鄭愛民,孫文兵
幾個局部分?jǐn)?shù)階積分不等式與廣義矩的有界估計
鄭愛民1,孫文兵2*
(1.邵陽學(xué)院 會計學(xué)院,湖南 邵陽 422000; 2.邵陽學(xué)院理學(xué)院,湖南 邵陽 422000)
局部分?jǐn)?shù)階微積分在數(shù)學(xué)、力學(xué)工程、物理等領(lǐng)域有非常廣泛的應(yīng)用,如應(yīng)用于分形熱擴(kuò)散和振子等微分方程數(shù)學(xué)模型的計算與分析[1-4]。YANG[5]介紹了Yang分形集理論和局部分?jǐn)?shù)階微積分理論,在此基礎(chǔ)上,文獻(xiàn)[6-12]以局部分?jǐn)?shù)階微積分為研究工具,對許多著名的積分不等式進(jìn)行了推廣研究。
SARIKAYA等[13]建立了Yang分形集上的廣義?eby?ev型不等式。
則
其中,
SARIKAYA等[6]證明了以下的局部分?jǐn)?shù)階積分恒等式并建立了Yang分形集上的廣義Ostrowski型不等式。
其中,
定理3(廣義Ostrowski型不等式) 若定理2條件滿足,則有
1預(yù)備知識
2主要結(jié)果及證明
由引理3,可得
由式(7)和式(8),可知結(jié)論成立。
定理4證畢。
顯然結(jié)論成立。
則有
證明 取
則
由廣義?eby?ev型不等式,可知
由廣義Montgomery恒等式,可知
經(jīng)計算可得
將式(16)~式(18)代入式(15),整理后可得式(14)。
定理6得證。
注2 稱定理6為廣義Ostrowski-?eby?ev型不等式。
(19)
證明 由定理6廣義Ostrowski-?eby?ev型不等式,可得
經(jīng)計算可得
且
將式(22)~式(24)代入式(21),可得式(19)。
定理7得證。
[1]HEMEDA A A, ELADDAD E E, LAIRJE I A. Local fractional analytical methods for solving wave equations with local fractional derivative[J]. Mathematical Methods in the Applied Sciences, 2018,41(6):2515-2529.
[2]YANG X J, BALEANU D. Fractal heat conduction problem solved by local fractional variation iteration method[J]. Thermal Science, 2013,17(2):625-628. DOI:10.2298/tsci121124216y
[3]YANG X J, MACHADO J A T, BALEANU D, et al. On exact traveling-wave solutions for local fractional Korteweg-de Vries equation[J]. Chaos, 2016, 26 (8): 084312. DOI:10.1063/1.4960543
[4]YANG X J, MACHADO J A T, SRIVASTAVA H M. A new numerical technique for solving the local fractional diffusion equation: Two-dimensional extended differential transform approach[J]. Applied Mathematics and Computation,2016, 274: 143-151. DOI:10.1016/j.amc.2015.10.072
[5]YANG X J. Advanced Local Fractional Calculus and Its Applications[M]. New York: World Science Publisher, 2012.
[6]SARIKAYA M Z, BUDAK H. Generalized Ostrowski type inequalities for local fractional integrals[J]. Proceedings of the American Mathematic Society, 2017,145(4): 1527-1538.
[7]MO H X, SUI X, YU D Y. Generalized convex functions on fractal sets and two related inequalities [J]. Abstract and Applied Analysis, 2014, Article ID 636751. DOI:10.1155/2014/636751
[8]MO H X, SUI X. Generalized s-convex functions on fractal sets[J]. Abstract and Applied Analysis, 2014, Article ID 254731. DOI:10.1155/2014/254737
[9]SUN W B. Generalized harmonically convex functions on fractal sets and related Hermite-Hadamard type inequalities[J]. Journal of Nonlinear Sciences and Applications, 2017,10(11): 5869-5880. DOI:10.22436/jnsa.010.11.24
[10]孫文兵,劉瓊. 分形集上廣義凸函數(shù)的新Hermite-Hadamard型不等式及其應(yīng)用[J]. 浙江大學(xué)學(xué)報(理學(xué)版), 2017,44(1):47-52. DOI:10.3785/j.issn.1008-9497.2017.01.007
SUN W B, LIU Q. New inequalities of Hermite-Hadamard type for generalized convex functions on fractal sets and its applications[J]. Journal of Zhejiang University(Science Edition),2017,44(1): 47-52. DOI:10.3785/j.issn.1008-9497.2017.01.007
[11]VIVAS M, HEMANDEZ J, MERENTES N. New Hermite-Hadamard and Jensen type inequalities for-convex functions on fractal sets[J]. Revista Colombiana de Matematicas, 2016,50(2):145-164. DOI:10.15446/recolma.v50n2.62207
[12]SUN W B. Generalized-convexity on fractal sets and some generalized Hadamard type inequalities[J]. Fractals, 2020, 28(2): 2050021.
[13]SARIKAYA M Z, TUNC T, BUDAK H. On generalized some integral inequalities for local fractional integrals[J]. Applied Mathematics and Computation, 2016,276:316-323. DOI:10.1016/j.amc.2015.11.096
Some local fractional integral inequalities and bounded estimates of generalized moments
ZHENG Aimin1, SUN Wenbing2
(1422000;2422000)
10.3785/j.issn.1008-9497.2021.05.004
O 178
A
1008?9497(2021)05?544?06
2020?05?07.
湖南省自然科學(xué)基金資助項目(2019JJ40273,2021JJ30635);湖南省教育廳重點(diǎn)項目(19A445);湖南省普通高等學(xué)校教學(xué)改革研究項目(HNJG-2020-0822,湘教通(2019)291號文件(787號)).
鄭愛民(1975—),ORCID:https://orcid.org/0000-0002-1083-7272,男,碩士,副教授,主要從事應(yīng)用數(shù)學(xué)及農(nóng)村經(jīng)濟(jì)研究,E-mail:1064126168@qq.com.
,ORCID:httsp://orcid.org/0000-0002-5673-4519,E-mail:swb0520@163.com.