• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Comparison of Three Different Solution Decomposition Schemes for Poisson-Boltzmann Models

    2021-09-17 01:24:58LiJiaoGuoRongHuJialuanYingJinyong

    Li Jiao Guo Rong Hu Jialuan Ying Jinyong

    (1.School of Mathematics and Statistics,Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering,Changsha University of Science and Technology,Changsha 410114,China;2.School of Mathematics and Statistics,HNP-LAMA,Central South University,Changsha 410083,China)

    Abstract To deal with the singularity in Poisson-Boltzmann models caused by fixed charge distribution in biomolecules,several decomposition schemes have been proposed in literatures.In this paper,three commonly-used decomposition schemes,the two-term decomposition scheme,the three-term decomposition only in biomolecular domain,and the three-term decomposition in the whole domain,for Poisson-Boltzmann models are reviewed and compared.Numerical tests on a Born ball model with analytical solution show the performance of each scheme.

    Key words Poisson-Boltzmann model Two-term decomposition scheme Three-term decomposition scheme Singularity Biomolecule

    1 Introduction

    A commonly-used electrostatics model,called the Poisson-Boltzmann equation (PBE),in biomolecular simulations with a symmetric 1:1 electrolyte usually has the following form:

    where ? is a given sufficiently large connected and convex domain satisfying ?=Dp ∪Ds ∪Γ with the protein domainDpbeing surrounded by the solventDsand Γ being the interface betweenDpandDs(Γ is assumed to be of classC2to guarantee the existence and uniqueness of the solution analytically,see[3]for example),?pand?sare dielectric constants inDpandDs,respectively(we set?p=2.0 and?s=80.0 in this paper),uis the dimensionless electrostatic potential,gis a given function,?? denotes the boundary of ?,δrjis the Dirac delta distribution at point rj,n(s)is the unit outward normal vector ofDp,andαandare defined by

    Hereecis the elementary charge,kBis the Boltzmann constant,Tis the absolute temperature,Isis the ionic strength,andNAis the Avogadro constant,which estimates the number of ions per mole as 6.02214129×1023.In electrostatic units(esu),ecandkBare estimated by

    In biomolecular calculation,the domain ? is measured in angstroms(?).Thus,the length unit should be converted from centimeter(cm)to angstrom(1cm=108?).ForT=298.15KandIs=0.1 mole per liter,which are often used in numerical tests,αand2can be found to have the following values

    The PBE given in(1.1)is difficult to analyze and solve numerically due to its singularity caused by the fixed charge distribution in biomolecules,the coefficients’jump on interface between biomolecule domain and solvent domain,and its strong nonlinearity caused by the exponential functions.To overcome these issues in analyzing and solving PB models,there are several decomposition schemes in literatures[1-11].We introduce three commonly-used decomposition schemes and show their performances in this paper.

    Based on the performances of these three schemes,the choice of the decomposition depends on the applications since different requirements are posed in different applications.For example,protein docking and protein binding are highly correlated with the electrostatic potential at the surface of the biomolecule,while some bimolecular activities are occurred through the solvent and thus the electrostatic potential outside the biomolecule is expected.

    The remaining sections of this paper are organized as follows:In Section 2,we briefly review the definitions and features of these three commonly-used decomposition schemes.Section 3 introduces the program package for solving PBE based on these three decompositions.Numerical results for these schemes on a Born ball model are reported in Section 4.Section 5 gives the conclusions.

    2 Review of three decomposition schemes

    In this section,we briefly review the definitions and features of three decomposition schemes.

    2.1 Two-term Scheme(Scheme 1)

    A two-term scheme was proposed and analyzed in [1],which is motivated by the physical interpretation of the solution of PBE and decomposes the solution into two components,based on the distinct solvent domainDsand the molecular domainDpin the model.This scheme can be described in the following way:For a solutionuof(1.1),it can be decomposed as

    whereuRis a solution of the following equation

    andGis given by

    This natural decomposition splits the PBE into a singular functionGhaving a regularized well-posed PBE(2.2)ofuRand a simple closed form expression given in(2.3).Numerically,the singular componentGgiven by (2.3) is obtained before the solution of (2.2).The weak form solution of (2.5) is given by:finding

    such that?v ∈

    2.2 Three-term decomposition in biomolecule domain scheme(Scheme 2)

    A second decomposition scheme proposed in[2]is often used[12,15].This decomposition splits the solutionuof PBE(1.1)into three parts in the protein domain only,described as below:

    whereuhis a solution of the harmonic equation

    the singular componentGis the restriction of the solution of(2.3)toDp,and the regular componentursatisfies the equation

    In this decomposition,Gis easy to get,anduhcan be obtained by seeking a solution of the weak form:findinguh ∈H1(Dp)andu=?Gon Γ,such that

    Therefore,Ganduhare known before the solution of nonlinear equation(2.8)forur.And the weak form solution of(2.8)is given by:finding

    such that

    2.3 Three-term decomposition in the whole domain scheme(Scheme 3)

    Another solution decomposition proposed in[3]naturally splits the NPBE solutionuinto three parts,G,Ψ,and,within both the solute domainDpand the solvent domainDs,according to electrostatic contributions from the biomolecular charges,the boundary and interface conditions,and the ionic solvent charges,respectively.This decomposition has the form

    Ψ satisfies the equation

    andGis given by(2.3).

