• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Nanobubble Dynamics in Aqueous Surfactant Solutions Studied by Liquid-Phase Transmission Electron Microscopy

    2021-09-24 06:47:26YunaBaeSungsuKangByungHyoKimKitaekLimSunghoJeonSangdeokShimWonChulLeeJungwonPark
    Engineering 2021年5期

    Yuna Bae ,Sungsu Kang ,Byung Hyo Kim,d,Kitaek Lim,Sungho Jeon ,Sangdeok Shim *,Won Chul Lee ,*,Jungwon Park ,*

    a School of Chemical and Biological Engineering,and Institute of Chemical Processes,Seoul National University,Seoul 08826,Republic of Korea

    b Center for Nanoparticle Research,Institute of Basic Science(IBS),Seoul 08826,Republic of Korea

    c Department of Mechanical Engineering,BK21 FOUR ERICA-ACE Center,Hanyang University,Ansan 15588,Republic of Korea

    d Department of Organic Materials and Fiber Engineering,Soongsil University,Seoul 06978,Republic of Korea

    e Department of Chemistry,Sunchon National University,Suncheon 57922,Republic of Korea

    Keywords:

    ABSTRACT Nanobubbles have attracted considerable attention in various industrial applications due to their exceptionally long lifetime and their potential as carriers at the nanoscale.The stability and physiochemical properties of nanobubbles are highly sensitive to the presence of surfactants that can lower their surface tension or improve their electrostatic stabilization.Herein,we report real-time observations of the dynamic behaviors of nanobubbles in the presence of soluble surfactants.Using liquid-phase transmission electron microscopy(TEM)with multi-chamber graphene liquid cells,bulk nanobubbles and surface nanobubbles were observed in the same imaging condition.Our direct observations of nanobubbles indicate that stable gas transport frequently occurs without interfaces merging,while a narrow distance is maintained between the interfaces of interacting surfactant-laden nanobubbles.Our results also elucidate that the interface curvature of nanobubbles is an important factor that determines their interfacial stability.

    1.Introduction

    Nanobubbles have a wide range of industrial applications,such as surface cleaning[1],water treatment[2–4],and biomedical research[5,6],due to their remarkable long-term stability on solid substrates and in liquid media[7–9].In classical thermodynamics,it is believed that the bubbles quickly shrink within microseconds as their size approximates the nanoscale,because the interior Laplace pressure is too high to prevent the outward diffusion of the gas inside the bubble[10,11].Nonetheless,diverse experimental approaches,such as atomic force microscopy(AFM)and cryoelectron microscopy(cryo-EM),have been utilized to confirm the existence and origins of the long-term stability of nanobubbles[12–15].The results of these studies suggest that nanobubble stability is significantly enhanced on surfaces due to the pinning effect of the three-phase contact line[16–18].

    It is expected that the size and stability of nanobubbles can be actively controlled by manipulating their interfacial chemistry.Similar to the case of fluid interfaces constructed at the micrometer scale and beyond[19–21],the choice of surfactant additive influences the different chemical structures of the interfacial boundaries and surface charge states,which alter the lifetime of nanobubbles and inter-nanobubble interactions[22].Computational simulations have demonstrated that the addition of amphiphilic or insoluble surfactants lowers the stability of nanobubbles by disturbing the pinning process and reducing surface tension[23].In contrast,anionic surfactants generate surface charges on nanobubbles that promote electrostatic stabilization,while suppressing nanobubble merging[24].

    Liquid-phase transmission electron microscopy(TEM)achieves nanoscale spatial resolution for in situ visualizations of the chemical and physical processes occurring in a liquid environment[25–28].Thus,it has been recently applied for real-time and real-space observations of changes in gas–liquid interfaces and of the behavior of nanobubbles in pure water and protein solutions[29–33].The formation of nanobubbles produced by electron-beaminduced radiolysis and inter-bubble gas transport has been investigated[34].Furthermore,microscopic results have indicated the existence of a critical radius of stable nanobubbles in pure water[35].Here,we study the dynamic phenomena of surfactant-laden nanobubbles in an aqueous solution by employing multichamber graphene liquid cell TEM,wherein the chemical conditions for encapsulated solution samples are reliably maintained during multiple in situ observations.

