• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Improved Image Fusion Method Based on a Wavelet Transform

    2021-09-17 01:24:46YangDangfuLiuShengjunJiangYuanhongLiuXinru

    Yang Dangfu Liu Shengjun Jiang Yuanhong Liu Xinru?

    (1.School of Mathematics and Statistics,Central South University,Changsha 410083,China;2.State Key Laboratory of High Performance Complex Manufacturing,Central South University,Changsha 410083,China)

    Abstract Image fusion aims to construct images that are more appropriate and understandable for human and machine perception.In remote sensing applications,the fusion of the high-resolution panchromatic(PAN)image and the low-resolution multi-spectral(MS)image has always been a problem and has drawn much attention.In this paper,we propose a PAN and MS image fusion algorithm based on a wavelet transform.Firstly,after performing a wavelet transform on both images,the PAN image’s low-frequency components are fused into the MS image’s low-frequency components by using the edge intensity factor (EIF).Then,the high-frequency components of images are fused to obtain high-frequency features based on the maximum local standard deviation criterion (MLSTD).Finally,the high-resolution and multi-spectral fused images can be obtained by the wavelet inverse transform from the fused low-frequency and high-frequency components.Examples illustrate that the fused images are well equipped with desired features,and the proposed algorithm performs better than several classical methods.

    Key words Image fusion Wavelet transform Edge intensity factor Local standard deviation

    1 Introduction

    As one of the most common information carriers,images can provide helpful information for humans.People can get more valuable information from higher quality,more informative images.The image fusion process is defined as gathering all the vital information and inclusion from multiple images into fewer images,usually a single one.This single image is more informative and accurate than any single source image,and it contains all the necessary information[1].Due to the limitation of the signal-to-noise ratio,remote sensing applications are impractical for remote sensing satellites to obtain high-quality surface images directly from high-altitude orbits with a single sensor.In practice,multiple sensors simultaneously image one area from satellite to obtain multiple images with the different necessary information.One image that is more appropriate and understandable for human and machine perception can be obtained through the image fusion process[2].

    The two most commonly used image types in remote sensing applications are the high-resolution panchromatic (PAN) image and the low-resolution multi-spectral (MS) image.The MS image has the advantages of rich color and easy recognition of terrain types.However,its spatial resolution is too low to distinguish the target details,while the PAN image is the high-resolution grayscale image with rich details but without multi-spectral features.The fusion of the MS and PAN image is to gathering high-resolution information of the PAN image and multi-spectral features of the MS image into a single image,which can be used for further use.The image fusion algorithm proposed in this paper is mainly applied to the fusion of PAN and MS images in remote sensing.

    Many methods have been proposed for the MS and PAN image fusion in remote sensing in the past two decades.In the early research,methods based on component substitution are most widely used.Standard methods like HIS[3],PCA[4],GS[5]can generally improve the spatial resolution of fused images.They first transform the MS image into new image space.If a specific component has a similar structure to the PAN image after transformation,then the PAN image is used to substitute the component.Then the corresponding inverse transform can be applied to obtain the final fused image.However,this type of method generally distort the color information.

    In recent years,image fusion methods based on multi-resolution analysis,including pyramid decomposition[6],wavelet transform[7,8],and curvelet transform[9,10],have gradually become more mainstream.Among which the role of wavelet transform and curvelet transform has been widely approved in image processing.Through multi-resolution analysis,high-frequency spatial details of PAN images can be extracted and fused into each frequency band of MS images[11].Compared with methods based on component substitution,the methods based on multi-resolution analysis can preserve MS images’better spectral features in the fused images.However,such methods have spatial distortion defects,such as the ring or ladder phenomenon[12].

    The proposed algorithm in this paper is a hybrid method that combines the advantages of the HIS-based method and the wavelet-transform-based method.The scheme is to constrain the color distortion while improving spatial resolution.Results show that the fused image of the PAN and MS images by our method has lower spatial and color distortion than the original methods.We will compare our results with several previous methods,including HIS[3],PCA[4],wavelet substitution[13],superposition wavelet[13],and curvelet transform[14]in section 4.

    The rest of this paper is organized as follows:section 2 and section 3 describe the proposed image fusion algorithm?section 4 demonstrates the experiments and compares the results with those of previous methods?section 5 summarizes our work.

    2 Algorithm Overview

    Our goal is to fuse high-resolution PAN and multi-spectral MS images into one informative image with high-resolution and multi-spectral features.Before the fusion,the MS image is processed by HIS transform to obtain theH,I,andScomponents in HIS color space.We keep theHandScomponents constant and denote the intensity componentIasfMSI.The fusion operation is performed amongfMSI,the grayscale MS imagefMSGand PAN imagefP AN.Firstly,the high and low-frequency components of both MS and PAN images are extracted by a wavelet transform.Secondly,The two different components are fused separately by using different fusion schemes to obtain the wavelet intensity component.Thirdly,the corresponding intensity componentsI′′is obtained from the wavelet inverse transform.Finally,an inverse HIS transform is applied on the three componentsH,S,and the new intensity componentI′′to get the final fused image.

