蔣小妹,李 俊,王炯科,伍佩珂,鄧良偉,王文國(guó)
豬場(chǎng)沼液UF-MBR+RO處理工藝濃縮液回流的鹽積累模型
蔣小妹1,李俊2,王炯科1,伍佩珂1,鄧良偉1,王文國(guó)1※
(1. 農(nóng)業(yè)農(nóng)村部沼氣科學(xué)研究所,成都 610041; 2. 成都大學(xué)食品與生物工程學(xué)院,成都 610106)
反滲透(Reverse Osmosis, RO)膜工藝在沼液深度處理中發(fā)揮重要作用,其濃縮液回流引起的鹽積累會(huì)降低生化階段的效能。該研究模擬豬場(chǎng)沼液超濾(Ultrafiltration, UF)-膜生物反應(yīng)器(Membrane Bioreactor, MBR)+RO處理工藝中濃縮液回流,構(gòu)建鹽積累模型預(yù)測(cè)不同污泥停留時(shí)間(Sludge Retention Time, SRT)下UF-MBR中鹽積累量,分析污泥吸附作用對(duì)鹽積累模型準(zhǔn)確度的影響。結(jié)果表明:構(gòu)建的鹽積累模型可預(yù)測(cè)鹽積累量及達(dá)到鹽平衡所需的回流次數(shù),Ca2+、Mg2+的實(shí)際值與理論值的擬合決定系數(shù)2高于0.95,RMSE小于4.00 mg/L,模型對(duì)Ca2+、Mg2+積累量預(yù)測(cè)的準(zhǔn)確度高。SRT從60 d降低至30 d,鹽度從4.83%降低至2.63%,達(dá)到鹽平衡所需的時(shí)長(zhǎng)從249 d降低至179 d,降低SRT可作為一種有效策略來降低MBR中鹽積累量及達(dá)到鹽平衡的時(shí)長(zhǎng)。SRT控制在30 d以下可使MBR鹽度低于1.00%,使MBR生化階段發(fā)揮效能的高效性。此外,污泥的吸附可降低MBR中積累的K+、Na+的含量。但是,Ca2+、Mg2+累積量較高時(shí),污泥吸附作用對(duì)模型的影響較低,該研究構(gòu)建的模型可為豬場(chǎng)沼液UF-MBR+RO處理工藝的應(yīng)用提供參考。
模型;鹽;污泥;膜濃縮液回流;污泥停留時(shí)間;污泥吸附
規(guī)模化養(yǎng)豬場(chǎng)糞污厭氧消化產(chǎn)生的沼液屬于高濃度有機(jī)廢棄物[1],含有大量能夠被植物吸收利用的營(yíng)養(yǎng)物質(zhì),可以用作肥料[1-2],就近還田利用是其最為常見的處置方式[3]。但是隨著集約化生豬養(yǎng)殖的迅速發(fā)展,豬場(chǎng)沼液產(chǎn)生量與豬場(chǎng)周邊土地對(duì)沼液消納能力之間的矛盾越來越突出,就近還田壓力大[4-5]。由于遠(yuǎn)距離運(yùn)輸沼液成本較高,達(dá)標(biāo)處理也成為沼液處理的一種可選途徑[6]。沼液具有高氨氮(NH4+-N)、低C/N的特點(diǎn),簡(jiǎn)單的生物處理難以達(dá)到《城鎮(zhèn)污水處理廠污染物排放標(biāo)準(zhǔn)GB18918-2002》一級(jí)A標(biāo)準(zhǔn)[7],需要結(jié)合其他物理或化學(xué)技術(shù)進(jìn)行深度處理[4]。膜處理技術(shù)是一種常用廢水深度處理技術(shù),相關(guān)研究與應(yīng)用日益增多[8]。
膜生物反應(yīng)器(Membrane Bioreactor, MBR)+反滲透(Reverse Osmosis, RO)膜工藝由于具有出水水質(zhì)高、污泥產(chǎn)量低及占地面積小等優(yōu)勢(shì),已在垃圾滲濾液、沼液等廢水處理工程中有大量的應(yīng)用[9-11]。然而,MBR+RO工藝會(huì)產(chǎn)生RO膜濃縮液[2,8,12],RO膜濃縮液中有機(jī)物、NH4+-N、無機(jī)鹽含量較高,直接排放可能對(duì)環(huán)境造成污染[8-9]。如何低成本、高效的處理RO濃縮液是目前工程上的難點(diǎn)。將RO濃縮液回流至MBR單元是目前垃圾滲濾液處理工程上常用的方法[9-10]。然而,由于RO膜對(duì)鹽離子的高效截留效率,MBR進(jìn)水90%的鹽離子會(huì)隨RO濃縮液回流到生化階段[9,13-14],導(dǎo)致生化階段鹽度積累,進(jìn)而影響生化階段的處理效率[15]。現(xiàn)有研究主要關(guān)注于生化階段鹽度積累與膜污染、膜處理效率的關(guān)系。而如何有效控制MBR生化階段鹽度積累這方面的研究相對(duì)較少。