    2.Materials and methods

    2.1.Fabrication of a multi-chamber graphene liquid cell

    A highly ordered array of graphene-covered nano-chambers was prepared by assembling a porous anodic aluminum oxide(AAO)membrane between two graphene sheets,as developed in our previous study[36].First,a set of graphene-transferred TEM grids was prepared for use as the top and bottom graphene windows[37].The AAO membrane(on a poly(methyl methacrylate)(PMMA)substrate),with a pore diameter of 80 nm,an inter-pore distance of 125 nm,and a thickness of 50 nm,was cut to fit the inner square size of the TEM grid.A drop of water was dispensed on a prepared graphene-transferred grid,and a square AAO membrane was placed on this grid in a direction wherein the exposed AAO surface faced the droplet.After drying the assembled grid in an oven for 5 min at 70°C,the AAO membrane attached to the graphene sheet via van der Waals interactions.The assembled grid was immersed in an acetone bath for 4 h to remove the PMMA substrate that supported the AAO membrane,thereby producing a nano-well-shaped array built on the bottom grid.A 0.5μL liquid sample was loaded onto the fabricated nano-well-shaped array,which was then covered with another graphene-transferred grid to construct the multi-chamber liquid cell.Each cylindrical nanochamber built on the liquid cell consisted of a nanopore and top/bottom graphene sheets encapsulating the liquid sample.In this study,a 3.75 mmol·L-1aqueous solution of hexadecyltrimethylammonium bromide(CTAB)was used as a liquid sample.A 2.5 mmol·L-1chloroauric acid solution was also added to the liquid sample because the reduction of this acid solution to form gold nanoparticles can be used as an indicator for successful liquid encapsulation during electron-beam irradiation.It should be noted that the in situ observations of surfactant-laden nanobubbles were conducted in regions away from the gold nanoparticles.The multichamber graphene liquid cell can improve the stability of the liquid system and ensure encapsulation of the liquid sample with a defined dimension and volume,resulting in reliable fluid mechanics during the observations.In addition,the stable and sufficient space of the nanochamber makes it possible to observe the dynamic phenomena of bulk nanobubbles under weak perturbation by graphene or a confined environment.

    2.2.TEM analysis

    We observed the nanobubbles in aqueous surfactant solutions by means of liquid-phase TEM with the fabricated multi-chamber graphene liquid cell(Appendix A Movies S1–5).Nanobubbles were imaged using a JEM-2100F(JEOL Ltd.,Japan)instrument operating at 200 kV and equipped with an UltraScan 1000XP CCP detector(Gatan,Inc.,USA).In situ TEM movies were recorded at 7.5 frames per second(fps).The dose rate of the electron beam was consistently maintained at 1800–2000 e·?-2·s-1.Under electron-beam radiation,nanobubbles smaller than 50 nm were generated by the electron-beam radiolysis process.

    3.Results and discussion

    3.1.Stability of nanobubbles:Effects of surfactants

    Fig.1.(a)Time-series of TEM images showing nanobubbles in a nanochamber.(b)Illustration of a nanobubble in an aqueous CTAB solution.(c,d)Size distribution of the nanobubbles at(c)0 s and(d)26 s,as shown in part(a).CTA+:hexadecyltrimethylammoniumcation;r:radius.

    Nanobubbles inside the nanochamber can be clearly identified in the in situ TEM images(Appendix A Movie S1).The circles with bright contrast and the surrounding area with dark contrast distinctly indicate the nanobubbles and liquid media,respectively,in Fig.1(a).Nanobubbles were generated in different sizes,ranging from~5 to~30 nm,as shown in the first TEM image in Fig.1(a).The nanobubbles can be categorized into two different types depending on their location in the nanochamber:Surface nanobubbles are located near the AAO wall and tend to adsorb onto the inner surface of the AAO pore,while bulk nanobubbles are located in the middle of the liquid media without surface adsorption.In general,the existence of nanobubbles follows the Young–Laplace equation;that is,the internal pressure(Pin)of the bubbles balances the sum of the pressure from the surrounding fluid(Pout)and the pressure created by surface tension(γ),as illustrated in Fig.1(b).A time-series of TEM images of nanobubbles(Fig.1(a))exhibits the relative stabilities of the two different types of nanobubbles.The surface nanobubbles are generally larger and exhibit longer lifetimes than the bulk nanobubbles.In contrast,most of the bulk nanobubbles have a spherical shape,and small bulk nanobubbles continue to shrink over time,as shown in Fig.1(a).The average diameter of the shrinking bulk nanobubbles was measured to be~6 nm based on the time-series of the TEM images;it is also represented in the histogram of nanobubble diameters at 0 and 26 s(Figs.1(c)and(d)).The critical radius of stable nanobubbles in pure water has been reported to be(6.3±0.8)nm[35],which is approximately twice the value we observed in the aqueous CTAB solution.This result is probably due to the surface tension of the aqueous CTAB solution (33.59 mN·m-1)being significantly lower than that of pure water(72.8 mN·m-1)[29,32,38],implying that surfactants in the liquid media can form a layer between the gas-containing bubbles and the surrounding liquid,which stabilizes the gas–liquid interface of the nanobubbles[22,24].Moreover,the presence of a sufficient amount of CTAB molecules(cationic surfactants)is likely to cause the nanobubbles to be positively charged due to the adsorption layer of CTAB,possibly stabilizing the nanobubbles by electrostatic pressure[22].