    In this decomposition,the jump interface condition is collected in term Ψ,which is a solution of a linear problem(2.13)and is easy to obtain,whose weak form is given as follows:finding Ψ∈H1(?)and Ψ=g ?Gon??,such that

    Before solving the nonlinear problem(2.12),Gand Ψ are available,andis a weak form:finding

    such that

    2.4 Features of these three schemes

    The features of these three schemes are introduced in this section.

    Features of the two-term decomposition scheme(Scheme 1)are described as below:

    ? Scheme 1 has significant importance in theory and makes possible the development of a complete solution and approximate theory for the PBE.

    ? Since the nonlinear term of the PBE is given in the form sinh(uR+G),when solved by a Newton type method,it may cause an overflow problem when an initial guess ofuRis not well selected,e.g.settinguR=0 will result in thatGbecomes a dominated part at some mesh points,this will cause a huge value of sinh.

    ? We notice that the term

    for Scheme 1 induced by the interface condition,stays in the weak form of nonlinear problem(2.2).This causes more cost to solve the nonlinear problem and may lead to failure in finding solution for the nonlinear problem when the total charge inDpis large.

    ? Moreover,numerical tests in[12]showed that small relative error of regular partuRwould cause large perturbation in the full potentialudue to different magnitude dielectric constants inDpandDs.Hence,numerical algorithm based on this decomposition may fail sometimes.

    Features of the three-term decomposition in bimolecular domain scheme(Scheme 2)are described as below:

    ? The Poisson boundary value problem ofuhoverDpmay be difficult to solve due to a complicated shape ofDp,which may not be convex and may have a nonsmooth boundary.Thus,its solution may not be inH2(Dp),causing the difficulties in its numerical solution.

    ? For equation(2.7)ofuhin Scheme 2,its domainDpmay be irregular and nonconvex,which may cause difficulties to solve equation(2.7).

    ? The nonlinear equation (2.8) ofurhas singularity on the interface Γ caused by the jump discontinuous interface condition,which induces the term

    stays in the weak form of nonlinear problem(2.8).This may cause more cost to solve the nonlinear problem and may lead to failure in finding solution for the nonlinear problems when the total charge inDpis large.

    ? Moreover,it is more complicated in numerical implementation for components in (2.6) since two different function spaces are required by using finite element method.

    ? The undetermined part of the nonlinear term sinh(u)isufor Scheme 1 andfor Scheme 2.

    ? Since there is no decomposition ofuinDs,errors in numerical solutions ofurare not amplified inuinDs.

    Features of the three-term decomposition in the whole domain scheme(Scheme 3)are described as below:

    ? The treatment of the flux jump discontinuity on the interface and the non-homogeneous boundary condition is moved to the linear problem(2.13)of Ψ.As a result,the nonlinear problem(2.12)ofhas the continuous interface conditions and a homogeneous boundary condition.Hence,it can be more efficiently solved than the nonlinear problems from the other two schemes.

    ? Since the part Ψ+Ggives the potential of a protein in water,the nonlinear problem(2.12)ofcan be solved by a Newton-type method using zero as an initial guess without instability problem.

    3 Program package for solving PBE based on these three decompositions

    A finite element program package in Python based on our previous package[13]is produced in this paper.All involved boundary value problems are approximated by a finite element method,and then solved by the linear iterative solver GMRES with the ILU preconditioner from the PETSc library.

    In all numerical tests,we set the relative and absolute tolerances of GMRES as 10?10,and use values ofαandgiven in(1.3).All the tests are made on one 2.8 GHz Intel Core i7 processor of a MacBook Pro with 4GB memory.

    At first,we describe the algorithm to solve the PBE based on these three decompositions as below:

    Algorithm 1

    Step 1 Generate a mesh.

    Step 2Gby(2.3)and?Gby(2.4).

    Step 3 Obtain a solutionuhof(2.9)and a solution Ψ of(2.14).

    Step 4 Call a nonlinear solver to find the solutionsuR,ur,andfor(2.5),(2.10),and(2.15),respectively.

    Step 5 Obtain the solutionufor PBE(1.1)by decomposition(2.1),(2.6),or(2.11).