調(diào)節(jié)污泥停留時(shí)間(Sludge Retention Time, SRT)是一種通過改變排出剩余污泥時(shí)間來緩解MBR中鹽度積累的可行方法,該方法已被應(yīng)用于市政污水MBR+RO處理工藝[15]。研究表明,降低SRT可有效的降低正滲透(Forward Osmosis, FO)-MBR和納濾(Nanofiltration, NF)-MBR中鹽度積累量,有效保障MBR生化階段污染物的去除性能[15-16]?;赟RT的重要性,一些研究者以SRT為參數(shù)建立MBR鹽度積累模型,可通過鹽度積累模型來預(yù)測(cè)MBR中鹽度隨運(yùn)行時(shí)間的變化,并且表明FO-MBR和NF-MBR中積累的鹽度會(huì)達(dá)到平衡[15-17]。但是,F(xiàn)O-MBR中工藝操作復(fù)雜[15],NF-MBR工藝對(duì)一價(jià)鹽離的截留率較低[18],這兩種工藝難以滿足豬場(chǎng)沼液處理的需求。然而,由于RO工藝的操作簡(jiǎn)單性,對(duì)鹽離子的截留率能達(dá)到98%,出水水質(zhì)更優(yōu)[19-20],廣泛應(yīng)用于工程上處理豬場(chǎng)沼液。MBR+RO工藝處理沼液產(chǎn)生的濃縮液回流至MBR生化階段可能會(huì)造成MBR中鹽積累,而關(guān)于這方面的研究較少。因此,本研究模擬豬場(chǎng)沼液超濾(Ultrafiltration, UF)-MBR+RO處理工藝中濃縮液回流,構(gòu)建鹽度積累模型來預(yù)測(cè)不同SRT下UF-MBR中鹽度積累量,并分析活性污泥的吸附作用對(duì)鹽度積累模型準(zhǔn)確度的影響,研究成果將對(duì)沼液的深度處理提供一定的參考。
本研究使用的沼液取自四川省簡(jiǎn)陽市某豬場(chǎng),其性質(zhì)見表1。所用的活性污泥取自四川省簡(jiǎn)陽市某豬場(chǎng)沼液生化處理工程。
表1 沼液性質(zhì)
1.2 實(shí)驗(yàn)室規(guī)模的UF-MBR+RO裝置與運(yùn)行參數(shù)
UF-MBR+RO裝置的流程如圖1所示。UF-MBR和RO膜的性能參數(shù)見表2,UF-MBR運(yùn)行條件見表3。每天UF-MBR中進(jìn)30 L沼液,經(jīng)過UF-MBR中生化階段處理后,再通過UF膜出水30 L,所得到的30 L UF-MBR出水轉(zhuǎn)入到RO工藝的進(jìn)水池中。經(jīng)過RO工藝處理后,得到25 L RO產(chǎn)水和5 L RO濃縮液。
表2 UF-MBR和RO的性能參數(shù)
由于RO工藝運(yùn)行前后都會(huì)殘留12 L的液體,因此整個(gè)RO工藝中僅對(duì)UF-MBR出水濃縮了1.8倍。每次RO工藝結(jié)束后對(duì)RO膜進(jìn)行清洗。每天測(cè)定UF-MBR體系中鹽度、總?cè)芙庑怨腆w(TDS)、電導(dǎo)率(EC)、鉀離子(K+)、鈉離子(Na+)、鎂離子(Mg2+)、鈣離子(Ca2+)含量。
采用王守偉和李春華[21]方法構(gòu)建鹽度積累模型,得到鹽度累積模型(1)和(2)。
UF-MBR中鹽度(C)隨運(yùn)行次數(shù)()變化的鹽度積累模型(1):
通過模型(1)可得UF-MBR中鹽度平衡模型(2),即鹽度積累量最大值max:
式中、為系數(shù);為UF-MBR中有效體積,L;C為進(jìn)水沼液中鹽離子濃度,mg/L;V為進(jìn)水沼液體積,L;V為活性污泥體積,L;V為UF-MBR中排出剩余污泥的體積,L;U為UF膜對(duì)鹽離子的截留率;R為RO膜對(duì)鹽離子的截留率;V為RO濃縮液回流體積,L。
采用決定系數(shù)2和均方根誤差(Root Mean Square Error, RMSE)驗(yàn)證模型的準(zhǔn)確性。將實(shí)驗(yàn)室規(guī)模的豬場(chǎng)沼液UF-MBR+RO處理工藝進(jìn)行濃縮液回流所得的UF-MBR中鹽離子的試驗(yàn)值與鹽度積累模型所預(yù)測(cè)的理論值進(jìn)行擬合,以RMSE來評(píng)估模型的理論值與試驗(yàn)值的偏差[22]。
基于本研究構(gòu)建的UF-MBR鹽度積累模型計(jì)算不同SRT下UF-MBR+RO處理工藝濃縮液回流過程中UF-MBR鹽度積累量。參照Tay等[13]研究選定三種不同SRT參數(shù),分別為30、45、60 d。根據(jù)先前研究[16,23-24]選定UF-MBR的其他操作參數(shù)值。其他操作參數(shù)值為:運(yùn)行周期時(shí)長(zhǎng)為24 h,UF-MBR的有效體積為1 000 L,UF-MBR的進(jìn)水體積為500 L,RO濃縮液回流體積為100 L,UF膜對(duì)鹽離子的截留率為0.1,RO膜對(duì)K+、Na+的截留率為0.98,RO膜對(duì)Ca2+、Mg2+的截留率為0.99,沼液中總鹽度、K+、Na+、Ca2+、Mg2+的濃度分別為0.300%、0.600 g/L、0.250 g/L、0.075 g/L、0.125 g/L。將以上參數(shù)值代入U(xiǎn)F-MBR鹽度積累模型,可得到1 000 L UF-MBR中的鹽度積累量。
