 美女被艹到高潮喷水动态| 精品不卡国产一区二区三区| 久久国产乱子免费精品| 久久久久久大精品| 熟女人妻精品中文字幕| 观看免费一级毛片| 成年版毛片免费区| 看非洲黑人一级黄片| 深爱激情五月婷婷| 色视频www国产| kizo精华| 少妇人妻一区二区三区视频| 亚洲欧美日韩卡通动漫| 成人综合一区亚洲| 日韩av在线免费看完整版不卡| 国产精品精品国产色婷婷| 成年免费大片在线观看| 熟妇人妻久久中文字幕3abv| 久久久久久国产a免费观看| 国产精品蜜桃在线观看| 又粗又爽又猛毛片免费看| 国产成人a∨麻豆精品| 啦啦啦韩国在线观看视频| 97人妻精品一区二区三区麻豆| 国产精品熟女久久久久浪| 日本熟妇午夜| 噜噜噜噜噜久久久久久91| 欧美成人午夜免费资源| 深夜a级毛片| 在现免费观看毛片| 伊人久久精品亚洲午夜| 国国产精品蜜臀av免费| 成人二区视频| 久久久午夜欧美精品| 好男人视频免费观看在线| 免费av观看视频| 99久久中文字幕三级久久日本| 色视频www国产| 亚洲欧美精品自产自拍| 天天躁日日操中文字幕| 国产成人freesex在线| av又黄又爽大尺度在线免费看 | 国产女主播在线喷水免费视频网站 | 久久久亚洲精品成人影院| 毛片一级片免费看久久久久| 日韩国内少妇激情av| 床上黄色一级片| 国产91av在线免费观看| 男女啪啪激烈高潮av片| 毛片女人毛片| 国产精品1区2区在线观看.| 我要看日韩黄色一级片| 夜夜爽夜夜爽视频| 菩萨蛮人人尽说江南好唐韦庄 | 大话2 男鬼变身卡| 一级毛片我不卡| 亚洲在久久综合| 久久精品影院6| 99热这里只有精品一区| av播播在线观看一区| 亚洲最大成人手机在线| 最近中文字幕2019免费版| 观看美女的网站| 欧美潮喷喷水| 日韩欧美三级三区| 国产在视频线在精品| 国产 一区精品| 国产片特级美女逼逼视频| 一个人看的www免费观看视频| 久久久精品欧美日韩精品| 国产综合懂色| 精品人妻视频免费看| 能在线免费观看的黄片| 国内精品美女久久久久久| 亚洲av熟女| 成人午夜精彩视频在线观看| av又黄又爽大尺度在线免费看 | 少妇人妻一区二区三区视频| 99热这里只有是精品在线观看| 国产一级毛片七仙女欲春2| 卡戴珊不雅视频在线播放| 国产伦理片在线播放av一区| 亚洲精品国产成人久久av| 又黄又爽又刺激的免费视频.| 国产不卡一卡二| 成人av在线播放网站| 国产探花极品一区二区| 黄片wwwwww| 亚洲五月天丁香| 亚洲图色成人| 国产午夜福利久久久久久| 亚洲18禁久久av| 免费观看的影片在线观看| 午夜久久久久精精品| 最近中文字幕2019免费版| 亚洲熟妇中文字幕五十中出| 午夜精品在线福利| 国产在线男女| 国产高潮美女av| 成人漫画全彩无遮挡| 少妇人妻精品综合一区二区| 国产精品人妻久久久久久| 中文欧美无线码| 亚洲高清免费不卡视频| 国产日韩欧美在线精品| 中文欧美无线码| 久久久久九九精品影院| 国产老妇女一区| 国产黄片视频在线免费观看| 日韩国内少妇激情av| 激情 狠狠 欧美| 成人综合一区亚洲| 最近最新中文字幕免费大全7| 久久精品国产99精品国产亚洲性色| 日本-黄色视频高清免费观看| 一区二区三区四区激情视频| 国产伦一二天堂av在线观看| 亚洲欧洲日产国产| 午夜精品一区二区三区免费看| 26uuu在线亚洲综合色| 国产视频内射| 亚洲国产成人一精品久久久| ponron亚洲| 天天躁日日操中文字幕| 天天一区二区日本电影三级| 欧美性猛交╳xxx乱大交人| 亚洲在线观看片| 成人国产麻豆网| a级毛色黄片| 欧美三级亚洲精品| 成人无遮挡网站| 国产成人一区二区在线| 国产一区二区亚洲精品在线观看| 老师上课跳d突然被开到最大视频| 2021天堂中文幕一二区在线观| 国产亚洲av嫩草精品影院| 亚洲欧美日韩东京热| 欧美性猛交黑人性爽| 国产色爽女视频免费观看| 搡女人真爽免费视频火全软件| 久久99热6这里只有精品| 国产女主播在线喷水免费视频网站 | 色哟哟·www| 国产在线一区二区三区精 | 