    To generate a mesh,the following steps are used in this paper:at first,we use DOLFIN [14] to generate a triangulation on the sphere of two spheres with radiuses 1 and 5,respectively? then Tetgen(http://tetgen.org) is used to generate the Delaunay tetrahedralizations based on the input triangulation generated in DOLFIN.To verify the stability of these schemes,an original meshM,the mesh refined onMdenoted byM1,and the mesh refined onM1 denoted byM2 are used.To avoid sharp increase of the number of vertices,we take the bisection refinement strategy instead of uniformly refinement to refine the meshes.

    In these three solution decomposition schemes for the PBE,the componentsGand Ψ are easy to obtain.And foruh,there are two ways to solve the equation(2.7)in DOLFIN,provided that we only have a mesh on the whole domain ?.Let the mesh beMand we present the two approaches in the following:

    (1) Based on the meshM,we calculate the solution of(2.7)by extending the current protein domainsDpto the whole domain ? and then applying the boundary condition on the interface Γ and on??,that is,(2.7)is equivalent to the problem:finding

    such that

    then restrict the solutionuhtoDpafter obtaining the solutionuhin the whole domain ?.

    (2) Another approach to solve equation(2.7)is to extract the sub-mesh containing the vertices on interface Γ and inside the protein domainDpfromM,then follow the routine procedure in DOLFIN to obtain the solution.

    These two ways lead to similar results,except the small difference caused by solving two different linear equations.

    We next focus on seeking for solutionsuR,ur,andto nonlinear problems(2.2),(2.8)and(2.12)by solving(2.5),(2.10)and(2.15),respectively.A modified Newton-type method from[16]is employed to find the solutions of these variational problems.And the following minimization problem is considered:

    wherev?is the minimizer as the solution of the variational problem considered.We need to find the corresponding functionalJ(v)for each variational problem.The modified Newton method is described as follows.

    Step 4 Decide a steplengthλk:set steplengthλk=1,if

    go to step 5,otherwise,decideλkby a line search algorithm to satisfy(3.3)and go to the next step.Step:=k+1.Go to Step 2.

    4 Numerical tests for the three schemes

    To compare these three schemes numerically,we use the following nonlinear Born ball model,i.e.a point charge lies in the origin of a unit ball,whose analytical solution is available:

    where ? = {r : |r| < Rs},Dp= {r : |r| < Rp},Ds= {r : Rp< |r| < Rs},Γ = {r : |r| = Rp},z is a charge number,ρ=,and δ is the Dirac delta distribution at the origin. The analytical solution of this Born ball model is given by

    To do tests on this model,we need to modify the equations(2.2),(2.8)and(2.12)by adding the termρin(4.1)to the right hand side of their second equations.

    For Scheme 1,we solve the following linear problem ofuRto obtain a good initial guess for the Newton method:

    and then,define the following functional for minimization problem(3.1):

    whose first and second derivatives are found as

    We first do numerical tests for these three decomposition schemes on the nonlinear Born ball model(4.1)without truncation on the terms sinh(?) and cosh(?),in other words,skipping step 2 in the modified Newton method.In these numerical tests,we have three meshes,that is,an original meshMwith 3763 vertices,a meshM1 with 19523 vertices obtained from refiningM,and a meshM2 with 72247 vertices obtained from refiningM1.

    Numerical results for these three schemes with two different initial guesses,the solution of the corresponding linear problem and zero,for solving nonlinear partuRare presented in Table 1.Herez=1,and its relative errorwith respect to the analytical solution,and the number of iterations are reported.

    From Table 1,we can see that Scheme 1 is sensitive to initial guesses,when zero is selected as its initial guess,it blows up,while Schemes 2 and 3 are stable for different initial guesses,except that one more iteration is needed for initial guess zero.We note that Scheme 2 has the highest solution accuracy on coarse meshesMandM1,and the solution accuracy of all Schemes are increased as the increase of mesh points.Note that on the finest meshM2,the solution accuracy of these three schemes are very close.

    Since these schemes would encounter the blow-up problem for largez,the modified Newton method is used,that is,with truncation on the terms sinh(?) and cosh(?).Numerical results for these three decomposition schemes solved by the modified Newton method are presented in Table 2.

    From Table 2,we can easily calculate how much time each step takes for these three schemes,e.g.,each step of Scheme 1 takes 0.16,0.71,and 3.08 on meshesM,M1,andM2,respectively,thecorresponding data for Scheme 2 are 0.19,0.80,and 3.24,and for Scheme 3 are 0.13,0.62,and 2.64,which is as predicted theoretically,each step of Schemes 1 and 2 is more costed than that of Scheme 3,due to the extra terms in(2.5)and(2.10)induced by the interface conditions.

