姚凡云,劉志銘,曹玉軍,呂艷杰,魏雯雯,吳興宏,王永軍,2,謝瑞芝
不同類型氮肥對(duì)東北春玉米土壤N2O和CO2晝夜排放的影響
1吉林省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與環(huán)境研究所/玉米國(guó)家工程實(shí)驗(yàn)室,長(zhǎng)春 130033;2吉林農(nóng)業(yè)大學(xué)農(nóng)學(xué)院,長(zhǎng)春 130118;3中國(guó)農(nóng)業(yè)科學(xué)院作物科學(xué)研究所,北京 100081
【】探明不同類型氮肥對(duì)高緯度春玉米土壤N2O和CO2晝夜排放的影響,以期為高緯度地區(qū)農(nóng)田氮肥高效利用管理和溫室氣體減排提供參考依據(jù)。通過(guò)田間微區(qū)施用緩釋肥(SLN)、尿素添加硝化抑制劑+脲酶抑制劑(NIUI)和普通尿素(OU)試驗(yàn),采用靜態(tài)箱-氣相色譜法,分別在苗前(S1)、苗期(S2)、拔節(jié)期(S3)、灌漿期(S4)、蠟熟期(S5)和休閑期(S6)6個(gè)時(shí)期取樣測(cè)定,比較分析農(nóng)田N2O和CO2的晝夜排放特性。施用不同類型氮肥,田間N2O和CO2晝夜排放均呈單峰變化趨勢(shì),S1—S6時(shí)期,土壤N2O排放高峰出現(xiàn)在12:00—19:00,排放低谷出現(xiàn)在下半夜(0:00—6:00),而S2—S5同一時(shí)期白天或夜晚各觀測(cè)時(shí)段之間CO2排放通量差異不顯著。S1和S2時(shí)期,N2O和CO2白天排放量分別占全天總排放量的56.2%—82.3%和53.6%—66.5%,而S3—S6時(shí)期,白天排放比例分別為40.6%—59.6%和43.7%—55.4%。SLN處理減少了S1時(shí)期土壤N2O的全天總排放量,而NIUI處理減少了S1、S2和S5時(shí)期土壤N2O的全天總排放量,其主要減排時(shí)段為S1時(shí)期的4:00—16:00和S2時(shí)期的12:00—22:00,其中S2時(shí)期18:00—19:00減排量占所有減排時(shí)段總量的57.3%,S5時(shí)期晝夜各時(shí)段均表現(xiàn)為減排作用,且晝夜減排比例相當(dāng);SLN對(duì)土壤CO2的主要減排時(shí)段為S1時(shí)期的全天和S3時(shí)期的15:00—4:00,其中S1時(shí)期12:00—23:00減排比例高達(dá)76.8%,S3時(shí)期夜晚減排比例占所有減排時(shí)段總量的68.1%;NIUI處理在玉米生長(zhǎng)季5個(gè)測(cè)定日都表現(xiàn)出對(duì)CO2的減排作用,但晝夜減排比例存在差異,白天平均減排46.9%,最高減排達(dá)73.2%。同時(shí)發(fā)現(xiàn),N2O和CO2排放通量日均值與9:00—10:00觀測(cè)值存在極顯著正相關(guān)關(guān)系(N2O=0.938**,CO2=0.977**),9:00—10:00可作為東北春玉米農(nóng)田N2O和CO2晝夜排放研究的代表性取樣時(shí)段。不同類型氮肥對(duì)土壤N2O和CO2晝夜排放通量的影響在不同時(shí)期表現(xiàn)各異。與常規(guī)施氮相比,緩釋氮肥抑制了玉米苗前期土壤N2O晝夜排放,減排時(shí)段主要在9:00—22:00,而在其他測(cè)定日均促進(jìn)了土壤N2O晝夜排放;尿素添加硝化抑制劑和脲酶抑制劑抑制了玉米苗前白天、苗期夜晚以及收獲期白天和夜晚的土壤N2O排放,對(duì)拔節(jié)期至灌漿期土壤N2O的晝夜排放均表現(xiàn)為促進(jìn)作用。在苗前測(cè)定日全天和拔節(jié)期測(cè)定日的夜晚,緩釋肥對(duì)土壤CO2表現(xiàn)出減排作用;尿素添加硝化抑制劑和脲酶抑制劑降低了6個(gè)測(cè)定日土壤CO2的排放。
不同氮肥;春玉米農(nóng)田;N2O和CO2排放通量;晝夜變化
【研究意義】農(nóng)業(yè)生產(chǎn)管理對(duì)農(nóng)田土壤溫室氣體的排放起著十分重要作用,對(duì)全球溫室效應(yīng)的影響不容忽視[1-3]。據(jù)統(tǒng)計(jì),全球農(nóng)業(yè)溫室氣體排放約占人類活動(dòng)產(chǎn)生溫室氣體排放總量的10%—12%,而且隨著農(nóng)作物產(chǎn)量的增加,溫室氣體排放也在不斷增加[4]。氮肥不合理施用是造成我國(guó)農(nóng)田溫室氣體尤其是N2O排放上升的主要因素[5],玉米生產(chǎn)中,通過(guò)施用緩釋肥或添加抑制劑來(lái)調(diào)控氮素形態(tài)轉(zhuǎn)化已被認(rèn)為是實(shí)現(xiàn)溫室氣體減排的有效措施之一[6-8]。在陸地溫室氣體排放的研究中,溫室氣體的晝夜變化觀測(cè)數(shù)據(jù)對(duì)于校正機(jī)理模型參數(shù),提高模型模擬效果具有重要作用[9];同時(shí),土壤溫室氣體排放通量的計(jì)算通?;趩蝹€(gè)日測(cè)量進(jìn)行,以表示1 d的平均排放通量[10]。由于野外工作條件的限制,全自動(dòng)觀測(cè)系統(tǒng)在溫室氣體排放中的應(yīng)用較少[11],而靜態(tài)箱制作成本較低,現(xiàn)場(chǎng)使用簡(jiǎn)單,易于推廣,在農(nóng)田溫室氣體監(jiān)測(cè)中得到了廣泛應(yīng)用[12]。