    3.2.Gas transport via the interfacial region between nanobubbles

    We investigated the interactions and gas transport behavior of surfactant-laden nanobubbles when they were in close proximity.In a typical bubble system ranging from the micrometer to nanometer scale,two interacting bubbles either merge or repel each other depending on their relative approach velocity,contact time,and surrounding fluid viscosity[39,40].A merging event occurs via the destruction of the interfaces of the two bubbles,which results in the formation of a neck region through which gas migrates between the two bubbles.Such events,including gas transport followed by merging,have also been observed for nanobubbles in pure water[34,35].However,surfactant-laden nanobubbles exhibit different behavior.Instead of forming a neck for gas transport,the two nanobubbles(NB1 and NB2)we observed in this study remain in proximity with a narrow inter-bubble distance while active gas transport proceeds,as shown in Fig.2(a)and Appendix A Movie S2.The contours and projected area tracked for the two nanobubbles(Figs.2(b)and(c))indicate the rapid gas transport from NB1 to NB2 over a time interval of 6 s.The direction of gas transport is determined by the different Laplace pressures of the two nanobubbles,which are inversely proportional to the radius of their curvature.The gas moves from NB1,which has high internal pressure(smaller size),to NB2,which has low internal pressure(larger size).Due to this gas transport,NB1 shrinks and NB2 grows,which is similar to the Ostwald-ripening process.Meanwhile,the interfacial region between the two nanobubbles moves in the direction opposite to that of the gas transport(Fig.2(b)),which probably results from the destruction of the original solid–liquid–gas three-phase contact line pinning while transferring kinetic energy by means of the transported gas molecules.We also measured the circularity of the two nanobubbles from their two-dimensional(2D)projected images.While the sizes of the two nanobubbles change during the gas transport,their circularity values remain constant at~0.9,which means that their shapes remain spherical,as shown in Fig.2(d).Maintaining circularity during gas transport has also been observed for nanobubbles in pure water systems,in which gas transport proceeds through an ultrathin water membrane [35].The interesting feature of nanobubbles with surfactants present is that their surfaces are not fully in contact,with a spacing of(0.91±0.045)nm during the gas transport,as shown in Fig.2(e).The rigid structure of the surfactant molecules packed along the boundaries of the two nanobubbles and their positively charged surfaces presumably prohibit complete merging and maintain a narrow gap of less than 1 nm.It is difficult to preserve a bulk liquid structure in this narrow region,which results in local liquid media with a lowered density through which gas molecules can be transported.The gas transport eventually stops(after t0+20 s,where t0is the time when the inter-bubble distance is less than 1.5 nm)as the surfaces of the nanobubbles move apart.

    Fig.2.(a)Time-series of TEM images indicating direct gas transport between two nanobubbles(NB1 and NB2).(b)Temporal trajectories for the contours of the two nanobubble boundaries.(c)Area and(d)circularity changes in time for the two tracked nanobubbles.(e)Tracked spacing between the boundaries of the two nanobubbles.

    It was commonly observed that interacting surfactant-laden nanobubbles remain in close proximity with a narrow gap over an extended period of time.One more example that exhibited a similar interaction and gas transport between nanobubbles(NB1 and NB2)is shown in Fig.3(a)and Appendix A Movie S3.Interestingly,after a long period of stable gas transport,NB1 and NB2 undergo rapid merging when their boundaries come into physical contact(Fig.3(b)).The tracked contours and projected areas of the two nanobubbles(Figs.3(c)and(d))indicate that the gas is transmitted from the smaller NB1 to the larger NB2 for an initial 1.1 s(from NRF t0+12.6 s to t0+13.7 s).The small NB1 consistently shrinks,while the large NB2 grows,as the gas flows from the small to large nanobubble.During gas transport,the two nanobubbles maintain their spherical shape with a circularity of~0.9,as shown in Fig.3(e).When the spacing between the two nanobubbles is extremely close(below 0.5 nm),such that the effects of their interfacial fluctuations become significant,their gas–liquid interfaces are partially destroyed,and the nanobubbles begin to merge(Fig.3(b)).After merging,the gas–liquid interface of the merged nanobubble quickly relaxes(Fig.3(f)),and the nanobubble evolves into a spherical shape with a circularity of~0.9 within 1.5 s(Fig.3(e)).

    3.3.Gas–liquid interface deformation by the formation of a flat boundary

    The two nanobubbles shown in Fig.4 also maintain their stable gap for a prolonged period of 6 s,which is consistent with the cases shown in Figs.2 and 3 and Appendix A Movie S4.When the nanobubbles eventually merge,the merged nanobubble exhibits a non-spherical shape,having a concave surface.As the concave interface relaxes,an ellipsoidal-shaped nanobubble forms within a confined space,as shown in Fig.4(a)and Appendix A Movie S5[41].The merged gas nanobubble maintains a stable ellipsoidal shape.This nanobubble has a flat gas–liquid interface,which is easily deformed by the surrounding liquid flux.The fluctuation of the deformed liquid–gas interface is shown in Fig.4(c)as colored dashed lines.The time-series of TEM images in Fig.4(b)shows the generation of a large number of ultrasmall nanobubbles from the collapsing flat interface of the ellipsoidal nanobubble.When the interface curvature becomes convex at a certain moment,while the interface of the nanobubble fluctuates in the presence of small bubbles in the bulk phase,the gas–liquid interface is transiently stabilized,as shown in Fig.4(b).In the case of a nanobubble with a convex interface,because the radius of the interface curvature is on the nanometer scale,the internal pressure at the interface is high enough to balance the pressure from the surrounding liquid flow(Fig.4(d)).Conversely,the internal pressure of the flat interface is comparable to the pressure of the surrounding liquid flow,which can facilitate the deformation of the gas–liquid interface.At this moment,small nanobubbles can easily be produced from the unstable gas–liquid interface under electron-beam radiation,as illustrated in Fig.4(e).The sizes of the generated nanobubbles are mostly smaller than the critical size of stable nanobubbles;thus,the generated nanobubbles tend to rapidly lose their stability and dissolve.