    Table 1 Performance of the three schemes for the nonlinear Born ball model(4.1)with different initial guesses in Newton method without truncation.Here Rp=1,Rs=5,and an original mesh M (3763),a refined-once mesh M1(19523),and a refined-twice mesh M2(72247)are used by a linear finite element method.

    Table 2 Comparison of the three schemes for the nonlinear Born ball model(4.1)with linear solution as initial guess in modified Newton method(bound=300).Here Rp=1 and Rs=5,the original mesh M (3763),the refined-once mesh M1(19523),and the refined-twice mesh M2(72247)are used by a linear finite element method.

    Furthermore,we compare the three-term schemes 2 and 3 on different domains.Relative errors of Schemes 2 and 3 for the nonlinear Born ball model (4.1) in molecular domainDp,interface Γ,solvent domainDs,and the whole domain ? are reported in Table 3.And the distributions of relative errors of these two schemes along the radius|r|are reported in Figure 1.

    From Table 3 and Figure 1,we can see that Scheme 2 has smaller relative error in solvent domainDsthan Scheme 3,and Scheme 3 performs better on interface Γ and protein domainDp.

    Figure 1 Percentage distributions of the solution relative errors of the finite element solutions of PBE in Dp,Γ,and Ds,respectively,based on Scheme 2(in blue dashed line)and Scheme 3(in red line)for the nonlinear Born ball model(4.1)with z=1,Rp=1,and Rs=5 on M1.

    Table 3 Relative errors of Schemes 2 and 3 for the nonlinear Born ball model(4.1)in molecular domain Dp,interface Γ,solvent domain Ds,and the whole domain ?.Here z=1,Rp=1,Rs=5,and an original mesh M (3763),a refined-once mesh M1(19523),and a refined-twice mesh M2(72247)are used by a linear finite element method.

    5 Conclusions

    In this paper,three commonly-used decomposition schemes for Poisson-Boltzmann models,the two-term decomposition scheme(Scheme 1),the three-term decomposition in biomolecular domain only

    (Scheme 2),and the three-term decomposition in the whole domain (Scheme 3),are reviewed and compared.Numerical tests for these three decomposition schemes on the nonlinear Born ball model(4.1) with analytical solution show that Scheme 2 and Scheme 3 are more stable for different initial guesses than Scheme 1.And Scheme 2 has the highest solution accuracy on coarse meshes.What’s more,Scheme 2 performs better in solvent domainDswhile Scheme 3 performs better on interface Γ and protein domainDp.Hence,we can choose suitable decomposition schemes based on different requirements in applications.For examples,protein docking and protein binding are highly correlated with the electrostatic potential at the surface of the biomolecule,while some bimolecular activities are occurred through the solvent and thus the electrostatic potential outside the biomolecule is expected.