對(duì)晝夜變化的觀測(cè)可為確定代表性的觀測(cè)時(shí)段提供參考,提高常規(guī)觀測(cè)的準(zhǔn)確性和代表性。【前人研究進(jìn)展】由于土壤和大氣間的水熱交換需要一定的傳導(dǎo)平衡時(shí)間[13],因此,在不同時(shí)間尺度上土壤溫室氣體排放與環(huán)境因素的關(guān)系可能會(huì)有不同的表現(xiàn)形式[14]。為了獲得溫室氣體的代表性采樣時(shí)間,前人已開(kāi)展了較多溫室氣體晝夜排放特性的研究[15],但受環(huán)境、地域等因素影響,土壤溫室氣體排放通量的晝夜變化規(guī)律并不一致[16]。Livesley等[17]以長(zhǎng)白山闊葉林紅松林地為研究對(duì)象,測(cè)定了土壤釋放的CO2通量,研究發(fā)現(xiàn),CO2排放通量晝夜變化和空氣溫度及土壤溫度關(guān)系密切。Akiyama等[18]對(duì)3種氮肥(控釋尿素、硫酸銨與尿素、硫酸銨與尿素?fù)郊酉趸种苿l件下土壤N2O晝夜排放通量的研究發(fā)現(xiàn),N2O排放通量白天較高,夜晚較低。然而,周存宇等[19]對(duì)鼎湖山針闊葉混交林地表溫室氣體排放的日變化研究結(jié)果并不支持這一結(jié)論,有的研究還發(fā)現(xiàn)溫度和通量最大值之間存在很大的滯后性[20]?!颈狙芯壳腥朦c(diǎn)】近年來(lái),有關(guān)添加硝化抑制劑或脲酶抑制劑下農(nóng)田溫室氣體排放規(guī)律及環(huán)境影響因素的報(bào)道逐漸增多,但前人的大多數(shù)研究是在季節(jié)等較大時(shí)間尺度上進(jìn)行,針對(duì)晝夜變化規(guī)律的研究相對(duì)較少,且集中于作物生育后期。目前關(guān)于東北春玉米不同生育階段農(nóng)田土壤溫室氣體晝夜排放的研究鮮見(jiàn)報(bào)道,這不利于玉米生產(chǎn)過(guò)程溫室氣體排放規(guī)律的理解和減排技術(shù)的研發(fā)?!緮M解決的關(guān)鍵問(wèn)題】本研究通過(guò)田間微區(qū)施用緩釋肥、尿素添加硝化抑制劑+脲酶抑制劑和普通尿素試驗(yàn),采用靜態(tài)箱-氣相色譜法,研究了東北春玉米農(nóng)田不同時(shí)期土壤CO2和N2O的晝夜排放規(guī)律,探明溫室氣體排放與空氣溫度、土壤溫度及土壤水熱間的關(guān)系,以確定最佳采樣時(shí)間,以期為東北農(nóng)田氮肥高效利用管理和溫室氣體減排提供參考依據(jù)。
試驗(yàn)于2018年5月至11月在吉林省農(nóng)業(yè)科學(xué)院長(zhǎng)春院區(qū)內(nèi)進(jìn)行(43°50′ N,125°23′ E),該區(qū)年平均氣溫4.6℃,年平均日照時(shí)數(shù)2712 h,無(wú)霜期140—150 d,年均降水量為600—700 mm。土壤類型為黑土,土壤質(zhì)地為壤土,容重1.4 g·cm-3,0—20 cm耕層土壤有機(jī)質(zhì)25.2 g·kg-1、堿解氮184.27 mg·kg-1、土壤速效磷17.54 mg·kg-1、速效鉀137.6 mg·kg-1,pH 7.6。
試驗(yàn)設(shè)置3個(gè)處理,處理間氮素養(yǎng)分含量一致,每個(gè)處理重復(fù)3次,隨機(jī)區(qū)組排列。每個(gè)小區(qū)6行,每行5 m,小區(qū)面積19.5 m2。3個(gè)處理分別為:
(1)普通尿素(OU)處理。氮、磷、鉀肥用量分別為180、90、90 kg·hm-2(以N、P2O5、K2O計(jì)),所用氮肥為尿素(含N 45%),磷肥為重過(guò)磷酸鈣(含P2O546%),鉀肥為氯化鉀(含K2O 60%),磷鉀肥作為底肥在春玉米播種前一次性施入,氮肥基追比為1﹕1,拔節(jié)期(7月11日)追肥。
(2)緩釋肥(SLN)處理。金正大樹(shù)脂包膜緩釋肥(含N 45%),釋放期為60 d,施用時(shí)期及方式與OU處理一致,磷鉀養(yǎng)分與OU處理相同。
(3)尿素+硝化抑制劑(雙氰胺)+脲酶抑制劑(氫醌)(NIUI)處理。雙氰胺用量為尿素用量的6%,脲酶抑制劑用量為純N的0.5%左右,尿素、硝化抑制劑和脲酶抑制劑中純氮含量與普通尿素處理純氮量相同,氮肥施用時(shí)期及方式與OU處理一致,磷鉀養(yǎng)分與OU處理相同。
試驗(yàn)用品種為先玉335,種植密度為60 000株/hm2,于2018年5月23日播種,9月26日收獲,玉米生育期間不進(jìn)行灌溉。
采用靜態(tài)箱法取樣,取樣箱為不透明PVC材料制作的長(zhǎng)方體箱,長(zhǎng)60 cm,寬25 cm,高30 cm,箱體頂部裝有三通閥用于取氣,箱內(nèi)頂部有一小風(fēng)扇,用于混勻箱內(nèi)氣體。取樣箱底座插入土壤中10 cm,箱體扣于底座凹槽上,并在凹槽中用水密封,且水不溢出。采樣期間箱內(nèi)不含作物和雜草,取樣箱扣在2株玉米間的畦上且兩邊各覆蓋半個(gè)行距,可以代表整行玉米田間的土面狀況。分別在6月1日(苗前,S1)、6月29日(苗期,S2)、7月17日(拔節(jié)期,S3)、8月2日(灌漿期,S4)、9月11日(蠟熟期,S5)以及11月13日(休閑期,S6)觀測(cè)土壤N2O和CO2晝夜變化動(dòng)態(tài)。于每個(gè)采樣日的6:00至次日5:00進(jìn)行取樣,分別在扣箱后的0、15、30 min打開(kāi)取樣箱頂部的開(kāi)關(guān)閥,用注射器抽取30 mL氣體于預(yù)抽為真空的12 mL血清瓶中;每3 h取一次,每次取樣在1 h內(nèi)完成。每次取氣樣的同時(shí),用熱敏電阻測(cè)定土壤5 cm處溫度和箱內(nèi)溫度,用便攜式土壤水分測(cè)定儀測(cè)定土壤水分體積含量。