    The overall pipeline is illustrated in Figure 1.MSI denotes theIcomponent of the MS image from the HIS transform.The low-frequency components from the wavelet transform of the PAN and MSI images areAP ANandAMSIrespectively.VP AN,HP AN,andDP AN(VMSI,HMSI,andDMSI)are the high-frequency components of the PAN(MSI)image from the wavelet transform.EIF ·AMSI,V ′′,H′′andD′′are the corresponding components after fusion,andMfdenotes the final fused image.Algorithm 1 summarizes the pseudocode for the improved image fusion algorithm based on the wavelet transform.

    Figure 1 The overview of the proposed image fusion algorithm pipeline

    The core of the algorithm is in steps 3.1 and 3.2,which will be detailed in the next section 3.

    3 Image Fusion Schemes

    As mentioned above,our fusion algorithm is based on the wavelet transform,and the fusion operations are performed in the frequency domain of the input images.By the wavelet transform,on the scale whose highest resolution is 2?J(J >0),the imagefcan be decomposed into a combination of low-frequency and high-frequency components[16]:

    whereA2?Jfis the low-frequency component on scaleJ,the component,also known as the approximation image well preserves the contour information of the original image.The following three items respectively denote the high-frequency components on the scale fromJto 1 and record the high-frequency information from three different directions (horizontal,vertical,and diagonal directions) of the original image.We perform the wavelet transform onfMSIandfP ANand obtain the corresponding frequency sequences

    With the high-frequency and low-frequency components,we apply different fusion schemes to them.We mainly introduce the edge intensity factor (EIF) for the low-frequency part,while for the high-frequency part,we use the maximum local standard deviation(MLSTD)criterion.

    3.1 Low-frequency fusion based on EIF

    To preserve the multi-spectral and high-resolution information of the MS and PAN images in the fused image,we start from the grayscale image of the MS imagefMSGand perform the wavelet decomposition to the scale whose highest resolution is 2?j,(J >0),and get

    on which we define the EIF as follows:

    wherefP AN(i,j) andfMSG(i,j) are the grayscale values at pixel (i,j) of the PAN and MSG images,respectively.The EIF reflects the intensity ratio between the two sub-imagesA2?JfP ANandA2?JfMSG.From Equation 3.3 along with the EIF,we define a new wavelet transformed intensity component as:

    Then the region boundary information of the PAN approximation image is incorporated into the MSI approximation image.Because of the linear adjustment of the approximate image of the MSI,this method can not only improve the spatial resolution but also preserve the spectral features of the MS image[16].

    3.2 High-frequency fusion based on MLSTD

    The introduced EIF combine the approximation source images but not the detailed information.The high-frequency sub-images contain the region boundaries,edges,bright lines,and other significant detail information of the original images.To fuse the high-frequency sub-images,we firstly compute each pixel’s local standard deviation in sub-images and then use a simple maximum local standard deviation(MLSTD)strategy to determine the pixel value of the fused sub-images.The local standard deviation measures the pixel values deviations for each pixel in the local region.Take pixel(i,j)as an example:the local standard deviation of the pixel denoted asstd(i,j)can be computed as

    wheref(i,j)is the pixel value at pixel(i,j),is the average pixel values of the neighbor pixels and the center pixel(i,j),totally 9 pixels in this case.

    The MLSTD strategy is as follows:by comparing the local standard deviationstd(i,j) of the two fusing sub-images,the pixel with greaterstd(i,j)will be written into the fused sub-images.The MLSTD strategy can preserve both the detail information and texture information of the fusing sub-images[15].

    4 Experiments

    To verify the proposed algorithm we implemente the method in Matlab R2014a and compare the results with the above-mentioned PCA,HIS,SWT,AWT,CT methods.For convenience,we call the proposed method the IWT(Improved Wavelet Transform)method.

    Figure 2 shows the fusion results of the MS and PAN chimp images from [16].In which the low-resolution multi-spectral MS chimp image has three channels:red,green,and blue.The image is in RGB space with a wide range of color information.The high-resolution PAN image is a grayscale image with clear texture and detailed information.The standard HIS and PCA methods are parameter-free.However,both the wavelet transform and curvelet transform methods have several parameters,such as the wavelet function selection and decomposition level setting.We chose Symlet Wavelets sym4 and apply the 1 level decomposition for the wavelet transform,and use the wrapping algorithm.The decomposition level is set to 2.