    亚洲人与动物交配视频| 国产免费一级a男人的天堂| 国内揄拍国产精品人妻在线| 亚洲高清免费不卡视频| 日本黄色片子视频| 在线播放无遮挡| 成人毛片a级毛片在线播放| 精品一区二区免费观看| 日本免费a在线| 大香蕉97超碰在线| 亚洲美女搞黄在线观看| .国产精品久久| av免费观看日本| 最近视频中文字幕2019在线8| 亚洲国产色片| 日韩视频在线欧美| av.在线天堂| 九九久久精品国产亚洲av麻豆| 午夜亚洲福利在线播放| 极品教师在线视频| 亚洲无线观看免费| 免费看a级黄色片| 久久精品综合一区二区三区| 三级毛片av免费| 国产探花在线观看一区二区| 久久久久久九九精品二区国产| 亚州av有码| 一区二区三区四区激情视频| 国产v大片淫在线免费观看| 亚洲人成网站在线观看播放| 亚洲av中文av极速乱| 亚洲av成人av| 国产美女午夜福利| 欧美97在线视频| 夜夜看夜夜爽夜夜摸| 免费播放大片免费观看视频在线观看 | 免费搜索国产男女视频| 日韩一区二区三区影片| 久久亚洲国产成人精品v| 国产高潮美女av| 国产私拍福利视频在线观看| 一本一本综合久久| 国产激情偷乱视频一区二区| 我的老师免费观看完整版| 久久99热这里只有精品18| 搡老妇女老女人老熟妇| 99热这里只有是精品在线观看| 成人午夜精彩视频在线观看| 久久热精品热| 99九九线精品视频在线观看视频| 久久草成人影院| 亚洲无线观看免费| 国产一区二区在线观看日韩| 国产黄色小视频在线观看| 成年免费大片在线观看| 伦理电影大哥的女人| 精华霜和精华液先用哪个| 青青草视频在线视频观看| 国产视频内射| 国产精品乱码一区二三区的特点| 日本wwww免费看| 99国产精品一区二区蜜桃av| 亚洲天堂国产精品一区在线| 成人毛片60女人毛片免费| 亚洲熟妇中文字幕五十中出| 免费黄色在线免费观看| 国产探花极品一区二区| 日韩制服骚丝袜av| 一区二区三区免费毛片| 久久久精品大字幕| 亚洲精品自拍成人| 少妇裸体淫交视频免费看高清| 人妻系列 视频| 亚洲丝袜综合中文字幕| 日韩欧美精品v在线| 综合色丁香网| 国产91av在线免费观看| 亚洲中文字幕日韩| 综合色av麻豆| 蜜桃亚洲精品一区二区三区| 色网站视频免费| 七月丁香在线播放| 国产精品久久久久久精品电影小说 | 蜜臀久久99精品久久宅男| 成人特级av手机在线观看| 亚洲人与动物交配视频| 搞女人的毛片| 日本wwww免费看| 一本久久精品| 国产探花在线观看一区二区| 国产av在哪里看| 欧美一区二区亚洲| 99热这里只有精品一区| 99视频精品全部免费 在线| 我的女老师完整版在线观看| 亚洲欧美中文字幕日韩二区| 国产伦理片在线播放av一区| 亚洲欧洲国产日韩| 久久这里有精品视频免费| 精品一区二区三区人妻视频| 舔av片在线| 非洲黑人性xxxx精品又粗又长| 色5月婷婷丁香| 成人三级黄色视频| av国产久精品久网站免费入址| av黄色大香蕉| 午夜福利高清视频| 午夜亚洲福利在线播放| 国产又黄又爽又无遮挡在线| 日韩人妻高清精品专区| 69人妻影院| 免费黄网站久久成人精品| 一个人看的www免费观看视频| 精品久久久久久电影网 | 日韩欧美 国产精品| 国产成人福利小说| 韩国高清视频一区二区三区| 亚洲成色77777| 免费不卡的大黄色大毛片视频在线观看 | 热99re8久久精品国产| 看片在线看免费视频| 国产三级在线视频| 久久久久九九精品影院| 久久久欧美国产精品| 亚洲真实伦在线观看| 一个人免费在线观看电影| 亚洲av电影不卡..在线观看| 永久网站在线| 深爱激情五月婷婷| 中文字幕人妻熟人妻熟丝袜美| av.在线天堂| 国国产精品蜜臀av免费| 亚洲图色成人| 天天躁夜夜躁狠狠久久av| 我要看日韩黄色一级片| 亚洲精品乱码久久久v下载方式| 国产高清不卡午夜福利| 久久久精品欧美日韩精品| 国产单亲对白刺激| 夜夜看夜夜爽夜夜摸| 国国产精品蜜臀av免费| 国产久久久一区二区三区| 九九在线视频观看精品| 久久精品综合一区二区三区| 亚洲图色成人| 2022亚洲国产成人精品| 亚洲av熟女| 天堂影院成人在线观看| 中文字幕av成人在线电影| 日韩成人av中文字幕在线观看| 精品久久久久久成人av| 边亲边吃奶的免费视频| 欧美zozozo另类| av黄色大香蕉| 国产精品福利在线免费观看| 久久久久九九精品影院| 