沼液中含有的鹽離子主要為K+、Na+、Ca2+、Mg2+[23-24]。參考Macedo等[25]研究選取NaCl、MgCl2及CaCl2分別作為Na+、Mg2+、Ca2+的來源,參考Zhang等[26]研究選取KCl作為K+的來源。有研究[27-28]表明Cl-對(duì)活性污泥的毒害可以忽略不計(jì)。因此,本研究中添加K+、Na+、Ca2+、Mg2+鹽離子而加入的Cl-對(duì)試驗(yàn)結(jié)果的干擾性較低。根據(jù)鹽度積累模型所得的鹽度平衡量,添加鹽離子將沼液中鹽離子含量調(diào)整到與鹽平衡量相近。具體試驗(yàn)操作為:從UF-MBR中取1,800 mL活性污泥,使用蒸餾水將活性污泥清洗至無殘留的NH4+-N、NO3--N、NO2--N。分裝成18份分別轉(zhuǎn)移至250 mL的錐形瓶中,分為6組,分別為對(duì)照組(CK)、添加K+組(TK)、添加Na+組(TNa)、添加Mg2+組(TMg)、添加Ca2+組(TCa)、添加K+、Na+、Mg2+、Ca2+組(TMix)。每組進(jìn)水沼液中鹽含量見表4。設(shè)置水力停留時(shí)間(Hydraulic Retention Time, HRT)為24 h,每個(gè)運(yùn)行周期:進(jìn)水0.25 h,曝氣8 h,沉淀2 h,出水0.25 h,閑置1.5 h。取開始和結(jié)束階段的活性污泥,測(cè)定活性污泥中K+、Na+、Mg2+、Ca2+含量。
表4 試驗(yàn)組設(shè)計(jì)
注:CK對(duì)照組,TK添加K+組,TNa添加Na+組,TMg添加Mg2+組,TCa添加Ca2+組,TMix添加K+、Na+、Mg2+、Ca2+組,下同。
Note: CK is control group, TK is add K+group, TNa is add Na+group, TMg is add Mg2+group, TCa is add Ca2+group, TMix is add K+, Na+, Mg2+, Ca2+group, the same below.
UF-MBR體系中的鹽度、TDS、EC采用電導(dǎo)率儀(雷磁;DDSJ-308A)進(jìn)行測(cè)定。UF-MBR體系中K+、Na+、Mg2+、Ca2+含量采用電感耦合等離子體(ICP;PlasmaQuant PQ9000)測(cè)定。
活性污泥中K+、Na+、Mg2+、Ca2+含量的測(cè)定參照Sudmalis等[29]研究。50 mL污泥樣品使用蒸餾水清洗3遍,重懸至10 mL,移取3 mL重懸液至15 mL離心管中,烘干,記錄烘干前后離心管的質(zhì)量,后續(xù)在15 mL離心管中加入10 mL 68%硝酸,沸水浴中消解10 min,使用0.45m濾膜過濾,過濾所得到的樣品使用電感耦合等離子體(ICP;PlasmaQuant PQ9000)測(cè)定K+、Na+、Mg2+、Ca2+含量。
所有的數(shù)據(jù)使用Excel 2013進(jìn)行處理,運(yùn)用OriginPro.2019b和Microsoft PowerPoint進(jìn)行繪圖。所有試驗(yàn)均重復(fù)3次進(jìn)行,所有數(shù)據(jù)均以mean ± std表示。使用OringinPro.2019b對(duì)試驗(yàn)值與理論值的擬合。
本研究構(gòu)建的模型(2)可用于預(yù)測(cè)豬場(chǎng)沼液UF-MBR+RO處理工藝中RO濃縮液回流引起的MBR中鹽度積累量,模型(1)可用于預(yù)測(cè)MBR中鹽度平衡時(shí)所需的RO濃縮液回流次數(shù)(運(yùn)行次數(shù))。模型(1)不同于王守偉和李春華[21]構(gòu)建的模型,王守偉和李春華[21]模型是基于電凝聚法處理電鍍混合廢水工藝的操作參數(shù)而構(gòu)建的,而本研究是參考王守偉和李春華[21]構(gòu)建鹽模型方法,基于UF-MBR+RO工藝中的參數(shù)而構(gòu)建的鹽積累模型。
本研究構(gòu)建的模型是基于RO膜濃縮液回流而建立的,而大多的鹽度積累模型是基于SRT和HRT為參數(shù)而建立的,未考慮回流的影響,較本研究相對(duì)簡(jiǎn)單[16-17]。如Tay等[16]使用NF-MBR+RO工藝處理市政污水時(shí),發(fā)現(xiàn)MBR中鹽積累與RO膜污染具有較高相關(guān)性,鹽積累降低了膜工藝的處理效果,該研究未考慮濃縮液的回流處理。本研究在模型(1)的基礎(chǔ)上構(gòu)建了模型(2),該模型可根據(jù)工藝的操作參數(shù)而預(yù)測(cè)MBR中鹽度平衡量,以便更好的優(yōu)化UF-MBR+RO工藝而降低MBR中鹽度的積累,使MBR的生化階段保持高效的有機(jī)物、污染物的去除率。
將UF-MBR中四種鹽離子含量與模型(1)計(jì)算得到的理論值進(jìn)行擬合并計(jì)算RMSE,所得到的R和RMSE見圖2。本研究參照周春輝等[30]研究選用線性擬合來權(quán)衡四種鹽離子的試驗(yàn)值與理論值的擬合效果,能夠直觀的表示擬合效果。從圖2可以看出,四種鹽離子的試驗(yàn)值與理論值的擬合曲線決定系數(shù)R在0.910~0.986范圍,說明擬合度較好。對(duì)比這四種鹽離子的擬合效果,發(fā)現(xiàn)對(duì)Ca2+、Mg2+這兩種鹽離子的擬合效果相比K+、Na+較好,且Ca2+、Mg2+這兩種鹽離子的RMSE低于K+、Na+,這表明UF-MBR鹽度積累模型對(duì)二價(jià)陽離子預(yù)測(cè)的準(zhǔn)確度較高。K+的RMSE最高,達(dá)到29.718 mg/L,表明該模型對(duì)K+預(yù)測(cè)的準(zhǔn)確度相對(duì)較低。