    3.4.The effects of electron-beam and chemical conditions on nanobubbles

    During TEM observation,the radiolysis reaction of water induced by the electron beam can produce nanobubbles[31,42].The stability of the generated nanobubbles may be reduced due to the high scattering of the electron beam at the gas–liquid interfaces.However,we believe that the use of graphene windows may help to avoid unwanted effects on our observations,since graphene has a better ability to reduce the electron-beam effect or damage and to scavenge reactive radical species than other conventional liquid cells with SiNxwindows[43,44].Studies published recently by other groups have reported the poor stability of bulk nanobubbles in low-pH or salt solutions[45,46].The pH of the observed system was around 2.16,and various salts existing in the system may influence the stability of the nanobubbles.Nevertheless,as shown in Fig.1,the effect of surfactants on the stabilization of small nanobubbles seems to be predominant.

    Fig.3.Time-series of TEM images indicating(a)direct gas transport between two nanobubbles(NB1 and NB2)and(b)their merging process(NB3).(c)Contours of two nanobubble boundaries.(d)Change in area over time of two nanobubbles.(e)Tracked circularity of the nanobubbles before and after merging.(f)The local magnified contours of the merged nanobubble boundary.

    Fig.4.(a)Time-series of TEM images showing the nanobubble merging and interface relaxation process.(b)Time-series of TEM images showing gas–liquid interface deformation and nanobubble generation from the unstable interface.(c)Magnified contours of the fluctuations of deformed gas–liquid interfaces.Illustration of the interfacial stability of a nanobubble depending on its curvature:(d)convex interface and(e)flat interface of an ellipsoidal nanobubble.r:radius of curvature.

    4.Conclusions

    In summary,we performed TEM observations of surfactantladen nanobubbles in a liquid phase by using multi-chamber graphene liquid cells.We investigated the inter-nanobubble dynamics,including direct gas transport and merging processes.Our results indicate that a certain distance between interacting surfactant-laden nanobubbles is maintained over a prolonged period of time while stable gas transport occurs,rather than interfacial rupture followed by a merging process.Real-time TEM observations of nanobubbles also revealed that the stability of the interface of the nanobubbles degrades as the curvature decreases.Our studies based on in situ liquid-phase TEM provide physical insight into the fluid dynamics of bubbles at the nanoscale.The experimental method introduced in this report can be extended to other systems,including foam/emulsion stabilization,acoustic cavitation,sonochemistry,water treatment,and programmable drug/gene delivery,thereby providing physical perspectives that facilitate their applications.

    Acknowledgements

    Yuna Bae,Sungsu Kang,Byung Hyo Kim,and Jungwon Park acknowledge the financial support from the National Research Foundation of Korea(NRF)grant funded by the Korean government(Ministry of Science and ICT;NRF-2017R1A5A1015365),Creative-Pioneering Researchers Program through Seoul National University(2020),the Interdisciplinary Research Initiatives Programs by College of Engineering and College of Medicine,Seoul National University,and the POSCO Science Fellowship of POSCO TJ Park Foundation.Kitaek Lim,Sungho Jeon,and Won Chul Lee acknowledge the support from the NRF funded by the Ministry of Education(2019R1F1A1059099 and 2020R1F1A1065856)and the support from the research fund of Hanyang University(HY-2018-N).

    Compliance with ethics guidelines

    Yuna Bae,Sungsu Kang,Byung Hyo Kim,Kitaek Lim,Sungho Jeon,Sangdeok Shim,Won Chul Lee,and Jungwon Park declare that they have no conflict of interest or financial conflicts to disclose.

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.eng.2021.02.006.