亚洲高清免费不卡视频| 大香蕉久久网| 国产免费视频播放在线视频 | 在线观看66精品国产| 国产黄色小视频在线观看| 国产在线男女| 中国国产av一级| 少妇的逼水好多| АⅤ资源中文在线天堂| 可以在线观看毛片的网站| 久久人人爽人人爽人人片va| 可以在线观看毛片的网站| 长腿黑丝高跟| 久久精品熟女亚洲av麻豆精品 | 一级二级三级毛片免费看| 日韩欧美在线乱码| 18禁在线播放成人免费| 日韩国内少妇激情av| 一个人免费在线观看电影| 国产伦理片在线播放av一区| 天美传媒精品一区二区| 岛国毛片在线播放| 亚洲五月天丁香| 亚洲成色77777| 69av精品久久久久久| 九草在线视频观看| 99久久无色码亚洲精品果冻| 精品不卡国产一区二区三区| 国产亚洲av嫩草精品影院| 久久精品91蜜桃| 性色avwww在线观看| 一级黄色大片毛片| 免费观看的影片在线观看| 免费观看在线日韩| 在线免费十八禁| 91久久精品电影网| 国产美女午夜福利| 人人妻人人澡欧美一区二区| 91精品国产九色| 少妇人妻一区二区三区视频| 午夜精品国产一区二区电影 | 色综合色国产| 一边摸一边抽搐一进一小说| 免费观看在线日韩| 人妻少妇偷人精品九色| 91午夜精品亚洲一区二区三区| 欧美xxxx性猛交bbbb| 日韩精品青青久久久久久| 午夜激情福利司机影院| 国产亚洲5aaaaa淫片| 久久精品久久久久久久性| 国产一区二区三区av在线| 久久草成人影院| 日韩欧美精品v在线| 久久草成人影院| eeuss影院久久| 国产精品蜜桃在线观看| 亚洲国产精品专区欧美| 国产 一区 欧美 日韩| 国产欧美另类精品又又久久亚洲欧美| 国产免费又黄又爽又色| 欧美性猛交黑人性爽| 91精品一卡2卡3卡4卡| 欧美一区二区亚洲| 日韩,欧美,国产一区二区三区 | 国产激情偷乱视频一区二区| 99热网站在线观看| 99久国产av精品| 亚洲精品自拍成人| 久久久久九九精品影院| 国产精品乱码一区二三区的特点| 97超视频在线观看视频| 日本黄色片子视频| 美女脱内裤让男人舔精品视频| 狂野欧美激情性xxxx在线观看| 久久久久久久国产电影| 纵有疾风起免费观看全集完整版 | 国产男人的电影天堂91| 中文字幕亚洲精品专区| 永久免费av网站大全| 欧美zozozo另类| 美女被艹到高潮喷水动态| av免费在线看不卡| 男人狂女人下面高潮的视频| 午夜福利高清视频| 国产精品久久久久久av不卡| 亚洲av中文字字幕乱码综合| 97人妻精品一区二区三区麻豆| 精品人妻熟女av久视频| 一区二区三区高清视频在线| 韩国高清视频一区二区三区| eeuss影院久久| 在线播放国产精品三级| 国产精品人妻久久久影院| 免费一级毛片在线播放高清视频| 99在线人妻在线中文字幕| 人人妻人人看人人澡| 一个人免费在线观看电影| 免费无遮挡裸体视频| 一区二区三区乱码不卡18| 亚洲中文字幕一区二区三区有码在线看| 国产老妇伦熟女老妇高清| 在线观看av片永久免费下载| 成年免费大片在线观看| 久久精品国产自在天天线| 成人亚洲精品av一区二区| 国产伦精品一区二区三区视频9| 真实男女啪啪啪动态图| 久久久久久大精品| 亚洲国产精品合色在线| 日韩高清综合在线| 一区二区三区高清视频在线| 国产片特级美女逼逼视频| 午夜福利在线在线| 内地一区二区视频在线| 亚洲av成人av| 国产伦一二天堂av在线观看| 欧美xxxx黑人xx丫x性爽| av.在线天堂| 日韩 亚洲 欧美在线| 国产午夜精品久久久久久一区二区三区| 精品99又大又爽又粗少妇毛片| 亚洲综合色惰| 成人午夜精彩视频在线观看| av在线播放精品| 老司机影院毛片| 国产老妇伦熟女老妇高清| 国产亚洲5aaaaa淫片| 中文字幕免费在线视频6| 久久久久久久久大av| 亚洲丝袜综合中文字幕| 日本爱情动作片www.