Tay等[16]構(gòu)建的NF-MBR鹽度積累模型預(yù)測(cè)的Ca2+、Mg2+理論值與實(shí)際值的誤差在15.00%以下,而本研究的構(gòu)建的鹽度積累模型對(duì)Ca2+、Mg2+理論值與實(shí)際值的預(yù)測(cè)誤差在10.00%(RSEM低于4.0 mg/L)以下,準(zhǔn)確度更高。不同廢水中鹽離子的組成不同,常見的鹽離子為K+、Na+、Ca2+、Mg2+等[25,27],且K+、Na+含量往往高于Ca2+、Mg2+[28]。高濃度K+、Na+對(duì)活性污泥硝化性能抑制作用更為強(qiáng)烈[26-27,31]。因此,本研究同時(shí)考慮了鹽度積累模型對(duì)K+、Na+預(yù)測(cè)的準(zhǔn)確性,而先前研究則主要考慮了二價(jià)陽離子(Ca2+、Mg2+)[16]。但是由于吸附等因素的影響,模型公式(1)對(duì)MBR中K+、Na+積累量預(yù)測(cè)的準(zhǔn)確度相對(duì)較低,需要進(jìn)一步的研究。
不同SRT下,1,000 L UF-MBR中鹽度及鹽離子的積累量的變化見圖3。SRT為30 d時(shí),UF-MBR中鹽度、K+、Na+、Mg2+、Ca2+分別于179、135、145、179 d達(dá)到平衡,鹽度、K+、Na+、Mg2+、Ca2+平衡量分別為2.63%、5.35 g/L、2.19 g/L、0.73 g/L、1.22 g/L。SRT為45 d時(shí),UF-MBR中鹽度、K+、Na+、Mg2+、Ca2+分別于190、207、178、208、207 d達(dá)到平衡,鹽度、K+、Na+、Mg2+、Ca2+平衡量分別為3.59%、7.18 g/L、2.99 g/L、1.04 g/L、1.73 g/L。當(dāng)SRT升高到60 d,UF-MBR中鹽度、K+、Na+、Mg2+、Ca2+分別于249、249、249、228、289 d才達(dá)到平衡,鹽度、K+、Na+、Mg2+、Ca2+平衡量分別為4.83%、8.77 g/L、3.65 g/L、1.31 g/L、2.18 g/L。隨SRT升高,UF-MBR中積累的鹽度含量上升,這表明降低SRT可有效的緩解UF-MBR中鹽度的積累量,有效的縮短到達(dá)鹽度平衡時(shí)的時(shí)間。此結(jié)果與其他研究的結(jié)果一致,Wang等[15]研究了SRT對(duì)內(nèi)置式MBR中鹽度積累量的影響,SRT為10 d時(shí)FO-MBR中鹽積累量低于SRT為15 d,降低SRT可降低MBR中鹽累積量,從而維持了高效的NH4+-N去除率。Tay等[16]對(duì)比了兩種不同SRT下NF-MBR+RO工藝中MBR的鹽度積累量,SRT為30 d時(shí)MBR中Ca2+、Mg2+的積累量要低于SRT為60 d,且SRT為30 d時(shí)MBR中Ca2+、Mg2+達(dá)到平衡所需的時(shí)間相比SRT為60 d要短。調(diào)節(jié)SRT可作為一種有效的策略降低MBR中的鹽度積累量。
另外,SRT分別為30、45、60 d時(shí),1000 L的UF-MBR中四種鹽離子的積累鹽度值分別合計(jì)為0.95%、1.29%、1.59%。而預(yù)測(cè)UF-MBR中鹽度分別為2.63%、3.59%、4.83%,四種鹽離子合計(jì)的鹽度低于模型預(yù)測(cè)的鹽度,可能存在兩種原因:1)沼液中還存在其他離子與這四種鹽離子共同決定鹽度;2)本模型未考慮活性污泥的吸附作用,預(yù)測(cè)的鹽度可能高于實(shí)際積累的鹽度。因此在SRT分別為30、45、60 d時(shí),UF-MBR中積累的鹽度分別應(yīng)該在0.95%~2.63%、1.29%~3.59%、1.59%~4.83%之間。
目前,關(guān)于鹽度對(duì)污泥性能的影響,主要集中在污泥生物量、胞外聚合物(Extracelluar Polymeric Substance, EPS)含量、COD/TOC去除性能、TN去除性能、TP去除性能及微生物群落等方面[13,15,32-33]。這些研究結(jié)果表明廢水中的鹽度高于1.00%,會(huì)抑制微生物的生理活性,如呼吸作用,從而會(huì)降低活性污泥污染物的去除性能[33-34]。另外,在本研究的三種SRT下,UF-MBR的鹽度平衡量都高于1.00%,可推測(cè)SRT控制在30 d以下可減緩UF-MBR中鹽度積累量對(duì)活性污泥性能的影響。