    亚洲成人精品中文字幕电影| 中国三级夫妇交换| 成人高潮视频无遮挡免费网站| 熟女av电影| 国产伦在线观看视频一区| 男女无遮挡免费网站观看| 国产高清三级在线| 国产一区有黄有色的免费视频| 久久精品国产鲁丝片午夜精品| 高清日韩中文字幕在线| 午夜福利高清视频| 国产免费一级a男人的天堂| 亚洲,欧美,日韩| 免费人成在线观看视频色| 国产精品麻豆人妻色哟哟久久| 亚洲av成人精品一区久久| 日本三级黄在线观看| 91精品国产九色| 人妻少妇偷人精品九色| 一区二区三区乱码不卡18| 亚洲国产最新在线播放| 天天躁日日操中文字幕| 欧美日韩国产mv在线观看视频 | 91精品伊人久久大香线蕉| 国产黄片视频在线免费观看| 观看美女的网站| 天美传媒精品一区二区| 日韩制服骚丝袜av| 少妇人妻 视频| 搡女人真爽免费视频火全软件| 亚洲成人中文字幕在线播放| 精品一区二区免费观看| 五月伊人婷婷丁香| 欧美bdsm另类| 亚洲精品自拍成人| 国内精品美女久久久久久| 午夜福利在线观看免费完整高清在| 熟女电影av网| av网站免费在线观看视频| 成人毛片a级毛片在线播放| 人人妻人人澡人人爽人人夜夜| 色网站视频免费| 老司机影院毛片| 国产永久视频网站| 欧美一级a爱片免费观看看| 国产色婷婷99| 国产高清三级在线| 免费少妇av软件| 久久这里有精品视频免费| 尾随美女入室| av在线亚洲专区| 在线精品无人区一区二区三 | 欧美+日韩+精品| 麻豆成人av视频| 欧美激情久久久久久爽电影| 一个人看的www免费观看视频| 免费观看在线日韩| 国产老妇女一区| 日本-黄色视频高清免费观看| 精品熟女少妇av免费看| 亚洲欧美一区二区三区黑人 | 亚洲最大成人av| 久久ye,这里只有精品| av国产精品久久久久影院| 一级毛片我不卡| 亚洲国产最新在线播放| 亚洲国产最新在线播放| 天美传媒精品一区二区| xxx大片免费视频| 麻豆国产97在线/欧美| 一级毛片电影观看| 久久久久久久精品精品| 男插女下体视频免费在线播放| 亚洲欧美中文字幕日韩二区| 人妻系列 视频| 亚洲精品国产av蜜桃| 国产日韩欧美在线精品| 国产伦精品一区二区三区四那| 色5月婷婷丁香| 亚洲,欧美,日韩| 欧美日韩综合久久久久久| 麻豆久久精品国产亚洲av| 国产精品国产三级专区第一集| 日韩不卡一区二区三区视频在线| www.色视频.com| 色吧在线观看| 成人国产av品久久久| 国产精品久久久久久久久免| 国产成人aa在线观看| 国产精品一区www在线观看| 麻豆久久精品国产亚洲av| 我的老师免费观看完整版| 亚洲av在线观看美女高潮| 亚洲国产成人一精品久久久| 少妇的逼水好多| 内地一区二区视频在线| 免费黄色在线免费观看| 国产乱人偷精品视频| 又黄又爽又刺激的免费视频.| 国产成人a区在线观看| 日韩视频在线欧美| 欧美变态另类bdsm刘玥| 国产成人一区二区在线| 伦理电影大哥的女人| 大陆偷拍与自拍| 2022亚洲国产成人精品| 最新中文字幕久久久久| 大片电影免费在线观看免费| 日日摸夜夜添夜夜爱| 免费大片18禁| 精品久久久精品久久久| 亚洲精品国产av成人精品| 国产精品国产三级国产专区5o| 国产视频内射| 直男gayav资源| 最近最新中文字幕大全电影3| 国产探花在线观看一区二区| 不卡视频在线观看欧美| 国产欧美亚洲国产| 精品熟女少妇av免费看| 久久久久久九九精品二区国产| 亚洲av成人精品一二三区| 亚州av有码| 少妇人妻久久综合中文| 听说在线观看完整版免费高清| 亚洲精品日本国产第一区| 国产在线一区二区三区精| 欧美变态另类bdsm刘玥| 波野结衣二区三区在线| 高清午夜精品一区二区三区| 免费观看a级毛片全部| 久久久国产一区二区| 亚洲最大成人av| 卡戴珊不雅视频在线播放| 少妇人妻一区二区三区视频| av网站免费在线观看视频| 久久国产乱子免费精品| 成人国产麻豆网| 国产精品国产三级国产av玫瑰| 成人特级av手机在线观看| 国模一区二区三区四区视频| 色视频在线一区二区三区| 能在线免费看毛片的网站| a级毛色黄片| 国产久久久一区二区三区| 联通29元200g的流量卡| 可以在线观看毛片的网站| 99久久九九国产精品国产免费| 寂寞人妻少妇视频99o| eeuss影院久久| 日韩人妻高清精品专区| 日本wwww免费看| 久久久精品欧美日韩精品| 