在线观看| 长腿黑丝高跟| 大又大粗又爽又黄少妇毛片口| 亚洲va在线va天堂va国产| 免费一级毛片在线播放高清视频| 亚洲真实伦在线观看| 老司机影院成人| 亚洲中文字幕一区二区三区有码在线看| 欧美成人a在线观看| 看十八女毛片水多多多| 91在线精品国自产拍蜜月| 亚洲最大成人中文| 卡戴珊不雅视频在线播放| 人人妻人人澡人人爽人人夜夜 | 黄片wwwwww| 久久久久性生活片| 在线观看av片永久免费下载| 国产精品一区www在线观看| 你懂的网址亚洲精品在线观看 | 亚洲,欧美,日韩| 国国产精品蜜臀av免费| 国产成人a区在线观看| 国产精品一及| 亚洲国产精品国产精品| 日本wwww免费看| 亚洲国产成人一精品久久久| 哪个播放器可以免费观看大片| 桃色一区二区三区在线观看| 人人妻人人澡欧美一区二区| 亚洲欧美一区二区三区国产| 成人三级黄色视频| 水蜜桃什么品种好| 精品一区二区三区人妻视频| 国产亚洲av嫩草精品影院| 九九在线视频观看精品| 丝袜美腿在线中文| 国产毛片a区久久久久| 搡老妇女老女人老熟妇| 国产免费男女视频| 日本爱情动作片www.在线观看| 精品少妇黑人巨大在线播放 | 国产伦在线观看视频一区| 免费大片18禁| 一个人看视频在线观看www免费| 欧美性感艳星| 搞女人的毛片| 两个人视频免费观看高清| 久久久久久久久久久免费av| 久久6这里有精品| 亚洲国产精品合色在线| 中文字幕熟女人妻在线| 丰满少妇做爰视频| 亚洲av成人精品一区久久| 久久人人爽人人爽人人片va| 一级毛片aaaaaa免费看小| 国产精品三级大全| 日日摸夜夜添夜夜添av毛片| 两个人视频免费观看高清| 国产精品.久久久| 亚洲五月天丁香| 色网站视频免费| 禁无遮挡网站| 久久精品91蜜桃| 久久久国产成人免费| 日韩人妻高清精品专区| 日韩一区二区三区影片| 日韩欧美 国产精品| 国内精品宾馆在线| 午夜日本视频在线| 色视频www国产| 国产一区二区在线观看日韩| 亚洲人成网站在线播| 免费电影在线观看免费观看| 18禁动态无遮挡网站| 国产不卡一卡二| 老司机福利观看| 国产一区二区在线观看日韩| 高清毛片免费看| 七月丁香在线播放| 午夜精品一区二区三区免费看| 麻豆国产97在线/欧美| 日韩一区二区视频免费看| 亚洲最大成人av| 亚洲国产日韩欧美精品在线观看| 午夜亚洲福利在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 99国产精品一区二区蜜桃av| 在线观看66精品国产| 美女cb高潮喷水在线观看| 国产午夜福利久久久久久| 国产精品一区www在线观看| 久久欧美精品欧美久久欧美| 亚洲一区高清亚洲精品| 亚洲精品日韩av片在线观看| 欧美高清性xxxxhd video| 色吧在线观看| 国产日韩欧美在线精品| 欧美一区二区国产精品久久精品| 亚洲人成网站在线观看播放| 观看美女的网站| .国产精品久久| 日韩亚洲欧美综合| 久久欧美精品欧美久久欧美| 国产单亲对白刺激| 久久精品夜夜夜夜夜久久蜜豆| 麻豆乱淫一区二区| 国产精品不卡视频一区二区| 观看美女的网站| 国产在线男女| 免费看美女性在线毛片视频| 日本熟妇午夜| av国产久精品久网站免费入址| 成年女人看的毛片在线观看| 成人无遮挡网站| 男的添女的下面高潮视频| 久久久久性生活片| 色噜噜av男人的天堂激情| 中文字幕精品亚洲无线码一区| 国产精品无大码| 99久久人妻综合| 亚洲一级一片aⅴ在线观看| 午夜精品一区二区三区免费看| 免费播放大片免费观看视频在线观看 | 22中文网久久字幕| 一级毛片我不卡| 国内精品美女久久久久久| 亚洲人与动物交配视频| 久久99精品国语久久久| 国产精品伦人一区二区| 免费av毛片视频| 免费人成在线观看视频色| 欧美性猛交黑人性爽| 国产精品乱码一区二三区的特点| 日韩欧美精品免费久久| 纵有疾风起免费观看全集完整版 | av国产久精品久网站免费入址| 日本黄大片高清| 久久精品国产亚洲网站| 26uuu在线亚洲综合色| 99热这里只有是精品50| 亚洲精品国产成人久久av| 搞女人的毛片| 久久午夜福利片| 亚洲精品aⅴ在线观看| 久久精品国产99精品国产亚洲性色| 精品久久久久久电影网 | 亚州av有码| 中国美白少妇内射xxxbb|