活性污泥中一價(jià)離子(K+、Na+)的變化,見圖4a~4b。從圖中可看出,TMg、TCa兩組中K+含量要低于CK組,甚至TCa組的低于初始活性污泥(InS)中K+含量。可能是活性污泥會(huì)優(yōu)先吸附二價(jià)陽離子,尤其是Ca2+[26,35],因此二價(jià)陽離子(Mg2+、Ca2+)存在時(shí)活性污泥中K+的含量降低。此外,TK組的活性污泥中并未檢測(cè)到Na+。Sudmalis等[29]研究表明活性污泥中的EPS會(huì)優(yōu)先運(yùn)輸K+進(jìn)入到污泥內(nèi)部相比Na+,這可能是TK組中Na+含量較低的原因。另外,Cui等[34]研究表明大量Mg2+的存在降低活性污泥對(duì)Na+的吸附,因此TMg組的活性污泥中Na+含量低于CK組(圖4b)。以上結(jié)果表明,高濃度的Ca2+、Mg2+會(huì)降低活性污泥對(duì)K+、Na+的吸附,大量的K+會(huì)降低污泥對(duì)Na+的吸附。
活性污泥中二價(jià)離子(Mg2+、Ca2+)的變化,見圖4c~4d。從圖中可看出,CK、TK、TNa組活性污泥中Mg2+含量與InS一致。但是TCa組中的Mg2+低于CK。Cui等[34]研究表明活性污泥中會(huì)優(yōu)先吸附Ca2+相比Mg2+,因此TCa組中Mg2+含量低于其他各組。另外,TK、TNa、TMg中Ca2+含量與CK組一致。以上結(jié)果表明,高濃度的K+、Na+不會(huì)影響活性污泥對(duì)Mg2+、Ca2+的吸附,高濃度Ca2+會(huì)減少污泥對(duì)Mg2+的吸附。
另外,從圖4中發(fā)現(xiàn),Tmix組活性污泥中Ca2+、Mg2+含量遠(yuǎn)遠(yuǎn)高于K+、Na+的含量。這可能是由于兩種原因造成的:1)大量Ca2+、Mg2+會(huì)干擾活性污泥對(duì)K+、Na+的吸附;2)Ca2+、Mg2+這兩種二價(jià)離子在堿性的環(huán)境易與碳酸根離子、銨根離子、磷酸根離子等形成沉淀[35-37]。
綜上所述,不同鹽離子的組合會(huì)影響活性污泥對(duì)鹽離子的吸附能力,尤其是活性污泥對(duì)K+、Na+的吸附能力易受其他離子含量的影響。從圖4中可得知,廢水中Ca2+、Mg2+濃度較低時(shí),污泥中K+、Na+質(zhì)量分?jǐn)?shù)分別可達(dá)到3.38、1.03mg/g。另外,MBR中的MLSS維持在4~5 g/L時(shí)性能最佳[38]。因此,廢水中K+、Na+在活性污泥作用下可分別降低13.52~16.9、4.12~5.15 mg/L。然而,當(dāng)Ca2+、Mg2+含量較高時(shí),污泥中K+、Na+質(zhì)量分?jǐn)?shù)分別達(dá)到1.54、0.27mg/g,廢水中K+、Na+在活性污泥作用下可分別降低6.16~7.70、1.08~1.35 mg/L。這表明污泥吸附作用可以使MBR中積累的K+、Na+濃度有所降低。此外,該模型(1)對(duì)K+、Na+預(yù)測(cè)的理論值與實(shí)際值的RMSE分別為29.718、15.271 mg/L,高于污泥吸附作用而導(dǎo)致的減少量。廢水中Ca2+、Mg2+濃度較高時(shí),由于吸附作用而減少的K+、Na+含量較低。因此,廢水中Ca2+、Mg2+含量較高時(shí),吸附作用并不是造成鹽度模型對(duì)K+、Na+的預(yù)測(cè)準(zhǔn)確度較低的主要原因,除此還存在其他的原因。并且通過鹽度積累模型預(yù)測(cè)可知,SRT為30 d,1,000 L的MBR中可累積Ca2+、Mg2+濃度分別達(dá)到0.73、1.22 g/L,Ca2+、Mg2+累積量較高,污泥吸附對(duì)模型的影響較低,本研究構(gòu)建的模型可用于預(yù)測(cè)MBR中積累的鹽離子。
1)本文構(gòu)建的UF-MBR鹽度積累模型可預(yù)測(cè)UF-MBR中的鹽度積累量及達(dá)到鹽平衡量時(shí)RO濃縮液的回流次數(shù),Ca2+、Mg2+的實(shí)際值與理論值的擬合決定系數(shù)R高于0.95,RMSE小于4.00 mg/L,此模型可用于預(yù)測(cè)豬場(chǎng)沼液UF-MBR+RO處理工藝濃縮液回流引起的MBR中Ca2+、Mg2+積累量。
2)活性污泥吸附可降低13.52~16.9 mg/L K+、4.12~5.15 mg/L Na+。但是,Ca2+、Mg2+累積量較高時(shí),活性污泥吸附可降低6.16~7.70 mg/L K+、1.08~1.35 mg/L Na+,污泥吸附對(duì)模型的影響較低,本研究構(gòu)建的模型可為豬場(chǎng)沼液UF-MBR+RO處理工藝的應(yīng)用提供參考。
3)污泥停留時(shí)間SRT從60 d降低至30 d,鹽度從4.83%降低至2.63%,達(dá)到鹽平衡所需的時(shí)長(zhǎng)從249 d縮短至179 d,降低SRT可降低MBR中鹽積累量及達(dá)到鹽平衡時(shí)長(zhǎng)。此外, 將SRT控制在30 d以下可使MBR鹽度低于1.00%,使MBR生化階段發(fā)揮效能的高效性。
[1] 周文兵,靳渝鄂,肖乃東. 沼液無害化處理和資源化利用研究進(jìn)展及發(fā)展建議[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(增刊1):115-122.