    Figure 2 Fusion results for MS and PAN chimp images of different methods,where(a)and(b)are original MS and PAN chimp images,respectively

    Human visual perception is a subjective evaluation method of fusion images.It is s one of the best ways to evaluate the image quality by human visual perception since the end-user of fused images is often humans[18].Figures 2(d) and 2(g) have noticeable color distortion,while Figures 2(c),2(e) and 2(f) are still of low-resolution.The best visual result is produced by our improved wavelet transform method in Figure 2(h) with low color distortion and high-resolution from visual observation.Similar comparisons are made on remote sensing images of the IKONOS satellite in Figure 3 and Figure 4[17].

    Figure 3 Fusion results for MS and PAN mountain images of different methods,where(a)and(b)are original MS and PAN chimp images,respectively

    Figure 4 Fusion results for MS and PAN village images of different methods,where(a)and(b)are original MS and PAN chimp images,respectively

    Except for the visual comparison,we also do some quantitative calculations to measure the sharpness and color distortion of fused images.Firstly,on the sharpness of the image,which is an important evaluation criterion for image fusion,the average gradient of an image can reflect the image’s ability to express small details[19].Then average gradient of an image is defined as

    whereMandNare the width and height of the image in pixels,f(i,j) is the pixel value of the image at pixel(i,j).The larger the average gradient,the higher the sharpness and the spatial resolution of the image.Figure 5 shows the average gradient of fusion results in Figure 2,Figure 3,and Figure 4.

    Figure 5 Average gradient histogram on different images

    Figure 6 Correlation coefficients histogram on different fused images with different algorithms

    As reflected by the numerical values of three results of average gradients,the new algorithm designed in this paper has the best performance in terms of sharpness.Moreover,in the first set of experiments,the PAN image’s sharpness are greatly improved,so the proposed algorithm achieves the expected goal of improving the fusion image’s spatial resolution.

    Besides,correlation coefficients are adopted as the evaluation criteria for spectral resolution analysis[20].By comparing different color channels,correlation coefficients of fused images and source images can measure the similarity and distortion of spectral features of the two images.Since the MS image has R,G,and B color channels,the correlation coefficients are computed between the source MS images and the fused images on each channel.The three values can measure the color distortion of the fused image on each color channel.To measure the color distortion on the whole image,we use the standard deviation of three correlation coefficients on R,G,and B channels.The smaller the standard deviation,the lower color distortion of the fused image.The correlation coefficient for each channel is computed as follows:

    whereAandBare two input images with the same rows and columns in pixel.npixis the number of pixels for each image,Aˉ andBˉ are the average color value for the color channel.We useCC0,CC1,andCC2to denote the correlation coefficients on R,G,and B channels,respectively,anddenotes the average ofCC0,CC1,andCC2.Then the standard deviation of correlation coefficients can be simply computed by

    The computation results of the three fused images are listed in Table 1,Table 2,and Table 3.As mentioned above,CC0,CC1,andCC2denote correlation coefficients between the MS source image and the fused image in R,G,and B channels,respectively.is the average standard deviation ofCCi,i=0,1,2.As shown in the last columns of each table,TheSTDis larger in the PCA,IHS,and SWT algorithms,which implies higher color distortion.They are also consistent with the visual observations above.Among all three experiments,the AWT algorithm always performes best,and our IWT method follows.Besides,the SWT and AWT algorithms’results are stable on the three different experiments with 0.0134 and 0.00003 standard deviations,respectively.According to the standard deviation of correlation coefficients,our IWT algorithm is only inferior to the AWT algorithm.Nevertheless,note that our IWT algorithm performes better than the AWT algorithm on the fused images’sharpness.

    Table 1 The correlation coefficients and standard deviations of the different algorithms for the results in Figure 2

    Table 2 The correlation coefficients and standard deviations of different algorithms for the results in Figure 3

    Table 3 The correlation coefficients and standard deviations of different algorithms for the results in Figure 4

    Furthermore,to visually compare the correlation coefficients of three channels,the histograms ofCCi,i=0,1,2 are displayed in Figure 6.Figure 6(a)shows that the AWT algorithm achieves the best performance on all the three channels for the first fusion experiment.The correlation coefficients are all close to 1.0,and the deviations among the three values are little,so it can preserve the spectral information of the MS image best.Note that the closer is the three correlation coefficients to 1,the more similar are the source MS image and the fused image,which implies lower spatial resolution.The sharpness analysis also proves that the AWT algorithm has a lousy performance on fused image spatial resolution.As for the algorithms PCA,IHS,SWT and CT,their three channels’ correlation coefficients are pretty uneven,leading to high color distortion fused images.Furthermore,note that the PCA’s R channel correlation coefficient is close to 1.0 and higher than the other two’s,so the fused image’s R channel is brighter than G and B channels.In Figure 2(c),the red nose part of the chimpanzee is close to the source MS image’s,but the other parts of the image with green and blue colors are darker than the source MS image’s.In contrast,the HIS algorithm gets minimum correlation coefficients on the R channel than the others,so in Figure 2(d)the red nose part has noticeable color distortion,but looks good on the other parts.The same analysis can be done on the algorithms SWT and CT,which also have high color distortion.The proposed IWT algorithm has relatively stable correlation coefficients,which is only no better than the AWT algorithm.It obtains a pretty low color distortion fused image as shown in Figure 2(h).However,our IWT algorithm performed far better than the AWT algorithm on preserving the spatial resolution of the PAN images.