久久精品久久精品一区二区三区| 男女国产视频网站| 九色成人免费人妻av| 自拍欧美九色日韩亚洲蝌蚪91 | 三级经典国产精品| 麻豆成人av视频| 欧美最新免费一区二区三区| 交换朋友夫妻互换小说| 一区二区av电影网| 免费大片18禁| 天美传媒精品一区二区| 亚洲婷婷狠狠爱综合网| 18禁在线无遮挡免费观看视频| 久久久久国产精品人妻一区二区| 亚洲精品国产av蜜桃| 亚洲性久久影院| 人人妻人人澡人人爽人人夜夜| 亚洲第一区二区三区不卡| 亚洲国产日韩一区二区| 国产av码专区亚洲av| 亚洲av国产av综合av卡| 国产一区亚洲一区在线观看| 亚洲精品色激情综合| 国产精品精品国产色婷婷| 免费观看无遮挡的男女| 国产精品99久久99久久久不卡 | 国产视频首页在线观看| 精品久久久精品久久久| 18禁动态无遮挡网站| 成人一区二区视频在线观看| av天堂中文字幕网| 免费观看a级毛片全部| 欧美一区二区亚洲| 一二三四中文在线观看免费高清| av女优亚洲男人天堂| 少妇人妻精品综合一区二区| 亚洲久久久久久中文字幕| 国产成人a区在线观看| 日韩在线高清观看一区二区三区| av在线亚洲专区| 黄色配什么色好看| 插逼视频在线观看| 亚洲精品视频女| 精品国产三级普通话版| 舔av片在线| 国语对白做爰xxxⅹ性视频网站| 简卡轻食公司| 日本欧美国产在线视频| 少妇人妻精品综合一区二区| 国产亚洲av片在线观看秒播厂| 日日摸夜夜添夜夜添av毛片| 十八禁网站网址无遮挡 | 久久久久国产精品人妻一区二区| 免费黄频网站在线观看国产| 国产精品一区二区三区四区免费观看| 亚洲精品乱码久久久久久按摩| 免费电影在线观看免费观看| 91精品伊人久久大香线蕉| 最近的中文字幕免费完整| 中文字幕免费在线视频6| 久久精品熟女亚洲av麻豆精品| 欧美最新免费一区二区三区| av网站免费在线观看视频| 黑人高潮一二区| 美女xxoo啪啪120秒动态图| 一区二区三区乱码不卡18| 少妇 在线观看| 一级毛片aaaaaa免费看小| 国产午夜精品一二区理论片| 午夜福利高清视频| 免费电影在线观看免费观看| av国产精品久久久久影院| 成人鲁丝片一二三区免费| 可以在线观看毛片的网站| 大陆偷拍与自拍| 亚洲欧洲国产日韩| 综合色丁香网| 国产在视频线精品| 狠狠精品人妻久久久久久综合| 80岁老熟妇乱子伦牲交| 全区人妻精品视频| 久久精品久久久久久噜噜老黄| 欧美性猛交╳xxx乱大交人| 在线免费观看不下载黄p国产| 国产高清三级在线| 中文字幕亚洲精品专区| 日韩视频在线欧美| 久久久久久久久久人人人人人人| 亚洲真实伦在线观看| 蜜臀久久99精品久久宅男| eeuss影院久久| 久久久精品欧美日韩精品| 国产乱来视频区| 国产精品国产av在线观看| 午夜福利在线在线| 国产亚洲最大av| 秋霞在线观看毛片| 欧美一级a爱片免费观看看| 免费大片黄手机在线观看| 亚洲自拍偷在线| 欧美激情在线99| 久久久久久久大尺度免费视频| 看免费成人av毛片| 亚洲精品,欧美精品| 一级毛片久久久久久久久女| 色视频www国产| 91狼人影院| 亚洲精品亚洲一区二区| 国产男人的电影天堂91| 欧美日韩国产mv在线观看视频 | 久久精品国产亚洲av天美| 成人午夜精彩视频在线观看| 亚洲精品aⅴ在线观看| 国产精品三级大全| 能在线免费看毛片的网站| av在线app专区| 不卡视频在线观看欧美| 欧美日韩在线观看h| 偷拍熟女少妇极品色| 久久久色成人| 欧美成人精品欧美一级黄| 97在线人人人人妻| 日韩国内少妇激情av| 欧美日韩精品成人综合77777| 中国国产av一级| 国产精品嫩草影院av在线观看| 亚洲人成网站在线播| 亚洲最大成人中文| 亚洲精品成人久久久久久| 欧美性猛交╳xxx乱大交人| 99热这里只有是精品在线观看| 中文字幕久久专区| 精品国产露脸久久av麻豆| 成人国产av品久久久| 久久久精品免费免费高清| 欧美精品人与动牲交sv欧美| 夫妻午夜视频| 国产乱来视频区| 伊人久久精品亚洲午夜| 午夜福利高清视频| 亚洲最大成人av| 亚洲精品第二区| 亚洲在久久综合| 久久精品久久久久久噜噜老黄| 亚洲aⅴ乱码一区二区在线播放| 99热这里只有精品一区| 看免费成人av毛片| 国产 一区精品| 久久人人爽av亚洲精品天堂 | 内地一区二区视频在线| 黄色配什么色好看| 少妇丰满av| 