樣品分析采用島津GC2010-plus氣相色譜儀(島津公司,日本),氣相色譜儀配有電子捕獲檢測(cè)器(ECD)、火焰離子檢測(cè)器(FID)以及精陽(yáng)流體GAS- 300A型氣體進(jìn)樣器,儀器分析條件參考文獻(xiàn)[21]。
溫室氣體排放通量計(jì)算公式為:
=×/×273/(273+)×60 (1)
式中,為CO2或N2O排放通量(mg·m-2·h-1);為箱內(nèi)氣體密度(g·cm-3);為采樣箱內(nèi)有效空間體積(L);為采樣箱覆蓋的土壤面積(m2);為取樣箱內(nèi)溫室氣體濃度隨時(shí)間的變化率(×10-9cm3·cm-3·min-1);為扣箱測(cè)定期間取樣箱內(nèi)的平均溫度(℃)[22]。
晝(夜)排放比例=晝(夜)累積排放量/全天總排放量í100% (2)
排放通量差()為某時(shí)間段SLN處理(F)或NIUI處理(F)與常規(guī)施肥處理(F)CO2或N2O排放通量的差值。<0時(shí)表現(xiàn)為減排作用,反之為增排。
試驗(yàn)中所獲得的數(shù)據(jù)采用Excel 2007進(jìn)行初步整理,用SPSS 18進(jìn)行描述性統(tǒng)計(jì)分析,運(yùn)用Duncan法進(jìn)行方差分析中的多重比較,利用Origin 2016軟件作圖和進(jìn)行回歸分析。
如圖1所示,氣溫和0—5 cm地溫均為單峰變化趨勢(shì)(休閑期除外,因休閑期地溫變化較小,地溫計(jì)精度為0.5℃,所測(cè)地溫?zé)o法顯示出溫度的變化),苗前至拔節(jié)期(S1—S3),0—10 cm土壤含水量呈晝高夜低趨勢(shì),但夜間變化不顯著,灌漿期(S4)則呈晝低夜高的趨勢(shì),蠟熟期(S5)0—10 cm土壤含水量晝夜變化不大,休閑期(S6)呈單峰變化趨勢(shì),中午前后達(dá)到峰值。
圖中S1—S6分別代表苗前、苗期、拔節(jié)期、灌漿期、蠟熟期和休閑期。下同
不同時(shí)期土壤N2O排放通量差異較大(圖2)。從全天平均排放通量來(lái)看,各處理均表現(xiàn)為拔節(jié)期(S3)>苗期(S2)>苗前(S1)>灌漿期(S4)>蠟熟期(S5)>休閑期(S6)。S1時(shí)期,緩釋肥(SLN)、尿素添加硝化抑制劑和脲酶抑制劑(NIUI)和普通尿素(OU)處理土壤N2O全天平均排放通量分別為42.8、47.8和52.5mg·m-2·h-1,S2時(shí)期分別為152.3、94.8和106.7mg·m-2·h-1,S3時(shí)期期分別為219.1、135.5和107.7mg·m-2·h-1,S4時(shí)期分別為30.2、40.2和19.3mg·m-2·h-1,S5時(shí)期分別為13.7、8.4和12.7mg·m-2·h-1,S6時(shí)期分別為4.6、4.0和3.0mg·m-2·h-1。從晝夜變化趨勢(shì)來(lái)看,整體呈單峰曲線,與5 cm地溫晝夜變化趨勢(shì)基本一致。S1時(shí)期,各處理平均排放高峰出現(xiàn)在12:00—13:00;S2—S4時(shí)期,各處理平均排放峰值出現(xiàn)在15:00—16:00;S5—S6時(shí)期,各處理平均排放高峰出現(xiàn)在18:00—19:00;不同時(shí)期土壤N2O最低排放通量通常出現(xiàn)在下半夜(0:00—6:00)。從晝夜排放比例來(lái)看,苗期至蠟熟期,各處理白天累積排放量逐漸降低,休閑期與蠟熟期無(wú)顯著差異。具體表現(xiàn)為,苗前土壤N2O白天排放比例為69.9%— 82.3%,苗期為56.2%—70.0%,拔節(jié)期為50.2%— 52.5%,灌漿期為48.2%—52.5%,蠟熟期為44.5%— 46.7%,休閑期為40.6%—50.4%。
不同時(shí)期土壤CO2排放通量也表現(xiàn)出較大差異性(圖3)。從全天平均排放通量來(lái)看,SLN處理表現(xiàn)為S3>S5>S2>S4>S1>S6,NIUI處理和OU處理表現(xiàn)為S3>S5>S2>S1>S4>S6。S1時(shí)期,SLN、NIUI和OU處理土壤CO2全天平均排放通量分別為248.2、330.9和344.8 mg·m-2·h-1,S2時(shí)期分別為486.5、349.5和453.2 mg·m-2·h-1,S3時(shí)期分別為684.0、565.7和731.7 mg·m-2·h-1,S4時(shí)期分別為450.1、269.3和333.2 mg·m-2·h-1,S5時(shí)期分別為572.6、441.7和482.2 mg·m-2·h-1,S6時(shí)期CO2排放通量顯著低于其他時(shí)期,分別為65.9、54.8和50.9 mg·m-2·h-1。從晝夜變化趨勢(shì)來(lái)看,晝夜變化動(dòng)態(tài)整體表現(xiàn)為單峰曲線,但苗期至成熟期同一時(shí)期白天或夜晚各觀測(cè)時(shí)段CO2排放通量間差異并不顯著(圖3)。從晝夜排放比例來(lái)看,S1—S4,各處理白天累積排放量整體表現(xiàn)為降低趨勢(shì),S5與S6無(wú)顯著差異。具體表現(xiàn)為,S1—S6土壤CO2白天排放比例分別為62.4%—65.7%、53.6%— 54.7%、49.8%—54.7%、49.3%—53.9%、52.2%—53.6%和43.7%—52.2%。