Zhou Wenbing, Jin Yu’e, Xiao Naidong. Study progress and development suggestions on harmless treatment and resource utilization of biogas slurry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(Supp.1): 115-122. (in Chinese with English abstract)
[2] 祁步凡,王虹,李俊,等. 沼液膜濃縮液復(fù)配肥對(duì)小白菜的肥效及安全性研究[J]. 西南農(nóng)業(yè)學(xué)報(bào),2021,34(1):89-93.
Qi Bufan, Wang Hong, Li Jun, et al. Fertilizer efficiency and safety of liquid digestate membrane concentrate based fertilizer on pakchoi (L.)[J]. Southwest China Journal of Agricultural Sciences, 2021, 34(1): 89-93. (in Chinese with English abstract)
[3] 王小彬,閆湘,李秀英. 畜禽糞污厭氧發(fā)酵沼液農(nóng)用之環(huán)境安全風(fēng)險(xiǎn)[J]. 中國(guó)農(nóng)業(yè)科學(xué),2021,54(1):110-139.
Wang Xiaobin, Yan Xiang, Li Xiuying. Environmental safety risk for application of anaerobic fermentation biogas slurry from livestock manure in agricultural land in China[J]. Scientia Agricultura Sinica, 2021, 54(1): 110-139. (in Chinese with English abstract)
[4] 劉向陽,張千,羅萬東,等. 菌劑掛膜3D_RBC聯(lián)合BCO工藝處理養(yǎng)豬沼液廢水[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(20):49-56.
Liu Xiangyang, Zhang Qian, Luo Wandong, et al. Treatment of pig biogas slurry wastewater by microbial inoculum 3D-RBC combined with BCO process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(20): 49-56. (in Chinese with English abstract)
[5] 仇煥廣,井月,廖紹攀,等. 我國(guó)畜禽污染現(xiàn)狀與治理政策的有效性分析[J]. 中國(guó)環(huán)境科學(xué),2013,33(12):2268-2273.
Qiu Huanguang, Jing Yue, Liao Shaopan, et al. Environmental pollution of livestock and the effectiveness of different management policies in China[J]. China Environmental Science, 2013, 33(12): 2268-2273. (in Chinese with English abstract)
[6] 鄒夢(mèng)圓,董紅敏,朱志平,等. 畜禽場(chǎng)沼液處理及資源化利用的研究進(jìn)展與展望[J]. 中國(guó)家禽,2020,42(9):103-109.
Zou Mengyuan, Dong Hongmin, Zhu Zhiping, et al. Progress and prospect of treatments and resource utilization of biogas slurry on livestock and poultry farms[J]. China Poultry, 2020, 42(9): 103-109. (in Chinese with English abstract)
[7] 何星海,馬世豪,羅孜. 北京市《城鎮(zhèn)污水處理廠水污染物排放標(biāo)準(zhǔn)》解讀[J]. 給水排水,2013,49(10):123-127.
He Xinghai, Ma Sihao, Luo Zi. Explanation of Beijing Local Standard of Discharge standard of water pollutants for municipal wastewater treatment plants[J]Water & Wastewater Engineering, 2013, 49(10): 123-127. (in Chinese with English abstract)
[8] Keyikoglu R, Karatas O, Rezania H, et al. A review on treatment of membrane concentrates generated from landfill leachate treatment processes[J]. Separation and Purification Technology, 2021, 259: 118182.
[9] Zhang X, Liu Y. Reverse osmosis concentrate: An essential link for closing loop of municipal wastewater reclamation towards urban sustainability[J]. Chemical Engineering Journal, 2021, 421: 127773.
[10] Joss A, Baenninger C, Foa P, et al. Water reuse: >90% water yield in MBR/RO through concentrate recycling and CO2addition as scaling control[J]. Water Research, 2011, 45(18): 6141-6151.
[11] Li X, Zhu W, Wu Y, et al. Recovery of potassium from landfill leachate concentrates using a combination of cation-exchange membrane electrolysis and magnesium potassium phosphate crystallization[J]. Separation and Purification Technology, 2015, 144: 1-7.
[12] Arola K, Van Der Bruggen B, M?ntt?ri M, et al. Treatment options for nanofiltration and reverse osmosis concentrates from municipal wastewater treatment: A review[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(22): 2049-2116.
[13] Tay M F, Liu C, Cornelissen E R, et al. The feasibility of nanofiltration membrane bioreactor (NF-MBR)+reverse osmosis (RO) process for water reclamation: Comparison with ultrafiltration membrane bioreactor (UF-MBR)+RO process[J]. Water Research, 2018, 129: 180-189.
[14] Kappel C, Kemperman A J B, Temmink H, et al. Impacts of NF concentrate recirculation on membrane performance in an integrated MBR and NF membrane process for wastewater treatment[J]. Journal of Membrane Science, 2014, 453: 359-368.