搞女人的毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久精品综合一区二区三区| 久久精品国产亚洲av天美| 我的老师免费观看完整版| 国产精品精品国产色婷婷| 午夜福利成人在线免费观看| 欧美一区二区精品小视频在线| 亚洲av免费在线观看| 久99久视频精品免费| 久久亚洲国产成人精品v| 国产精品av视频在线免费观看| 亚洲四区av| 国产又色又爽无遮挡免| 99热网站在线观看| 国产精品一二三区在线看| 国产精品国产高清国产av| 在线免费观看的www视频| 狂野欧美白嫩少妇大欣赏| 国产免费男女视频| 中文精品一卡2卡3卡4更新| 国产中年淑女户外野战色| 国产精品乱码一区二三区的特点| 国产精品三级大全| 午夜久久久久精精品| 成人毛片a级毛片在线播放| 嫩草影院新地址| 天堂影院成人在线观看| 91av网一区二区| 午夜老司机福利剧场| 久久这里有精品视频免费| eeuss影院久久| 在现免费观看毛片| 黄色一级大片看看| 久久久精品94久久精品| 日韩欧美国产在线观看| 亚洲乱码一区二区免费版| 性插视频无遮挡在线免费观看| 国产日韩欧美在线精品| 日本与韩国留学比较| 久久午夜福利片| 秋霞伦理黄片| 久久久成人免费电影| 简卡轻食公司| 亚洲中文字幕日韩| 欧美zozozo另类| 久久精品熟女亚洲av麻豆精品 | 久久亚洲精品不卡| 欧美丝袜亚洲另类| 国内精品美女久久久久久| 99九九线精品视频在线观看视频| 联通29元200g的流量卡| 国产伦精品一区二区三区视频9| 亚洲国产精品成人久久小说| 搞女人的毛片| 少妇的逼好多水| 99久国产av精品| 亚洲欧美精品自产自拍| 卡戴珊不雅视频在线播放| 国产精品野战在线观看| 国产成人免费观看mmmm| 亚洲av电影不卡..在线观看| 亚洲精品,欧美精品| 一边摸一边抽搐一进一小说| 内射极品少妇av片p| 色吧在线观看| 国产精品国产三级国产专区5o | 精品人妻熟女av久视频| 小说图片视频综合网站| 搡老妇女老女人老熟妇| 日韩在线高清观看一区二区三区| 日韩大片免费观看网站 | 一区二区三区高清视频在线| 国产精品久久视频播放| 国产精品乱码一区二三区的特点| 中文字幕熟女人妻在线| 中文字幕久久专区| 热99在线观看视频| 晚上一个人看的免费电影| 22中文网久久字幕| 男人的好看免费观看在线视频| 欧美+日韩+精品| 国产一区亚洲一区在线观看| 亚洲国产精品久久男人天堂| 天天躁夜夜躁狠狠久久av| av国产久精品久网站免费入址| 久久久久免费精品人妻一区二区| 一边亲一边摸免费视频| 精品人妻一区二区三区麻豆| 黄片wwwwww| 成人性生交大片免费视频hd| 男人舔女人下体高潮全视频| av女优亚洲男人天堂| 国产黄片美女视频| 91在线精品国自产拍蜜月| 联通29元200g的流量卡| 日韩三级伦理在线观看| 午夜久久久久精精品| 91av网一区二区| 在现免费观看毛片| 精品不卡国产一区二区三区| 久久6这里有精品| 欧美日韩在线观看h| 国产精品久久久久久av不卡| 九草在线视频观看| 深爱激情五月婷婷| 联通29元200g的流量卡| 国产欧美另类精品又又久久亚洲欧美| 亚洲精品乱码久久久v下载方式| 亚洲精品,欧美精品| 中文乱码字字幕精品一区二区三区 | 精品不卡国产一区二区三区| 国产免费视频播放在线视频 | 国产三级在线视频| 一级黄片播放器| 全区人妻精品视频| 欧美激情在线99| 欧美高清成人免费视频www| av免费在线看不卡| 国产乱人偷精品视频| av播播在线观看一区| 精品欧美国产一区二区三| 伦理电影大哥的女人| 国产精品精品国产色婷婷| 夜夜爽夜夜爽视频| 国产成年人精品一区二区| 一卡2卡三卡四卡精品乱码亚洲| 国产乱人视频| 日本一二三区视频观看| 黄色配什么色好看| 视频中文字幕在线观看| 波多野结衣巨乳人妻| 日韩欧美三级三区| 99久久成人亚洲精品观看| 自拍偷自拍亚洲精品老妇| 简卡轻食公司| 一区二区三区高清视频在线| 精品一区二区三区视频在线| 免费观看在线日韩| 亚洲精品影视一区二区三区av| 色5月婷婷丁香| 变态另类丝袜制服| 国产成人精品一,二区| 欧美bdsm另类| 91精品国产九色| 蜜臀久久99精品久久宅男| 在线免费十八禁| 欧美日韩综合久久久久久| 99国产精品一区二区蜜桃av| 黄色一级大片看看| 变态另类丝袜制服| 国产欧美日韩精品一区二区| 国产男人的电影天堂91| 又黄又爽又刺激的免费视频.