圖2 不同時(shí)期N2O排放通量的晝夜變化
圖3 不同時(shí)期CO2排放通量晝夜變化
從減排情況來(lái)看,不同時(shí)期N2O的排放通量差(ΔF)晝夜變化動(dòng)態(tài)各異。如圖4-a所示,與OU處理相比,苗前(S1)SLN處理整體表現(xiàn)為減排,減排時(shí)段主要在9:00—22:00,其中15:00—16:00減排量占全天減排時(shí)段總減排量的38.8%;苗期和拔節(jié)期(S2—S3)為N2O增排的主要時(shí)期,且晝夜均表現(xiàn)為增排,S2時(shí)期3:00—10:00增排比例較高,占全天增排時(shí)段總增排量的70.9%,S3時(shí)期晝夜增排比例相當(dāng),分別為48.8%和51.2%;灌漿期至休閑期(S4—S6),SLN處理整體表現(xiàn)為增排,但增排量較低。如圖4-b所示,與OU處理相比,NIUI處理的減排作用主要發(fā)生在S1、S2和S5,且S1時(shí)期NIUI處理的減排主要發(fā)生在3:00—16:00,而S2時(shí)期的減排作用發(fā)生在12:00—22:00,其中18:00—19:00減排量占57.3%,S5時(shí)期晝夜均表現(xiàn)為減排作用,且晝夜減排比例相當(dāng);增排作用主要發(fā)生在S3和S4,且晝夜均表現(xiàn)為增排,S6時(shí)期增排量較小,可忽略不計(jì)。
不同時(shí)期ΔF晝夜變化動(dòng)態(tài)各異。如圖5-a所示,與OU處理相比,SLN處理的CO2減排作用主要發(fā)生S1和S3時(shí)期,在S1時(shí)期晝夜均表現(xiàn)為減排,其中白天減排比例占全天減排量的54.0%,S3時(shí)期CO2減排主要發(fā)生在15:00—4:00,夜間減排比例占68.1%;S2、S4—S6時(shí)期SLN處理較OU處理增加了土壤CO2的排放,S2時(shí)期晝夜增排比例相當(dāng),S4—S6時(shí)晝夜均表現(xiàn)為增排。如圖5-b所示,與OU處理相比,NIUI處理在各時(shí)期均降低了土壤CO2的排放,白天平均減排46.9%,最高減排73.2%。S1時(shí)期減排主要發(fā)生在12:00—1:00,S2時(shí)期減排主要發(fā)生在12:00—16:00,減排比例占67.2%,S3時(shí)期白天減排比例為73.2%,S4和S5時(shí)期減排主要發(fā)生在12:00—22:00,減排比例分別為93.4%和77.8%,S6時(shí)期整體表現(xiàn)為增排。
為確定東北地區(qū)土壤N2O和CO2排放量的代表性取樣時(shí)間,對(duì)各處理不同取樣時(shí)間的溫室氣體排放通量與全天平均排放通量進(jìn)行了相關(guān)性分析(圖6—7),結(jié)果表明,各時(shí)間段土壤N2O和CO2排放通量與日均排放通量均存在顯著相關(guān)關(guān)系,若同時(shí)對(duì)土壤N2O和CO2排放通量進(jìn)行觀測(cè),9:00—10:00、18:00—19:00和3:00—4:00的平均相關(guān)系數(shù)分別為0.959、0.972和0.958,而9:00—10:00和3:00—4:00的相關(guān)方程斜率()最接近于1。本研究9:00—10:00土壤N2O和CO2排放量與全天平均排放量的相關(guān)系數(shù)分別為0.939和0.977,達(dá)到極顯著水平(<0.01)。因此,在東北春玉米田進(jìn)行長(zhǎng)時(shí)間尺度溫室氣體排放研究時(shí),9:00—10:00可以作為代表性取樣時(shí)段。
圖中每個(gè)時(shí)期從左到右8個(gè)長(zhǎng)條分別代表從早6:00至次日3:00的8個(gè)觀測(cè)時(shí)間。下同
圖5 不同時(shí)期SLN(a)、NIUI(b)與OU處理CO2排放通量差值晝夜變化
樹(shù)脂包膜緩釋肥通過(guò)減緩養(yǎng)分釋放速率,可避免施肥后土壤中無(wú)機(jī)氮過(guò)高或因氮素淋溶造成的N2O排放;尿素配合氫醌和雙氰胺施用能延緩?fù)寥乐心蛩氐乃猓种仆寥乐袖@態(tài)氮的硝化作用[23]。緩釋肥和抑制劑對(duì)土壤CO2排放的影響結(jié)果不一致,且機(jī)理尚不明確[21]。緩釋肥和抑制劑對(duì)土壤溫室氣體的作用效果受溫度、水分、通氣條件以及尿素濃度等因素影響[24]。在短時(shí)間尺度內(nèi),土壤養(yǎng)分、濕度及植物等狀況相對(duì)穩(wěn)定,溫度是影響土壤溫室氣體排放的主要因素[14, 25]。本研究表明,從整體來(lái)看,苗前至蠟熟期N2O和CO2排放通量變化幾乎與5 cm處土壤溫度變化一致,N2O和CO2晝夜排放均表現(xiàn)為單峰變化趨勢(shì),排放高峰出現(xiàn)在12:00—19:00,而排放低谷出現(xiàn)在0:00—6:00。Bremner等[26]和宋敏等[27]研究也認(rèn)為由于溫室氣體產(chǎn)生和擴(kuò)散傳輸過(guò)程的綜合作用,其排放通量變化幾乎與表層土壤溫度變化同步。而李發(fā)東等[11]研究得出,白天高溫對(duì)N2O排放的促進(jìn)作用存在滯后性,且該作用隨季節(jié)而存在差異。出現(xiàn)這一現(xiàn)象的原因可能是大氣溫度向土壤下層傳遞需要一定的時(shí)間[28]。