[15] Wang X, Chen Y, Yuan B, et al. Impacts of sludge retention time on sludge characteristics and membrane fouling in a submerged osmotic membrane bioreactor[J]. Bioresour Technology, 2014, 161: 340-347.
[16] Tay M F, Lee S, Xu H, et al. Impact of salt accumulation in the bioreactor on the performance of Nanofiltration Membrane Bioreactor (NF-MBR)+Reverse Osmosis (RO) process for water reclamation[J]. Water Research, 2020, 170: 115352.
[17] Xiao D, Tang C Y, Zhang J, et al. Modeling salt accumulation in osmotic membrane bioreactors: Implications for FO membrane selection and system operation[J]. Journal of Membrane Science, 2011, 366(1/2): 314-324.
[18] 李蕊寧,金政偉,李瑞龍,等. 四種納濾膜對(duì)高鹽廢水分鹽效果分析[J]. 工業(yè)用水與廢水,2021,52(1):43-46.
Li Ruining, Jin Zhengwei, Li Ruilong, et al. Analysis on salt separation performance of four nanofiltration membranes in high salinity wastewater[J]. Industrial Water & Wastewater, 2021, 52(1): 43-46. (in Chinese with English abstract)
[19] Luo W, Phan H V, Xie M, et al. Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: Biological stability, membrane fouling, and contaminant removal[J]. Water Res, 2017, 109: 122-134.
[20] Qin J J, Kekre K A, Tao G, et al. New option of MBR-RO process for production of NEWater from domestic sewage[J]. Journal of Membrane Science, 2006, 272(1): 70-77.
[21] 王守偉,李春華. 廢水再生回用系統(tǒng)中鹽累積規(guī)律的研究[J]. 中國(guó)給水排水,1991,7(4):4-8.
Wang Shouwei, Li Chunhua. A study on the salt accumulation rule in wastewater reuse system[J]. China Water & Wastewater, 1991, 7(4): 4-8. (in Chinese with English abstract)
[22] Deng L, Yang H, Liu G, et al. Kinetics of temperature effects and its significance to the heating strategy for anaerobic digestion of swine wastewater[J]. Applied Energy, 2014, 134: 349-355.
[23] 祁步凡. 豬場(chǎng)沼液膜濃縮制肥及其對(duì)小白菜的肥效與安全性評(píng)價(jià)[D]. 成都:成都大學(xué),2020.
Qi Bufan. Study on Fertilizer Efficiency and Safety of Pig Farm Liquid Digestate Membrane Concentrate Based Fertilizer on Pakchoi (L.)[D]. Chengdu: Chengdu University, 2020. (in Chinese with English abstract)
[24] 鄧良偉,王文國(guó),鄭丹. 豬場(chǎng)廢水處理利用理論與技術(shù)[M]. 北京:科學(xué)出版社,2017:144-145.
[25] Macedo W V, Sakamoto I K, Azevedo E B, et al. The effect of cations Na+, Mg2+, and Ca2+on the activity and structure of nitrifying and denitrifying bacterial communities[J]. Science of the Total Environment, 2019, 679: 279-287.
[26] Zhang L, Zhang M, Guo J, et al. Effects of K+salinity on the sludge activity and the microbial community structure of an A2O process[J]. Chemosphere, 2019, 235: 805-813.
[27] Lin L, Pratt S, Rattier M, et al. Individual and combined effect of salinity and nitrite on freshwater Anammox bacteria (FAB)[J]. Water Research, 2020, 169: 114931.
[28] Lin L, Pratt S, Crick O, et al. Salinity effect on freshwater Anammox bacteria: Ionic stress and ion composition[J]. Water Research, 2020, 188: 116432.
[29] Sudmalis D, Mubita T M, Gagliano M C, et al. Cation exchange membrane behaviour of extracellular polymeric substances (EPS) in salt adapted granular sludge[J]. Water Research, 2020, 178: 115855.
[30] 周春輝,趙俊男,甘浪雄,等. 潮流場(chǎng)作用下的航標(biāo)漂移計(jì)算方法研究[J]. 安全與環(huán)境學(xué)報(bào),2021,21(1):217-223.
Zhou Chunhui, Zhao Junnan, Gan Langxiong, et al. On the early warning method of the navigation buoy drift under the tidal current field[J]. Journal of Safety and Environment, 2021, 21(1): 217-223. (in Chinese with English abstract)
[31] Chen Y, He H, Liu H, et al. Effect of salinity on removal performance and activated sludge characteristics in sequencing batch reactors[J]. Bioresour Technol, 2018, 249: 890-899.
[32] Tan X, Acquah I, Liu H, et al. A critical review on saline wastewater treatment by membrane bioreactor (MBR) from a microbial perspective[J]. Chemosphere, 2019, 220: 1150-1162.
[33] He H, Chen Y, Li X, et al. Influence of salinity on microorganisms in activated sludge processes: A review[J]. International Biodeterioration & Biodegradation, 2017, 119: 520-527.
[34] Cui Y W, Huang J L, Alam F. Fast granulation of halophilic activated sludge treating low-strength organic saline wastewater via addition of divalent cations[J]. Chemosphere, 2020, 264(Pt 1): 128396.
[35] Lee J J, Choi C U, Lee M J, et al. A study of NH3-N and P refixation by struvite formation in hybrid anaerobic reactor[J]. Water Sciencen and Technology, 2004, 49: 207-214.