| 色噜噜av男人的天堂激情| 欧美3d第一页| 日韩欧美精品v在线| 秋霞在线观看毛片| 亚洲精品乱码久久久久久按摩| 99久久精品国产国产毛片| 夫妻性生交免费视频一级片| 国产精品久久视频播放| 老司机影院毛片| 日日摸夜夜添夜夜爱| 亚洲无线观看免费| 免费看美女性在线毛片视频| 日韩成人伦理影院| 超碰av人人做人人爽久久| 午夜视频国产福利| 日韩强制内射视频| 人人妻人人看人人澡| 又粗又硬又长又爽又黄的视频| 天堂影院成人在线观看| 最近最新中文字幕免费大全7| 亚洲久久久久久中文字幕| 国产精品无大码| 51国产日韩欧美| av在线蜜桃| 日本一二三区视频观看| 寂寞人妻少妇视频99o| 亚洲欧美清纯卡通| 亚洲国产高清在线一区二区三| 欧美xxxx黑人xx丫x性爽| 岛国毛片在线播放| 欧美激情在线99| 少妇熟女aⅴ在线视频| 欧美性猛交╳xxx乱大交人| 久久这里有精品视频免费| 亚洲熟妇中文字幕五十中出| 国产精品电影一区二区三区| 久久精品综合一区二区三区| 国产精品人妻久久久久久| 九色成人免费人妻av| 99热这里只有是精品50| av又黄又爽大尺度在线免费看 | 黄片wwwwww| 蜜桃亚洲精品一区二区三区| 少妇被粗大猛烈的视频| 成人亚洲精品av一区二区| 亚洲精品成人久久久久久| 蜜桃亚洲精品一区二区三区| 国产不卡一卡二| 老司机福利观看| 亚洲最大成人手机在线| 国产精品1区2区在线观看.| 99久久无色码亚洲精品果冻| 小说图片视频综合网站| 99久久精品国产国产毛片| 亚洲国产高清在线一区二区三| 亚洲欧美清纯卡通| 1000部很黄的大片| 能在线免费观看的黄片| 2022亚洲国产成人精品| 男人狂女人下面高潮的视频| 少妇丰满av| 女的被弄到高潮叫床怎么办| 亚洲美女视频黄频| 国产av一区在线观看免费| 成人国产麻豆网| 欧美极品一区二区三区四区| 精品久久久久久电影网 | 国国产精品蜜臀av免费| 国产亚洲精品av在线| 综合色av麻豆| 内射极品少妇av片p| 搡老妇女老女人老熟妇| 看十八女毛片水多多多| 午夜福利在线观看吧| .国产精品久久| 丰满少妇做爰视频| 大话2 男鬼变身卡| 午夜激情欧美在线| 亚洲av一区综合| 日韩一区二区视频免费看| 国产国拍精品亚洲av在线观看| 精品久久久噜噜| 五月玫瑰六月丁香| 少妇的逼水好多| 青春草亚洲视频在线观看| 免费av观看视频| 我要看日韩黄色一级片| 久久鲁丝午夜福利片| 91精品伊人久久大香线蕉| 在线观看66精品国产| 插阴视频在线观看视频| 国产免费福利视频在线观看| 国产麻豆成人av免费视频| 汤姆久久久久久久影院中文字幕 | 精品99又大又爽又粗少妇毛片| 搡女人真爽免费视频火全软件| 亚洲精品乱码久久久v下载方式| 亚洲国产精品专区欧美| 天堂网av新在线| 色哟哟·www| 亚洲精华国产精华液的使用体验| 久久精品久久精品一区二区三区| 一级黄色大片毛片| 日韩亚洲欧美综合| 91午夜精品亚洲一区二区三区| 麻豆精品久久久久久蜜桃| 成人三级黄色视频| 久久久久久久久久久丰满| 99热网站在线观看| 一级毛片aaaaaa免费看小| 国产一区二区亚洲精品在线观看| 亚洲,欧美,日韩| 日韩av在线大香蕉| 精品熟女少妇av免费看| 国产精品一区www在线观看| 日韩一本色道免费dvd| 少妇熟女欧美另类| 欧美bdsm另类| 又黄又爽又刺激的免费视频.| 高清av免费在线| av福利片在线观看| 在现免费观看毛片| 国产精品国产三级专区第一集| 国产一级毛片在线| 久久久久久久久大av| 啦啦啦观看免费观看视频高清| 成人特级av手机在线观看| 欧美+日韩+精品| 一个人观看的视频www高清免费观看| 欧美最新免费一区二区三区| 久久久久九九精品影院| 日韩av不卡免费在线播放| 青春草国产在线视频| 看非洲黑人一级黄片| av线在线观看网站| 99在线人妻在线中文字幕| 午夜视频国产福利| 两个人视频免费观看高清| 欧美日韩综合久久久久久| 精品一区二区三区视频在线| 村上凉子中文字幕在线| 蜜桃久久精品国产亚洲av| 国产私拍福利视频在线观看| 99久久精品一区二区三区| 乱人视频在线观看| 久久鲁丝午夜福利片| 能在线免费看毛片的网站| 国产午夜福利久久久久久| 欧美极品一区二区三区四区| 亚洲国产精品专区欧美| 