**代表P<0.01。下同 **means P<0.01. The same as below
圖7 不同取樣時(shí)間CO2排放通量與全天平均排放通量的相關(guān)分析
隨著玉米生育期的進(jìn)行,各處理土壤N2O白天排放比例逐漸降低。施用基肥后土壤氮素含量較高,玉米對(duì)土壤氮素的需求很少,土壤中的微生物活性和溫度的變化動(dòng)態(tài)決定了土壤N2O排放的大?。淮藭r(shí)期較大的晝夜溫差是造成土壤N2O排放晝夜差異較大的原因[16]。拔節(jié)期的采樣在追肥后第6天,土壤排放通量達(dá)到最高。這可能是因?yàn)橥寥赖睾亢蜏囟容^高所致;另外,此時(shí)期溫度較高但日夜溫差較小,土壤微生物活性可以一直維持較高的水平,故晝夜排放比例相當(dāng)。而在玉米休閑期,土壤N2O排放量低且晝夜差異較小,這可能與土壤氮?dú)埩糨^低和氣溫日較差較小有關(guān)。本研究得出,不同時(shí)期CO2排放通量整體表現(xiàn)為白天大于夜晚,但苗期至休閑期晝夜排放差異相對(duì)較小。土壤CO2的排放主要來(lái)源于土壤微生物呼吸、根呼吸和土壤動(dòng)物呼吸,而這些呼吸強(qiáng)度在一定范圍內(nèi)都隨溫度升高而增強(qiáng),因此不同時(shí)期土壤CO2排放通量的晝夜變化隨晝夜溫差的增大而增大[15]。
玉米出苗前,常規(guī)施肥處理(OU)土壤N2O全天平均排放通量高于其他處理,緩釋肥(SLN)和尿素添加硝化抑制劑和脲酶抑制劑(NIUI)處理對(duì)土壤N2O的減排作用主要發(fā)生在白天。與OU處理相比,SLN處理促進(jìn)了玉米苗期至休閑期5個(gè)測(cè)定日土壤N2O的全天平均排放,晝夜減排比例在不同時(shí)期差異較大;而NIUI處理在拔節(jié)期、灌漿期和休閑期的3個(gè)測(cè)定日促進(jìn)了土壤N2O的排放,其他時(shí)期則對(duì)土壤N2O的排放表現(xiàn)為抑制作用。同一時(shí)期不同處理間土壤N2O排放的差異主要受所施氮肥的影響,在施氮量相等的條件下,不同氮肥氮素的釋放速率和作物生長(zhǎng)狀況差異是造成不同處理土壤N2O排放差異的主要因素,因而其減排效果在各時(shí)期的表現(xiàn)也存在顯著差異。與OU處理相比,SLN處理對(duì)CO2的減排作用發(fā)生苗前和拔節(jié)期,出苗前白天減排效果優(yōu)于夜晚,而拔節(jié)期夜晚減排效果較好,其他時(shí)期則促進(jìn)了土壤CO2的排放。在玉米生長(zhǎng)季的5個(gè)測(cè)定日,NIUI處理都表現(xiàn)出對(duì)CO2的減排作用,休閑期則無(wú)減排效果。這可能是因?yàn)橐种苿┦沟梳尫啪徛叶啾蛔魑锢?,造成土壤中微生物活?dòng)受限,進(jìn)而造成CO2排放減少[29],休閑期無(wú)減排效果可能與取樣當(dāng)日地溫較低有關(guān)。而我們?cè)谇捌谘芯恐邪l(fā)現(xiàn),SLN和NIUI處理對(duì)土壤CO2周年累積排放通量無(wú)顯著影響[6],因此,研究時(shí)間尺度不同其減排效果也存在差異。
由于野外工作條件的限制,靜態(tài)箱法取樣通常是在上午9:00—11:00進(jìn)行[8,10,30-31]。眾多研究表明,土壤溫室氣體排放的晝夜動(dòng)態(tài)隨季節(jié)的變化和植物的生長(zhǎng)狀況而異,代表性取樣時(shí)間也會(huì)隨之變化[9,11,32]。徐鈺等[33]研究也表明,若不進(jìn)行有效的矯正處理,會(huì)導(dǎo)致對(duì)北方設(shè)施菜地土壤典型日N2O排放的估計(jì)偏高13.4%—240%或偏低13.1%—64.5%。本研究發(fā)現(xiàn),盡管N2O和CO2排放峰值與低谷在不同時(shí)期出現(xiàn)的時(shí)間段有所不同,但是這對(duì)全天平均排放通量發(fā)生的時(shí)間影響并不大,9:00—10:00觀測(cè)值N2O和CO2排放通量與全天平均排放量的相關(guān)系數(shù)顯著相關(guān),說(shuō)明該時(shí)段可以作為東北春玉米田不同時(shí)期溫室氣體研究的代表性取樣時(shí)段。
在不同氮肥施用下春玉米田N2O和CO2晝夜排放趨勢(shì)與5 cm處土壤溫度變化一致。玉米生育期內(nèi)的5個(gè)測(cè)定日,N2O和CO2排放高峰一般出現(xiàn)在午后,排放低谷一般出現(xiàn)在下半夜。苗前和苗期的2次N2O和CO2晝夜變化動(dòng)態(tài)均呈晝高夜低的特征,拔節(jié)期和休閑期的2次晝夜排放比例相當(dāng)。與常規(guī)施氮相比,緩釋氮肥抑制了玉米苗前土壤N2O晝夜排放,而在其他時(shí)期的測(cè)定日均促進(jìn)了土壤N2O晝夜排放;尿素添加硝化抑制劑和脲酶抑制劑抑制了玉米苗前白天、苗期夜晚以及收獲期白天和夜晚的土壤N2O排放,對(duì)玉米生長(zhǎng)旺季土壤N2O的晝夜排放均表現(xiàn)為促進(jìn)作用。在苗前測(cè)定日全天和拔節(jié)期測(cè)定日的夜晚,緩釋肥對(duì)土壤CO2表現(xiàn)出減排作用;尿素添加硝化抑制劑和脲酶抑制劑降低了6個(gè)測(cè)定日土壤CO2的排放。
[1] WHITE D. Expert Review of the Intergovernmental Panel on Climate Change (IPCC) 2019 Special Report Global Warming of 1.5°C, 2019.