[36] 湛含輝,羅彥偉,韋小利. 活性污泥對(duì)回用凈水中鈣離子的去除研究[J]. 環(huán)境科學(xué)與技術(shù),2007,30(8):10-12,50,115.
Zhang Hanhui, Luo Yanwei, Wei Xiaoli. Removal of calcuim ions from treated water by activated sludge[J]. Environmental Science & Technology, 2007, 30(8): 10-12, 50, 115. (in Chinese with English abstract)
[37] 李寧. 厭氧-好氧對(duì)活性污泥吸附Ca2+的影響[D]. 蘭州:蘭州理工大學(xué),2018.
Li Ning. The Effect of Anaerobic-Aerobic on Adsorption of Ca2+by Activated Sludge[D]. Lanzhou: Lanzhou University of Technology, 2018. (in Chinese with English abstract)
[38] 曲昆,傅金祥,琚冉,等. MBR中MLSS的變化對(duì)處理效果的影響[J]. 沈陽建筑大學(xué)學(xué)報(bào):自然科學(xué)版,2006(5):825-828.
Qu Kun, Fu jinxiang, Ju Ran, et al. The research of change of MLSS influencing handling effect in MBR[J]. Journal of Shenyang Jianzhu University: Natural Science, 2006(5): 825-828. (in Chinese with English abstract)
Salt accumulation model for the reflux of membrane concentrate from piggery liquid digestate UF-MBR+RO treatment process
Jiang Xiaomei1, Li Jun2, Wang Jiongke1, Wu Peike1, Deng Liangwei1, Wang Wenguo1※
(1,610041;2.,,610106,)
High-concentration organic wastes are often found in the liquid digestate that is derived from anaerobic digestion of manure in large-scale swine farms. There is also a contradiction between the treatment load of liquid digestate and the available land for absorption, due mainly to the high content of ammonia nitrogen, while the C/N ratio is relatively low. Thus, it requires the integration of physical or chemical technologies with biological ones for a deep treatment, since biological treatment alone cannot meet the current requirement of large-scale liquid digestate. Reverse osmosis (RO) membrane can play an important role in the deep-treatment of piggery liquid digestate. However, the reflux of concentrate in the RO process can lead to the accumulation of salinity, leading to much lower efficiency osubsequently biological treatment. In this study, a salt accumulation model was established in the nanofiltration (UF)-membrane bioreactor (MBR) under the reflux of membrane concentrate. Four kinds of salt ions were fitted with the theoretical, where the root mean square error (RMSE) was measured to evaluate the accuracy of the model. The salinity accumulation was clarified in UF-MBR under three types of sludge retention time (SRT), considering the adsorption capacity of activated sludge. The results showed that the salinity accumulation model of UF-MBR was successfully established to predict the salinity equilibrium. The running cycles were needed to achieve the required salinity. Secondly, the fitting determination coefficient (2) of the actual values of calcium ions (Ca2+) and magnesium ions (Mg2+) in the MBR and the theoretical values predicted by the salinity accumulation model were higher than 0.95, and the RMSE was less than 4.00 mg/L. Therefore, the UF-MBR salinity model here can be expected to predict the accumulation trend of Ca2+and Mg2+with high accuracy. Thirdly, SRT decreased from 60 d to 30 d, and the salinity decreased from 4.83% to 2.63%. The required time decreased from 249 d to 179 d for reaching salt equilibrium. The reduction of SRT can effectively alleviate the salinity accumulation in UF-MBR, while reducing the time to reach the salinity equilibrium. In addition, when the SRT was 30, 45, and 60 d, the salinity accumulated in UF-MBR should be between 0.95%-2.63%, 1.29%-3.59%, and 1.59%-4.83%, respectively, indicating the salinity equilibrium values were higher than 1.00%. When setting the SRT withi30 d, there was alleviated inhibition of salinity accumulation on the removal performance of activated sludge pollutants. Fourthly, both the2of the actual values of potassium ions (K+) and sodium ions (Na+) in this process and the theoretical values predicted by the salinity accumulation model were less than 0.95, while the RMSE was higher than 15.00. The low-accuracy prediction of the UF-MBR salinity model here may be attributed to the adsorption of activated sludge, thereby reducing the content of K+and Na+in MBR. The effect of adsorption on the model was low, indicating a feasible model when the accumulation of Ca2+and Mg2+was high. This work can provide a sound reference for the future application of UF-MBR+RO treatment in piggery liquid digestates.
model; salt; sludge; membrane concentrate reflux; sludge retention time; sludge adsorption
蔣小妹,李俊,王炯科,等. 豬場(chǎng)沼液UF-MBR+RO處理工藝濃縮液回流的鹽積累模型[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(13):209-215.
10.11975/j.issn.1002-6819.2021.13.024 http://www.tcsae.org
Jiang Xiaomei, Li Jun, Wang Jiongke, et al. Salt accumulation model for the reflux of membrane concentrate from piggery liquid digestate UF-MBR+RO treatment process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(13): 209-215. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.13.024 http://www.tcsae.org
2021-03-02
2021-05-30
四川省重點(diǎn)研發(fā)項(xiàng)目(20ZDYF0003);國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)(CARS-35)
蔣小妹,研究方向?yàn)樾笄蒺B(yǎng)殖廢水處理。Email:18483691963@163.com
王文國(guó),博士,研究員,研究方向?yàn)樾笄菁S污處理與資源化利用。Email:wangwenguo@caas.cn
10.11975/j.issn.1002-6819.2021.13.024
X713
A
1002-6819(2021)-13-0209-07