    Compared to the first experiment,the second and third experiments in Figure 3 and Figure 4 are quite consistent on correlation coefficient of RGB channels.As shown in Figures 6(b) and 6(c),the AWT’s correlation coefficients are all closest to 1.0,thereby generate the lowest color distortions between Figures 3(f) and 3(a),as well as 4(f) and 4(a).However,the fused images both perform poorly on preserving high-resolution spatial characteristics of the corresponding PAN images 3(b) and 4(b).The SWT algorithm has the second-highest correlation coefficients,but the deviation among RGB channels is pretty high.Thereby the fused images 3(e)and 4(e)have high color distortion.The PCA,IHS,CT and our IWT algorithms’correlation coefficients are all below 0.85.Furthermore,according to the computed standard deviation in Table 2 and Table 3,our IWT has method has minimum color distortion among these algorithms.

    Through the above analysis,it shows that our algorithm performs best in the experiment of Figure 2 on image sharpness but only no better than the CT algorithm in the experiments of Figure 3 and Figure 4.However,our algorithm has lower color distortion than the CT algorithm.As for color distortion analysis,although the AWT algorithm gets the minimum color distortion,it performs much worse on preserving the PAN image’s spatial high-resolution characteristics.Our algorithm’s standard deviations of correlation coefficients are only higher than the AWT’s.In conclusion,our proposed algorithm has better appropriate correlation coefficients and standard deviation of those coefficients.

    5 Conclusions

    In this paper,we proposed a wavelet-transform-based image fusion algorithm.The algorithm’s inputs are the MS image and the PAN image.The former type of image is low-resolution but has rich color information,while the latter type of image is single-spectral but has detailed texture.The fused image has both high-resolution and multi-spectral characteristics from the input MS and PAN images.Analysis of visual observation and numerical statistics suggested the efficiency and performance of our algorithm.Additionally,comparisons with several typical fusion algorithms demonstrated the advantages of our method.