[2] LI L, XU J H, HU J X, HAN J R. Reducing nitrous oxide emissions to mitigate climate change and protect the ozone layer. Environmental Science and Technology, 2014, 48(9): 5290-5297.
[3] THOMPSON R L, LASSALETTA L, PATRA P K, WILSON C, WELLS K C, GRESSENT A, KOFFI E N, CHIPPERDIELD M, WINIWARTER W, DAVIDSON E A, TIAN H, CANADELL J G. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nature Climate Change, 2019, 9(2): 1-6.
[4] GUDAPATY P, SRINIVAS I, RAO K V, SHANKER A K, RAJU B M K, CHOUDHARY D, RAO K S, SRINIVASRAO C, MANDAPAKA M. Net global warming potential and greenhouse gas intensity of conventional and conservation agriculture system in rainfed semi arid tropics of India. Atmospheric Environment, 2016, 145: 239-250.
[5] ZHANG J T, TIAN H Q, SHI H, ZHANG J F, WANG X K, PAN S F, YANG J. Increased greenhouse gas emission intensity of major croplands in China: Implications for food security and climate change mitigation. Global Change Biology, 2020, 26(11): 6116-6133.
[6] KANTER D R, SEARCHINGER T D. A technology-forcing approach to reduce nitrogen pollution. Nature Sustainability, 2018, 1(10): 544-552.
[7] MCGEOUGH K L, WATSON C J, M?LLER C, LAUGHLIN R. Evidence that the efficacy of the nitrification inhibitor dicyandiamide (DCD) is affected by soil properties in UK soils. Soil Biology and Biochemistry, 2016, 94: 222-232.
[8] 趙迅, 郭李萍, 謝立勇, 孫雪, 趙洪亮, 許婧. 不同農(nóng)作措施對(duì)棕壤玉米田N2O排放及碳足跡的影響. 中國(guó)農(nóng)業(yè)氣象, 2016, 37(3): 270-280.
ZHAO X, GUO L P, XIE L Y, SUN X, ZHAO H L, XU J. Impacts of different farming managements on N2O emission and carbon footprint for maize from brown soil. Chinese Journal of Agrometeorology, 2016, 37(3): 270-280. (in Chinese)
[9] 李梓銘, 杜睿, 王亞玲, 梁宗敏, 鐘磊, 吳紅軍. 中國(guó)草地N2O通量日變化觀測(cè)對(duì)比研究. 中國(guó)環(huán)境科學(xué), 2012, 32(12): 2128-2133.
LI Z M, DU R, WANG Y L, LIANG Z M, ZHONG L, WU H J. Comparison of diurnal variation of nitrous oxide fluxes from grassland of China. China Environmental Science, 2012, 32(12): 2128-2133. (in Chinese)
[10] ALVES B J R, SMITH K A, FLORES R A, CARDOSO A S, OLIVEIRA W R D, JANTALIA C P, URQUIAGA S, BODDEY R. Selection of the most suitable sampling time for static chambers for the estimation of daily mean N2O flux from soils. Soil Biology and Biochemistry, 2012, 46(46): 129-135.
[11] 李發(fā)東, 杜錕, 張秋英, 古叢珂, 冷佩芳, 喬云峰, 朱農(nóng), 郝帥, 黃勇彬, 施生錦. 華北平原農(nóng)田N2O排放通量的高頻動(dòng)態(tài)觀測(cè). 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2018, 26(2): 195-202.
LI F D, DU K, ZHANG Q Y, GU C K, LENG P F, QIAO Y F, ZHU N, HAO S, HUANG Y B, SHI S J. High-frequency dynamic observation of N2O emission flux from cropland in the North China Plain. Chinese Journal of Eco-Agriculture, 2018, 26(2): 195-202. (in Chinese)
[12] 劉羽, 周婧, 李珂萍, 李欣瑜, 王朝元, 施正香, 李保明. 影響靜態(tài)箱檢測(cè)開(kāi)放式氣體排放源N2O排放通量的關(guān)鍵因子. 農(nóng)業(yè)工程學(xué)報(bào), 2020, 36(8): 182-187.
LIU Y, ZHOU J, LI K P, LI X Y, WANG C Y, SHI Z X, LI B M. Key factors affecting the measurement of N2O emission from dairy farm using static-chamber method. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(8): 182-187. (in Chinese)
[13] HILLEL D. Environmental Soil Physics. San Diego: Academic Press, 1998: 291-293.
[14] 秦小光, 蔡炳貴, 吳金水, 王國(guó)安, 劉東生. 土壤溫室氣體晝夜變化及其環(huán)境影響因素研究. 第四紀(jì)研究, 2005, 25(3): 376-388.
QIN X G, CAI B G, WU J S, WANG G A, LIU D S. Diurnal variations of soil trace gases and related impacting factors. Quaternary Sciences, 2005, 25(3): 376-388. (in Chinese)
[15] YANG H, LIU S R, LI Y D, XU H. Diurnal variations and gap effects of soil CO2, N2O and CH4fluxes in a typical tropical montane rainforest in Hainan Island, China. Ecological Research, 2018, 33(2): 379-392.