18禁裸乳无遮挡免费网站照片| 中文在线观看免费www的网站| 寂寞人妻少妇视频99o| 18禁裸乳无遮挡动漫免费视频 | 国产爱豆传媒在线观看| 久久精品综合一区二区三区| 日韩一区二区三区影片| 内射极品少妇av片p| 身体一侧抽搐| 国产亚洲最大av| 日本黄色片子视频| 岛国毛片在线播放| 亚洲成人中文字幕在线播放| 国产精品久久久久久av不卡| 国产大屁股一区二区在线视频| 国产精品久久久久久久电影| 亚洲国产欧美人成| 99热全是精品| 日韩在线高清观看一区二区三区| 久久99蜜桃精品久久| 在线观看免费高清a一片| 夜夜爽夜夜爽视频| 交换朋友夫妻互换小说| 搡老乐熟女国产| 国产v大片淫在线免费观看| 免费大片黄手机在线观看| av免费在线看不卡| 国产在视频线精品| 看黄色毛片网站| 亚洲精品成人久久久久久| 亚洲,一卡二卡三卡| 久久精品国产a三级三级三级| 插逼视频在线观看| 丰满人妻一区二区三区视频av| 国产亚洲av嫩草精品影院| 国产精品国产av在线观看| 日韩伦理黄色片| 亚洲精品国产av成人精品| 在线播放无遮挡| 2021天堂中文幕一二区在线观| 久久97久久精品| 国产淫语在线视频| 免费看a级黄色片| 男男h啪啪无遮挡| 亚洲av成人精品一区久久| 欧美亚洲 丝袜 人妻 在线| 亚洲aⅴ乱码一区二区在线播放| 乱码一卡2卡4卡精品| 最近中文字幕2019免费版| 久久久成人免费电影| 麻豆成人午夜福利视频| 日日摸夜夜添夜夜添av毛片| 日本与韩国留学比较| 亚洲精品影视一区二区三区av| av在线app专区| av在线蜜桃| 搡老乐熟女国产| 在线免费十八禁| 亚洲国产精品999| 五月伊人婷婷丁香| 一本久久精品| 久热这里只有精品99| 26uuu在线亚洲综合色| 老司机影院成人| av专区在线播放| 亚洲精品,欧美精品| 国产免费一区二区三区四区乱码| 亚洲三级黄色毛片| 欧美三级亚洲精品| 麻豆国产97在线/欧美| 国产69精品久久久久777片| 亚洲色图av天堂| 国产男人的电影天堂91| 99热这里只有是精品在线观看| 色综合色国产| 日韩三级伦理在线观看| 国产中年淑女户外野战色| 亚洲精品一二三| 亚洲欧洲国产日韩| 男人爽女人下面视频在线观看| 国产欧美亚洲国产| 大片电影免费在线观看免费| 国产精品久久久久久久久免| 九九在线视频观看精品| 欧美国产精品一级二级三级 | 五月玫瑰六月丁香| 男人狂女人下面高潮的视频| 九草在线视频观看| 精品久久久久久久久av| 干丝袜人妻中文字幕| 亚洲成色77777| 97在线视频观看| 99热这里只有是精品在线观看| 成人亚洲精品一区在线观看 | 精品人妻偷拍中文字幕| 观看美女的网站| 欧美 日韩 精品 国产| 成人亚洲欧美一区二区av| 国产一区亚洲一区在线观看| 韩国高清视频一区二区三区| 成人亚洲欧美一区二区av| 国产成人福利小说| 在线亚洲精品国产二区图片欧美 | 精品一区二区免费观看| 老司机影院成人| 久久鲁丝午夜福利片| 一级毛片 在线播放| 啦啦啦啦在线视频资源| 三级男女做爰猛烈吃奶摸视频| 国产亚洲最大av| 国产综合懂色| 深夜a级毛片| av国产久精品久网站免费入址| 人人妻人人看人人澡| 美女国产视频在线观看| 日韩一区二区三区影片| 天堂中文最新版在线下载 | 美女视频免费永久观看网站| av在线蜜桃| 91精品伊人久久大香线蕉| 亚洲精品一二三| 亚州av有码| 国产精品一二三区在线看| 九九在线视频观看精品| 91在线精品国自产拍蜜月| 丝袜喷水一区| 亚洲精品亚洲一区二区| 久久6这里有精品| 黄色欧美视频在线观看| 婷婷色综合大香蕉| 王馨瑶露胸无遮挡在线观看| 免费人成在线观看视频色| 精华霜和精华液先用哪个| 少妇 在线观看| 肉色欧美久久久久久久蜜桃 | 欧美潮喷喷水| 26uuu在线亚洲综合色| 免费在线观看成人毛片| 在线看a的网站| 久久6这里有精品| 男人添女人高潮全过程视频| 亚洲怡红院男人天堂| 久久99热6这里只有精品| 大陆偷拍与自拍| 国产高清有码在线观看视频| 免费看不卡的av| 各种免费的搞黄视频| 亚洲精品中文字幕在线视频 | 六月丁香七月| 国产欧美日韩精品一区二区| 精品久久国产蜜桃| 亚洲欧美日韩无卡精品| 亚洲国产色片| 欧美区成人在线视频| 校园人妻丝袜中文字幕| 国产伦精品一区二区三区四那| 中国三级夫妇交换| 久热久热在线精品观看| 午夜福利高清视频| 大香蕉97超碰在线| 久久久久久久久久人人人人人人| 视频中文字幕在线观看| 赤兔流量卡办理| 18禁裸乳无遮挡动漫免费视频 | 3wmmmm亚洲av在线观看| 下体分泌物呈黄色| av.