    色在线成人网| 成人亚洲精品一区在线观看| 久久国产精品人妻蜜桃| a在线观看视频网站| 国产黄色免费在线视频| 欧美变态另类bdsm刘玥| 午夜福利乱码中文字幕| 亚洲五月色婷婷综合| 日本黄色视频三级网站网址 | 最近最新免费中文字幕在线| 国产精品.久久久| 午夜福利在线免费观看网站| 90打野战视频偷拍视频| 黄色视频,在线免费观看| 免费高清在线观看日韩| 精品视频人人做人人爽| 亚洲欧美色中文字幕在线| 国产成人精品无人区| 精品国产一区二区三区四区第35| 夜夜骑夜夜射夜夜干| 免费一级毛片在线播放高清视频 | 黄色怎么调成土黄色| 国产精品成人在线| 国产色视频综合| 汤姆久久久久久久影院中文字幕| 99精品欧美一区二区三区四区| 久久天堂一区二区三区四区| 91麻豆精品激情在线观看国产 | 多毛熟女@视频| 老司机午夜福利在线观看视频 | 亚洲一区中文字幕在线| 色老头精品视频在线观看| 少妇 在线观看| 亚洲精品国产区一区二| 久久婷婷成人综合色麻豆| 999久久久精品免费观看国产| 不卡一级毛片| 韩国精品一区二区三区| 久久精品国产a三级三级三级| 极品少妇高潮喷水抽搐| 亚洲成人免费av在线播放| 久久精品国产a三级三级三级| 涩涩av久久男人的天堂| 国产又爽黄色视频| av视频免费观看在线观看| 1024香蕉在线观看| 欧美黄色片欧美黄色片| 十八禁网站免费在线| 捣出白浆h1v1| 捣出白浆h1v1| 大陆偷拍与自拍| 久久中文字幕人妻熟女| 天天操日日干夜夜撸| 1024视频免费在线观看| tocl精华| 精品亚洲成a人片在线观看| 在线观看人妻少妇| 美女午夜性视频免费| 1024香蕉在线观看| 捣出白浆h1v1| 欧美激情高清一区二区三区| 99国产综合亚洲精品| 大型av网站在线播放| 国产成人影院久久av| 在线观看免费日韩欧美大片| 国产成人av教育| 老司机福利观看| 两个人看的免费小视频| 亚洲色图综合在线观看| 久久 成人 亚洲| 香蕉久久夜色| 欧美日韩精品网址| 欧美日韩黄片免| 精品少妇一区二区三区视频日本电影| 侵犯人妻中文字幕一二三四区| 亚洲五月色婷婷综合| 大型黄色视频在线免费观看| 在线观看一区二区三区激情| 久久精品aⅴ一区二区三区四区| 精品乱码久久久久久99久播| 亚洲熟妇熟女久久| 国内毛片毛片毛片毛片毛片| 99国产精品一区二区蜜桃av | 一级,二级,三级黄色视频| 亚洲色图 男人天堂 中文字幕| 夜夜夜夜夜久久久久| 国产片内射在线| 中文字幕av电影在线播放| 久久精品亚洲精品国产色婷小说| 日韩一区二区三区影片| 99久久人妻综合| 成年动漫av网址| 岛国毛片在线播放| 久久人妻熟女aⅴ| 日本av免费视频播放| 国产一区二区在线观看av| 国产精品 欧美亚洲| 我的亚洲天堂| netflix在线观看网站| 成年版毛片免费区| 婷婷成人精品国产| 新久久久久国产一级毛片| kizo精华| 国产三级黄色录像| 日韩视频一区二区在线观看| 精品福利永久在线观看| 中文字幕人妻熟女乱码| 亚洲国产欧美在线一区| 欧美大码av| 大片免费播放器 马上看| 一边摸一边抽搐一进一出视频| 精品国产超薄肉色丝袜足j| 自线自在国产av| 日本欧美视频一区| 亚洲精品一二三| 人人妻人人爽人人添夜夜欢视频| 精品国产一区二区三区久久久樱花| 18禁美女被吸乳视频| 91国产中文字幕| e午夜精品久久久久久久| 在线播放国产精品三级| 国产99久久九九免费精品| 国产亚洲精品一区二区www | 黄色视频在线播放观看不卡| 另类精品久久| 国产成人系列免费观看| 一进一出好大好爽视频| 女性生殖器流出的白浆| 国产成人精品久久二区二区91| 操出白浆在线播放| 777米奇影视久久| 99精品在免费线老司机午夜| www日本在线高清视频| 国产无遮挡羞羞视频在线观看| 国产深夜福利视频在线观看| 99re在线观看精品视频| 高清视频免费观看一区二区| 99国产综合亚洲精品| 一边摸一边抽搐一进一小说 | 菩萨蛮人人尽说江南好唐韦庄| 欧美另类亚洲清纯唯美| 啦啦啦在线免费观看视频4| 国产精品熟女久久久久浪| 麻豆乱淫一区二区| 少妇精品久久久久久久| 麻豆av在线久日| 国产成人精品无人区| 国产极品粉嫩免费观看在线| 丰满人妻熟妇乱又伦精品不卡| 一级毛片女人18水好多| 国产成+人综合+亚洲专区| 亚洲精品成人av观看孕妇| 久久人人97超碰香蕉20202| 成年动漫av网址| 