国产伦精品一区二区三区四那| 免费大片18禁| 成人高潮视频无遮挡免费网站| 舔av片在线| 看黄色毛片网站| 两个人视频免费观看高清| 国产白丝娇喘喷水9色精品| 狠狠狠狠99中文字幕| av在线亚洲专区| 69人妻影院| 你懂的网址亚洲精品在线观看 | 欧美bdsm另类| 国产成人a区在线观看| 久久久久久国产a免费观看| 国产伦理片在线播放av一区| 国产精品久久视频播放| 国产乱人视频| 一卡2卡三卡四卡精品乱码亚洲| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产人妻一区二区三区在| 国产av在哪里看| 亚洲不卡免费看| 久久人人爽人人爽人人片va| 人人妻人人看人人澡| 日日摸夜夜添夜夜爱| 永久网站在线| 干丝袜人妻中文字幕| 国产精品av视频在线免费观看| 中文字幕久久专区| 精品免费久久久久久久清纯| 精品熟女少妇av免费看| 啦啦啦啦在线视频资源| 国产精品,欧美在线| 国产成人精品一,二区| 成人漫画全彩无遮挡| 免费无遮挡裸体视频| 亚洲四区av| 国产精品福利在线免费观看| 午夜久久久久精精品| 一级毛片电影观看 | 一级二级三级毛片免费看| 亚洲色图av天堂| 男人和女人高潮做爰伦理| 蜜臀久久99精品久久宅男| av线在线观看网站| 丰满乱子伦码专区| 99久久九九国产精品国产免费| 99在线视频只有这里精品首页| 欧美日本亚洲视频在线播放| 久久精品国产鲁丝片午夜精品| 国产av不卡久久| 天天一区二区日本电影三级| 禁无遮挡网站| 亚洲成人精品中文字幕电影| 天堂影院成人在线观看| 最近视频中文字幕2019在线8| 波野结衣二区三区在线| 热99re8久久精品国产| 精品国产三级普通话版| 亚洲av中文字字幕乱码综合| 毛片一级片免费看久久久久| 91久久精品电影网| 晚上一个人看的免费电影| 亚洲国产欧洲综合997久久,| 一个人看视频在线观看www免费| 国产精华一区二区三区| 久久99精品国语久久久| 又爽又黄a免费视频| 亚洲最大成人av| .国产精品久久| 午夜激情福利司机影院| 免费av毛片视频| 小蜜桃在线观看免费完整版高清| 亚洲婷婷狠狠爱综合网| 亚洲激情五月婷婷啪啪| 亚洲国产精品国产精品| 青春草亚洲视频在线观看| 国产av码专区亚洲av| 久久99热6这里只有精品| 免费av毛片视频| 国产精品不卡视频一区二区| 午夜福利在线观看吧| 国产极品天堂在线| 亚洲精品一区蜜桃| 乱人视频在线观看| av.在线天堂| 成人二区视频| 国产国拍精品亚洲av在线观看| 国内精品一区二区在线观看| 熟女人妻精品中文字幕| 成人国产麻豆网| 久久久久久久久中文| 六月丁香七月| 只有这里有精品99| 一级爰片在线观看| 久久6这里有精品| 精品人妻偷拍中文字幕| 日本三级黄在线观看| 亚洲最大成人av| 国产熟女欧美一区二区| 韩国高清视频一区二区三区| 国产成年人精品一区二区| 人妻制服诱惑在线中文字幕| 水蜜桃什么品种好| 久久这里只有精品中国| 久久亚洲国产成人精品v| 国产亚洲av嫩草精品影院| 哪个播放器可以免费观看大片| 免费人成在线观看视频色| 欧美激情在线99| 久久精品人妻少妇| 国产av一区在线观看免费| 18禁在线播放成人免费| 亚洲av日韩在线播放| 如何舔出高潮| 精品久久久久久久久av| 国产高清不卡午夜福利| 成人二区视频| 色哟哟·www| 在线a可以看的网站| 女人被狂操c到高潮| 亚洲18禁久久av| 日本熟妇午夜| 简卡轻食公司| 日日撸夜夜添| 日本熟妇午夜| 三级毛片av免费| 在线免费观看的www视频| 人妻制服诱惑在线中文字幕| 亚洲欧美一区二区三区国产| 菩萨蛮人人尽说江南好唐韦庄 | 高清av免费在线| 夫妻性生交免费视频一级片| 女人被狂操c到高潮| 有码 亚洲区| 精品国产一区二区三区久久久樱花 | 日韩在线高清观看一区二区三区| 99久久精品国产国产毛片| 欧美bdsm另类| 在线播放无遮挡| 好男人在线观看高清免费视频| 男人舔女人下体高潮全视频| 亚洲精华国产精华液的使用体验| 亚洲四区av| 久久这里只有精品中国| 国产成人一区二区在线| 欧美色视频一区免费| 99久久精品热视频| 精品少妇黑人巨大在线播放 | 26uuu在线亚洲综合色| 欧美高清成人免费视频www| 在现免费观看毛片| 久久婷婷人人爽人人干人人爱| 欧美人与善性xxx| 日韩 亚洲 欧美在线|