[16] 田慎重, 寧堂原, 遲淑筠, 王瑜, 王丙文, 韓惠芳. 不同耕作措施的溫室氣體排放日變化及最佳觀測(cè)時(shí)間. 生態(tài)學(xué)報(bào), 2012, 32(3): 879-888.
TIAN S Z, NING T Y, CHI S Y, WANG Y, WANG B W, HAN H F. Diurnal variations of the greenhouse gases emission and their optimal observation duration under different tillage systems. Acta Ecologica Sinica, 2012, 32(3): 879-888. (in Chinese)
[17] LIVESLEY S J, KIESE R, GRAHAM J, WESTON C J, BUTTERBACH- BAHL K, ARNDT S K. Trace gas flux and the influence of short-term soil water and temperature dynamics in Australian sheep grazed pastures of differing productivity. Plant and Soil, 2008, 309(1/2): 89-103.
[18] AKIYAMA H, TSURUTA H, WATANABE T. N2O and NO emissions from soils after the application of different chemical fertilizers. Chemosphere - Global Change Science, 2000, 2(3/4): 313-320.
[19] 周存宇, 張德強(qiáng), 王躍思, 周國(guó)逸, 劉世忠, 唐旭利. 鼎湖山針闊葉混交林地表溫室氣體排放的日變化. 生態(tài)學(xué)報(bào), 2004, 24(8): 1738-1741.
ZHOU C Y, ZHANG D Q, WANG Y S, ZHOU G Y, LIU S Z, TANG X L. Diurnal variations of fluxes of the greenhouse gases from a coniferous and broad-leaved mixed forests oil in Dinghushan. Acta Ecologica Sinica, 2004, 24(8): 1738-1741. (in Chinese)
[20] THOMSON P E, PARKER J P, ARAH J R M, CLAYTON H, SMITH K A. Automated soil monolith-flux chamber system for the study of trace gas fluxes. Soil Science Society of America Journal, 1997, 61(5): 1323-1330.
[21] 姚凡云, 王立春, 多馨曲, 劉志銘, 呂艷杰, 曹玉軍, 魏雯雯, 王永軍. 不同氮肥對(duì)東北春玉米農(nóng)田溫室氣體周年排放的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2019, 30(4): 1303-1311.
YAO F Y, WANG L C, DUO X Q, LIU Z M, Lü Y J, CAO Y J, WEI W W, WANG Y J. Effects of different nitrogen fertilizers on annual emissions of greenhouse gas from maize field in Northeast China. Chinese Journal of Applied Ecology, 2019, 30(4): 1303-1311. (in Chinese)
[22] LIU Y N, LI Y C, PENG Z P, WANG Y Q, MA S Y, GUO L P, LIN E D, HAN X. Effects of different nitrogen fertilizer management practices on wheat yields and N2O emissions from wheat fields in North China. Journal of Integrative Agriculture, 2015, 14(6): 1184-1191.
[23] 孫磊, 王麗華, 高中超, 佟玉欣, 張磊, 常本超, 王爽, 郝小雨. 減氮配合增效劑和緩釋肥對(duì)玉米田土壤溫室氣體排放和產(chǎn)量的影響. 土壤通報(bào), 2020, 51(1): 185-194.
SUN L, WANG L H, GAO Z C, TONG Y X, ZHANG L, CHANG B C, WANG S, HAO X Y. Effects of reduction of nitrogen fertilizer combined with synergist and slow release fertilizer on greenhouse gas emissions and yield in corn field. Chinese Journal of Soil Science, 2020, 51(1): 185-194. (in Chinese)
[24] 馬芬, 楊榮全, 郭李萍. 控制氮肥施用引起的活性氮?dú)怏w排放: 脲酶/硝化抑制劑研究進(jìn)展與展望. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2020, 39(4): 908-922.
MA F, YANG R Q, GUO L P. Decrease the emission of active nitrogen gases in nitrogen fertilizer application: Research progresses and perspectives of urease/nitrification inhibitors. Journal of Agro-Environment Science, 2020, 39(4): 908-922. (in Chinese)
[25] LI J, WANG M X, WANG Y S, HUANG Y, ZHENG X H, XU X. Advance of researches on greenhouse gases emission from Chinese agricultural ecosystem. Chinese Journal of Atmospheric Sciences, 2003, 27(4): 740-749.
[26] BREMNER J M, ROBBINS S G, BLACKMER A M. Seasonal variability in emission of nitrous oxide from soil. Geophysical Research Letters, 2013, 7(9): 641-644.
[27] 宋敏, 齊鵬, 蔡立群, STEPHEN Y, 張軍, 張仁陟, 武均, 謝軍紅. 不同生物質(zhì)炭輸入水平下旱作農(nóng)田溫室氣體排放研究. 2016, 24(10): 1185-1195.
SONG M, QI P, CAI L Q, STEPHEN Y, ZHANG J, ZHANG R Z, WU J, XIE J H. Diurnal variations of greenhouse gases emissions under different biochar applications. Chinese Journal of Eco-Agriculture, 2016, 24(10): 1185-1195. (in Chinese)
[28] 張仲新, 李玉娥, 華珞, 萬(wàn)運(yùn)帆, 姜寧寧. 不同施肥量對(duì)設(shè)施菜地N2O排放通量的影響. 農(nóng)業(yè)工程學(xué)報(bào), 2010, 26(5): 269-275.
ZHANG Z X, LI Y E, HUA L, WAN Y F, JIANG N N. Effects of different fertilizer levels on N2O flux from protected vegetable land. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(5): 269-275. (in Chinese)
[29] 朱龍飛, 徐越, 張志勇, 于旭昊, 馬新明, 閆廣軒, 孔玉華. 不同施氮措施對(duì)冬小麥農(nóng)田土壤溫室氣體通量的影響. 生態(tài)環(huán)境學(xué)報(bào), 2019, 28(1): 143-151.