极品教师在线免费播放| 亚洲一区二区三区欧美精品| 黄色片一级片一级黄色片| 多毛熟女@视频| 又黄又粗又硬又大视频| 亚洲自偷自拍图片 自拍| 国产97色在线日韩免费| 超碰97精品在线观看| 一区二区三区精品91| 97人妻天天添夜夜摸| 99国产综合亚洲精品| videosex国产| 久久精品成人免费网站| 久久久精品国产亚洲av高清涩受| 午夜久久久在线观看| 久久国产亚洲av麻豆专区| 动漫黄色视频在线观看| avwww免费| 90打野战视频偷拍视频| 香蕉国产在线看| 亚洲综合色网址| 99久久99久久久精品蜜桃| 亚洲欧美日韩另类电影网站| 天天躁狠狠躁夜夜躁狠狠躁| 美女高潮到喷水免费观看| 精品国产一区二区三区久久久樱花| 久久精品91无色码中文字幕| 国产精品亚洲av一区麻豆| 久久青草综合色| 国产精品国产高清国产av | 久久久久久久大尺度免费视频| 精品一区二区三卡| 午夜福利免费观看在线| tocl精华| 国产男女内射视频| 搡老熟女国产l中国老女人| 欧美日韩黄片免| 人妻 亚洲 视频| 肉色欧美久久久久久久蜜桃| 亚洲一卡2卡3卡4卡5卡精品中文| 国产人伦9x9x在线观看| 午夜91福利影院| 黄网站色视频无遮挡免费观看| 免费少妇av软件| videosex国产| 成年人黄色毛片网站| 国产精品久久电影中文字幕 | 婷婷丁香在线五月| 亚洲精品av麻豆狂野| 麻豆成人av在线观看| 丁香欧美五月| 成在线人永久免费视频| av福利片在线| 久久热在线av| 老熟妇乱子伦视频在线观看| 亚洲美女黄片视频| 99re6热这里在线精品视频| 一级,二级,三级黄色视频| 91麻豆av在线| 又黄又粗又硬又大视频| 大型黄色视频在线免费观看| 一本一本久久a久久精品综合妖精| 久久人妻福利社区极品人妻图片| 99热国产这里只有精品6| 青青草视频在线视频观看| 黄色成人免费大全| 亚洲伊人久久精品综合| 日韩 欧美 亚洲 中文字幕| 免费在线观看完整版高清| 母亲3免费完整高清在线观看| 日本撒尿小便嘘嘘汇集6| 精品国产乱子伦一区二区三区| 亚洲色图av天堂| 男女午夜视频在线观看| 欧美黄色片欧美黄色片| 母亲3免费完整高清在线观看| 免费高清在线观看日韩| 香蕉国产在线看| 久久影院123| 我要看黄色一级片免费的| 99久久人妻综合| 欧美日本中文国产一区发布| 十八禁人妻一区二区| 大码成人一级视频| 欧美人与性动交α欧美精品济南到| 国产激情久久老熟女| 老司机在亚洲福利影院| tube8黄色片| 日韩欧美免费精品| 国产精品美女特级片免费视频播放器 | 91国产中文字幕| 免费女性裸体啪啪无遮挡网站| 国产一区二区三区在线臀色熟女 | 男女下面插进去视频免费观看| 自拍欧美九色日韩亚洲蝌蚪91| bbb黄色大片| 久久毛片免费看一区二区三区| 一区二区日韩欧美中文字幕| 久久久欧美国产精品| 十八禁人妻一区二区| 成人18禁在线播放| 久久青草综合色| 一本综合久久免费| 亚洲av成人一区二区三| 日韩人妻精品一区2区三区| 香蕉久久夜色| 91大片在线观看| 婷婷丁香在线五月| 搡老乐熟女国产| 久9热在线精品视频| 久9热在线精品视频| 国产日韩一区二区三区精品不卡| 亚洲伊人色综图| 啪啪无遮挡十八禁网站| 国产av国产精品国产| 精品一区二区三卡| 99精品久久久久人妻精品| 亚洲色图av天堂| 亚洲av日韩精品久久久久久密| 十分钟在线观看高清视频www| 亚洲精品av麻豆狂野| 夜夜骑夜夜射夜夜干| 美女国产高潮福利片在线看| 丰满人妻熟妇乱又伦精品不卡| 精品熟女少妇八av免费久了| 三级毛片av免费| 亚洲人成伊人成综合网2020| 黄色怎么调成土黄色| 热re99久久精品国产66热6| 国产免费福利视频在线观看| 色婷婷av一区二区三区视频| 亚洲专区国产一区二区| av一本久久久久| 国产人伦9x9x在线观看| 丁香六月欧美| 成人特级黄色片久久久久久久 | 一个人免费看片子| 久久久久精品人妻al黑| 国产男女内射视频| 亚洲第一av免费看| 久久久久久亚洲精品国产蜜桃av| 999久久久国产精品视频| 一级片免费观看大全| 色播在线永久视频| 美女高潮到喷水免费观看| 色综合欧美亚洲国产小说| 欧美人与性动交α欧美软件| 天天躁狠狠躁夜夜躁狠狠躁| 高清视频免费观看一区二区| 蜜桃在线观看..