在线天堂| 国产精品久久久久久av不卡| 日韩欧美一区视频在线观看 | 国产一区二区三区综合在线观看 | 免费高清在线观看视频在线观看| 好男人在线观看高清免费视频| 欧美日韩综合久久久久久| 一级毛片久久久久久久久女| 国产日韩欧美在线精品| 亚洲国产av新网站| 国产精品久久久久久久久免| 丝瓜视频免费看黄片| 男女边摸边吃奶| 午夜爱爱视频在线播放| 特级一级黄色大片| 自拍欧美九色日韩亚洲蝌蚪91 | 国产精品国产三级国产av玫瑰| 欧美3d第一页| 汤姆久久久久久久影院中文字幕| 热99国产精品久久久久久7| 99精国产麻豆久久婷婷| 女人十人毛片免费观看3o分钟| 人妻 亚洲 视频| 亚州av有码| 丝瓜视频免费看黄片| 精华霜和精华液先用哪个| 热re99久久精品国产66热6| 91午夜精品亚洲一区二区三区| 午夜福利视频1000在线观看| 人体艺术视频欧美日本| 国精品久久久久久国模美| 伦精品一区二区三区| 高清av免费在线| 国产免费又黄又爽又色| 亚洲av免费在线观看| 伊人久久国产一区二区| av在线观看视频网站免费| 国产老妇伦熟女老妇高清| 成人亚洲欧美一区二区av| 91在线精品国自产拍蜜月| 亚洲欧美成人精品一区二区| 欧美精品国产亚洲| 亚洲人成网站在线播| 久久99蜜桃精品久久| 日本黄色片子视频| 亚洲自拍偷在线| 性色av一级| 亚洲欧美日韩无卡精品| 成人鲁丝片一二三区免费| 黄片无遮挡物在线观看| 国产乱来视频区| 2022亚洲国产成人精品| 99热全是精品| 久久女婷五月综合色啪小说 | 如何舔出高潮| 亚洲精品,欧美精品| 韩国高清视频一区二区三区| 国产精品福利在线免费观看| 色婷婷久久久亚洲欧美| 国产高清不卡午夜福利| 亚洲欧美日韩卡通动漫| 免费看光身美女| 观看美女的网站| 欧美人与善性xxx| 国产视频首页在线观看| 人人妻人人看人人澡| 久久久精品欧美日韩精品| 在线播放无遮挡| 欧美国产精品一级二级三级 | 啦啦啦中文免费视频观看日本| 欧美激情国产日韩精品一区| 国产亚洲最大av| 国产伦精品一区二区三区四那| 夫妻午夜视频| 免费av观看视频| 一级毛片电影观看| 小蜜桃在线观看免费完整版高清| 久久精品综合一区二区三区| 在线播放无遮挡| 亚洲精品国产色婷婷电影| 18+在线观看网站| 麻豆国产97在线/欧美| 少妇的逼水好多| 狂野欧美激情性xxxx在线观看| 成年女人在线观看亚洲视频 | 午夜免费观看性视频| 男女国产视频网站| 欧美老熟妇乱子伦牲交| 天美传媒精品一区二区| 国产伦理片在线播放av一区| 少妇裸体淫交视频免费看高清| 亚洲国产日韩一区二区| 在线观看免费高清a一片| av天堂中文字幕网| 最近手机中文字幕大全| 欧美日韩一区二区视频在线观看视频在线 | 精品人妻视频免费看| 亚洲精品第二区| 欧美日韩在线观看h| 又爽又黄无遮挡网站| 欧美bdsm另类| 中文字幕免费在线视频6| 美女主播在线视频| 亚洲精品国产av蜜桃| 国产精品秋霞免费鲁丝片| tube8黄色片| 大片电影免费在线观看免费| 精品久久久久久久人妻蜜臀av| 免费大片18禁| 久久久久久久久久久免费av| 亚洲综合精品二区| av在线蜜桃| 少妇熟女欧美另类| 亚洲av中文av极速乱| 免费黄色在线免费观看| 国产精品福利在线免费观看| 免费看av在线观看网站| 日本午夜av视频| 精品亚洲乱码少妇综合久久| 国产精品人妻久久久影院| 亚洲av成人精品一区久久| 日韩av免费高清视频| 91精品一卡2卡3卡4卡| 国产av国产精品国产| 成人亚洲欧美一区二区av| 婷婷色综合www| 国内精品美女久久久久久| 亚洲人与动物交配视频| 日产精品乱码卡一卡2卡三| 少妇熟女欧美另类| 欧美亚洲 丝袜 人妻 在线| 18禁动态无遮挡网站| 一级毛片 在线播放| 免费人成在线观看视频色| 国产一区二区亚洲精品在线观看| 少妇的逼水好多| 色视频在线一区二区三区| 久久久久久久久久久免费av| 久久久久九九精品影院| 在线观看av片永久免费下载| 久久久久国产精品人妻一区二区| 亚洲成人精品中文字幕电影| 亚洲av不卡在线观看| 视频区图区小说|