ZHU L F, XU Y, ZHANG Z Y, YU X H, MA X M, YAN G X, KONG Y H. Effect of different nitrogen application measures on soil greenhouse gases fluxes in winter wheat cropland. Ecology and Environmental Sciences, 2019, 28(1): 143-151. (in Chinese)
[30] 李燕青, 唐繼偉, 車升國(guó), 溫延臣, 孫文彥, 趙秉強(qiáng). 長(zhǎng)期施用有機(jī)肥與化肥氮對(duì)華北夏玉米N2O和CO2排放的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2015, 48(21): 4381-4389.
LI Y Q, TANG J W, CHE S G, WEN Y C, SUN W Y, ZHAO B Q. Effect of organic and inorganic fertilizer on the emission of CO2and N2O from the summer maize field in the North China Plain. Scientia Agricultura Sinica, 2015, 48(21): 4381-4389. (in Chinese)
[31] WANG C, LIU J Y, SHEN J L, CHEN D, LI Y, JIANG B S, WU J S. Effects of biochar amendment on net greenhouse gas emissions and soil fertility in a double rice cropping system: A 4-year field experiment. Agriculture Ecosystems and Environment, 2018, 262: 83-96.
[32] REEVES S, WANG W J. Optimum sampling time and frequency for measuring N2O emissions from a rain-fed cereal cropping system. Science of the Total Environment, 2015, 530/531: 219-226.
[33] 徐鈺, 劉兆輝, 石璟, 魏建林, 李國(guó)生, 王梅, 江麗華. 北方設(shè)施菜地土壤N2O排放通量日變化及最佳觀測(cè)時(shí)間確定. 中國(guó)農(nóng)業(yè)氣象, 2016, 37(5): 505-512.
XU Y, LIU Z H, SHI J, WEI J L, LI G S, WANG M, JIANG L H. Diurnal variation characteristic of nitrous oxide from greenhouse vegetable soil during emission peak and its optimal observation duration. Chinese Journal of Agrometeorology, 2016, 37(5): 505-512. (in Chinese)
Diurnal Variation of N2O and CO2Emissions in Spring Maize Fields in Northeast China under Different Nitrogen Fertilizers
1Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences/State Engineering Laboratory of Maize, Changchun 130033;2College of Agronomy, Jilin Agricultural University, Changchun 130118;3Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081
【】The effects of different types of nitrogen fertilizers on the diurnal variation of N2O and CO2fluxes from spring maize soil at high latitude were explored, in order to provide a reference for nitrogen fertilizer efficient utilization management and greenhouse gas emission reduction in farmland at high latitude.【】Field micro-plot trials and the static chamber-gas chromatography method were used to investigate the effects of slow release fertilizer (SLN), urea plus nitrification inhibitor and urease inhibitor (NIUI) and ordinary urea application (OU) on the diurnal variation of N2O and CO2emissions from spring maize fields at high latitudes. The day-night emission characteristics of soil N2O and CO2were compared and analyzed in 6 periods, including pre-emergence stage (S1), seedling stage (S2), jointing stage (S3), filling stage (S4), dough stage (S5), and fallow period (S6).【】The diurnal variation of N2O and CO2emissions under different nitrogen fertilizers showed a single peak trend. From stage S1 to S6, the peak of N2O emissions appeared in 13:00-19:00, and the peak valley occurred after midnight (0:00-6:00). However, there was no significant difference in CO2fluxes between observation periods during day or night at the same stage from S2 to S5. In stage S1 and S2, the daytime emissions of N2O and CO2accounted for 56.2%-82.3% and 53.6%-66.5% of the total emissions of the whole day, respectively. From stage S3 to S5, the ratio of N2O and CO2emission in the daytime was 40.6%-59.6% and 43.7%-55.4%, respectively. SLN treatment reduced the soil N2O cumulative emission in stage S1, while NIUI treatment reduced the soil N2O cumulative emission at stages S1, S2 and S5, and the emission reduction period was mainly from 4:00-16:00 in the daytime of stage S1 and 12:00 to 22:00 of stage S2, among which the emission reduction from 18:00-19:00 during stage S2 accounts for 57.3% of the total emission reduction period. All time periods of day and night showed the effect of emission reduction in stage S5, and the ratio of emission reduction during day and night was almost the same. The main emission reduction periods of SLN for soil CO2were the whole day in S1 stage and 15:00-4:00 in S3 stage, among which the emission reduction ratio of 12:00-23:00 during the S1 stage was as high as 76.8%, and the reduction ratio at night during S3 accounted for 68.1% of all emission reduction periods. NIUI treatment showed a reduction effect on CO2emission in five monitoring days of growing season of maize, but the ratio of day-night emission reduction was different, with an average reduction of 46.9% during the day and a maximum reduction of 73.2%. It was also found that there was an extremely significant positive correlation between the daily mean of N2O and CO2fluxes, and the observed values of 9:00-10:00 (N2O=0.938**,CO2=0.977**). Therefore, 9:00-10:00 could be used as the representative sampling period when conducting long-term greenhouse gas emission research in spring maize fields in Northeast China.【】The diurnal emission fluxes of soil N2O and CO2responded differently to various nitrogen fertilizations at different maize growing stages. Compared with conventional nitrogen application, SLN inhibited the soil N2O emission before maize seedling in day and night, and the emission reduction period was mainly between 9:00-22:00. SLN promoted the emission of N2O in day and night in other monitoring days. NIUI inhibited the soil N2O emission during the daytime before maize seedling, the night at the seedling stage, and the harvest stage day and night, while NIUI promoted the soil N2O emission from jointing stage to filling stage. In the whole monitoring day before seedling and the night of the monitoring day at jointing stage, SLN had a reduction effect on soil CO2. NIUI reduced soil CO2emissions in six monitoring days.
different nitrogen fertilizers; spring maize field; N2O and CO2fluxes; day and night emission dynamics
10.3864/j.issn.0578-1752.2021.17.010
2020-09-03;
2020-10-30
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2017YFD0300303)
姚凡云,E-mail:yaofanyun@163.com。通信作者王永軍,E-mail:yjwang2004@126.com。通信作者謝瑞芝,E-mail:xieruizhi@caas.cn
(責(zé)任編輯 楊鑫浩)