| 国产亚洲精品第一综合不卡| 精品人妻熟女毛片av久久网站| 精品国产一区二区三区久久久樱花| 久久99一区二区三区| 欧美人与性动交α欧美精品济南到| 制服人妻中文乱码| 嫩草影视91久久| 色94色欧美一区二区| 一进一出抽搐动态| 9色porny在线观看| 高清在线国产一区| 久久久久久亚洲精品国产蜜桃av| www.精华液| 亚洲av成人一区二区三| 欧美中文综合在线视频| 午夜免费鲁丝| 女性被躁到高潮视频| 天天影视国产精品| 黄频高清免费视频| 亚洲黑人精品在线| 国产精品亚洲av一区麻豆| 免费日韩欧美在线观看| 国产在线免费精品| 色视频在线一区二区三区| 两个人免费观看高清视频| 免费不卡黄色视频| www.自偷自拍.com| 日本一区二区免费在线视频| 女性被躁到高潮视频| 日韩欧美一区二区三区在线观看 | 夫妻午夜视频| 精品国产一区二区久久| 2018国产大陆天天弄谢| 日本av手机在线免费观看| 国产在视频线精品| 男人舔女人的私密视频| 高清视频免费观看一区二区| 制服人妻中文乱码| 一区福利在线观看| 国产男女内射视频| 日韩欧美一区视频在线观看| 午夜精品久久久久久毛片777| 真人做人爱边吃奶动态| 99久久人妻综合| 大陆偷拍与自拍| 热99久久久久精品小说推荐| 日韩制服丝袜自拍偷拍| 一进一出好大好爽视频| 51午夜福利影视在线观看| 十分钟在线观看高清视频www| 天天躁日日躁夜夜躁夜夜| 久久久久久人人人人人| 亚洲精品国产精品久久久不卡| 女警被强在线播放| 国产免费视频播放在线视频| 大型黄色视频在线免费观看| 欧美老熟妇乱子伦牲交| 99riav亚洲国产免费| 国产精品一区二区免费欧美| 亚洲视频免费观看视频| 国产精品一区二区在线不卡| 亚洲成人国产一区在线观看| 99热网站在线观看| 黄色成人免费大全| 亚洲视频免费观看视频| 母亲3免费完整高清在线观看| 欧美精品一区二区大全| 久久中文字幕一级| 国产色视频综合| svipshipincom国产片| 国产成人免费无遮挡视频| 又紧又爽又黄一区二区| 日韩欧美三级三区| 亚洲国产欧美在线一区| 国产不卡一卡二| 欧美一级毛片孕妇| 午夜福利乱码中文字幕| 亚洲欧洲精品一区二区精品久久久| 考比视频在线观看| 人人澡人人妻人| 日本精品一区二区三区蜜桃| 国产精品电影一区二区三区 | 中国美女看黄片| 又紧又爽又黄一区二区| 亚洲色图 男人天堂 中文字幕| 757午夜福利合集在线观看| 视频区欧美日本亚洲| 老司机福利观看| 欧美成人午夜精品| 免费少妇av软件| 久久99一区二区三区| 大码成人一级视频| 一级a爱视频在线免费观看| 女人久久www免费人成看片| 国产精品免费大片| 久久人人97超碰香蕉20202| 精品免费久久久久久久清纯 | 午夜免费鲁丝| 成人亚洲精品一区在线观看| 又黄又粗又硬又大视频| 人成视频在线观看免费观看| 又紧又爽又黄一区二区| 亚洲熟女精品中文字幕| 国产无遮挡羞羞视频在线观看| 老鸭窝网址在线观看| av天堂久久9| 亚洲第一av免费看| 亚洲国产av新网站| 在线观看66精品国产| 久久久国产精品麻豆| 成人国产av品久久久| 亚洲av成人不卡在线观看播放网| 丝袜美腿诱惑在线| 国产人伦9x9x在线观看| 99国产极品粉嫩在线观看| 成人手机av| 亚洲国产欧美网| 久久久精品免费免费高清| 女人精品久久久久毛片| 飞空精品影院首页| 99热网站在线观看| 成年动漫av网址| 正在播放国产对白刺激| 亚洲成av片中文字幕在线观看| 国产精品电影一区二区三区 | 操出白浆在线播放| 欧美日韩亚洲高清精品| 最新的欧美精品一区二区| 国产精品久久久久久精品电影小说| 高清视频免费观看一区二区| 成年女人毛片免费观看观看9 | 成人影院久久| 自线自在国产av| 久久免费观看电影| 一级毛片精品| 建设人人有责人人尽责人人享有的| 国产免费福利视频在线观看| 黄色毛片三级朝国网站| 老司机影院毛片| 99国产精品一区二区三区| 亚洲av第一区精品v没综合| 国产在视频线精品| 久久国产精品大桥未久av| 成人影院久久| 国产高清视频在线播放一区| 免费女性裸体啪啪无遮挡网站| 欧美中文综合在线视频| 久久久久久人人人人人| av超薄肉色丝袜交足视频| 黄色毛片三级朝国网站| 精品一品国产午夜福利视频| 黄色片一级片一级黄色片| 国产日韩欧美视频二区| 电影成人av| 国产日韩欧美视频二区| 国产精品秋霞免费鲁丝片| 成人av一区二区三区在线看| 99re在线观看精品视频| 免费不卡黄色视频| 老熟妇仑乱视频hdxx| 午夜福利在线观看吧| a级毛片黄视频| 满18在线观看网站| 中文字幕精品免费在线观看视频| 夜夜爽天天搞| 欧美日韩黄片免| 免费观看a级毛片全部| 人人妻,人人澡人人爽秒播| 最新在线观看一区二区三区| 亚洲精品久久成人aⅴ小说| 黄片播放在线免费| 国产精品av久久久久免费| 夜夜骑夜夜射夜夜干| 国产精品av久久久久免费| 9191精品国产免费久久| 成年人免费黄色播放视频| www.精华液| 国产精品麻豆人妻色哟哟久久| 美女主播在线视频| 亚洲va日本ⅴa欧美va伊人久久| 人人妻人人爽人人添夜夜欢视频| 久久精品国产99精品国产亚洲性色 | 亚洲熟妇熟女久久| 大片免费播放器 马上看| 俄罗斯特黄特色一大片| 中文字幕高清在线视频| 19禁男女啪啪无遮挡网站| 国产高清videossex| 日韩成人在线观看一区二区三区| 男人操女人黄网站| 欧美人与性动交α欧美软件| 国产免费现黄频在线看| 亚洲欧洲精品一区二区精品久久久| 日韩成人在线观看一区二区三区| 18禁黄网站禁片午夜丰满| 老司机靠b影院| 免费人妻精品一区二区三区视频| 欧美日韩精品网址| 十八禁人妻一区二区| 丝瓜视频免费看黄片| 自拍欧美九色日韩亚洲蝌蚪91| 国产免费av片在线观看野外av| 丰满人妻熟妇乱又伦精品不卡| 国产av一区二区精品久久| av网站在线播放免费| 日本欧美视频一区| 99久久精品国产亚洲精品| 亚洲精品在线观看二区| 久久久久国内视频| 免费日韩欧美在线观看| 国产精品一区二区在线观看99| xxxhd国产人妻xxx| 亚洲精品久久成人aⅴ小说| 一本色道久久久久久精品综合| 嫩草影视91久久| 亚洲一卡2卡3卡4卡5卡精品中文| 12—13女人毛片做爰片一| 日韩有码中文字幕| 12—13女人毛片做爰片一| 成人黄色视频免费在线看| 999久久久精品免费观看国产| 成人手机av| 久久久久久免费高清国产稀缺| 精品国产一区二区久久| 亚洲精品久久成人aⅴ小说| 国产无遮挡羞羞视频在线观看| 母亲3免费完整高清在线观看| 手机成人av网站| 欧美日韩一级在线毛片| 999精品在线视频| 欧美成狂野欧美在线观看| 欧美亚洲日本最大视频资源| 国产熟女午夜一区二区三区| 免费在线观看影片大全网站| 欧美成狂野欧美在线观看| 亚洲精品国产区一区二| 国产成人影院久久av| 国产精品98久久久久久宅男小说| 久久亚洲真实| 国产精品98久久久久久宅男小说| 麻豆av在线久日| 亚洲五月色婷婷综合| 十八禁人妻一区二区| 亚洲精品国产区一区二| 精品国产乱码久久久久久小说| 老熟女久久久| 成人国产av品久久久| 1024香蕉在线观看| 久久久久精品国产欧美久久久| 少妇被粗大的猛进出69影院| 最新美女视频免费是黄的| 精品久久久久久久毛片微露脸| 国产视频一区二区在线看| 亚洲免费av在线视频| 国产91精品成人一区二区三区 | www.999成人在线观看| 男男h啪啪无遮挡| 国产免费现黄频在线看| 午夜福利影视在线免费观看| 中文字幕人妻丝袜制服| 香蕉久久夜色| 免费观看av网站的网址| 欧美人与性动交α欧美软件| 性色av乱码一区二区三区2| 久久精品亚洲精品国产色婷小说| 精品久久久久久久毛片微露脸| 亚洲中文日韩欧美视频| 99国产精品免费福利视频| 91精品国产国语对白视频| 午夜福利在线免费观看网站| 搡老熟女国产l中国老女人| 大陆偷拍与自拍| 老司机亚洲免费影院| 男女边摸边吃奶| 久久久久久久大尺度免费视频| 国产成人啪精品午夜网站| 免费高清在线观看日韩| 在线观看www视频免费| 老司机福利观看| 久久精品人人爽人人爽视色| 亚洲三区欧美一区| 精品午夜福利视频在线观看一区 | 亚洲欧洲日产国产| 美女高潮到喷水免费观看| 久久精品亚洲熟妇少妇任你| 天堂中文最新版在线下载| 下体分泌物呈黄色| 满18在线观看网站| 黑人巨大精品欧美一区二区mp4| 啪啪无遮挡十八禁网站| 成年人午夜在线观看视频| 国产成人精品久久二区二区91| 岛国在线观看网站| 久久久久国内视频| 麻豆乱淫一区二区| 国产熟女午夜一区二区三区| 欧美+亚洲+日韩+国产| 色综合欧美亚洲国产小说| 亚洲第一青青草原| 黄色毛片三级朝国网站| 叶爱在线成人免费视频播放| 国产精品久久久久久精品电影小说| 超色免费av| 91字幕亚洲| 精品欧美一区二区三区在线| 日本黄色日本黄色录像| 亚洲欧美日韩另类电影网站| 欧美黄色淫秽网站| 国产欧美亚洲国产| 亚洲中文字幕日韩| 午夜激情久久久久久久|