劉 寧,趙 國,王旭明,劉 剛
?農(nóng)業(yè)生物環(huán)境與能源工程?
復合納米材料修飾絲網(wǎng)印刷電極檢測土壤中鉛和鎘
劉 寧1,2,趙 國3,王旭明2,劉 剛1,2※
(1. 中國農(nóng)業(yè)大學現(xiàn)代精細農(nóng)業(yè)系統(tǒng)集成研究教育部重點實驗室,北京 100083;2. 中國農(nóng)業(yè)大學農(nóng)業(yè)農(nóng)村部農(nóng)業(yè)信息獲取技術(shù)重點實驗室,北京 100083;3. 南京農(nóng)業(yè)大學人工智能學院,南京 210031)
為了快速、準確、低成本檢測土壤中痕量Pb(Ⅱ)和Cd(Ⅱ),該研究應用電化學還原和滴涂方法制備了一種鉍膜/Nafion/還原氧化石墨烯/離子液體復合納米材料修飾的絲網(wǎng)印刷電極(Bi/Nafion/rGO/IL/SPE)。通過掃描電子顯微鏡、循環(huán)伏安法和能量色散譜手段表征了修飾電極的電化學分析性能,結(jié)果顯示修飾材料增大了電極的比表面積、增強了電極的電子傳輸能力并提高了電極對目標重金屬的沉積量。利用標準溶液優(yōu)化了試驗參數(shù),最優(yōu)參數(shù)下的修飾電極檢測性能為:在1~80g/L范圍內(nèi),Pb(Ⅱ)和Cd(Ⅱ)的峰值電流與其濃度的校正模型決定系數(shù)分別為0.993和0.985,Pb(Ⅱ)和Cd(Ⅱ)的理論檢測限分別為0.124和0.232g/L(S/N=3)。應用實際土壤樣品驗證了Bi/Nafion/rGO/IL/SPE的實用性,結(jié)果顯示:Pb(Ⅱ)和Cd(Ⅱ)的平均加標回收率分別為98.71%和98.93%,表明該修飾電極可以用于土壤中痕量Pb(Ⅱ)和Cd(Ⅱ)的檢測。
重金屬;土壤;離子液體;氧化石墨烯;鉍膜;Nafion;絲網(wǎng)印刷電極
重金屬Pb(Ⅱ)和Cd(Ⅱ)的毒性高且難以被生物降解,即使在痕量水平也會對大腦、腎臟、血液、神經(jīng)等器官造成嚴重損害[1-2]。由于污水灌溉、化肥農(nóng)藥濫用以及工業(yè)廢物、廢液、廢氣過量排放等不當?shù)娜祟惢顒?,導致Pb(Ⅱ)和Cd(Ⅱ)在土壤中大量沉積[3]。Pb(Ⅱ)和Cd(Ⅱ)會被農(nóng)作物根系吸收并在動物體內(nèi)積累,可在食物鏈的生物放大作用下,成千百倍地富集進入人體,最終造成經(jīng)濟損失和危害人類健康[4-5]。因此,提出一種快速、準確、可靠且低成本的土壤重金屬檢測方法,對土壤重金屬污染的監(jiān)控和治理具有重要意義。
傳統(tǒng)的光譜法檢測精度高,但由于光譜儀器體積龐大,檢測周期長、成本高,需要專業(yè)人員操作,無法用于土壤重金屬的現(xiàn)場快速檢測[6-7]。方波陽極溶出伏安法(Square Wave Anodic Stripping Voltammetry,SWASV),作為一種被廣泛報道的電化學檢測技術(shù),具有速度快、靈敏度高、選擇性強和成本低等優(yōu)點,且檢測設備小型化、可便攜,適合用于痕量重金屬的現(xiàn)場快速分析[8-9]。近年來,絲網(wǎng)印刷電極(Screen Printed Electrode,SPE)由于易制備、可拋棄、成本低等優(yōu)點被廣泛用于電化學分析[10-12]。相對于由玻碳工作電極、鉑絲對電極和Ag/AgCl參比電極構(gòu)成的傳統(tǒng)三電極體系,SPE的體積更小[13],更適合作為小型電化學檢測設備的敏感器件[14],可用于流通池、微流控等多種場景[15]。但是,SPE的電化學分析性能較差,需要進一步修飾以提高其檢測能力。
為了有效增大電極的比表面積、增加電極表面的活性位點,眾多研究者利用還原氧化石墨烯(reduced Graphene Oxide,rGO)材料修飾電極[16-19]。如李杜娟等[18]原位修飾金納米顆粒/石墨烯修飾玻碳電極檢測Pb(Ⅱ),檢測范圍為1~90g/L,檢測限為0.27g/L。Zhao等[19]提出一步電沉積金離子和氧化石墨烯修飾玻碳電極實現(xiàn)了土壤中痕量Pb(Ⅱ)和Cd(Ⅱ)的準確檢測。上述研究表明,電還原氧化石墨烯是一種可控、穩(wěn)定性高的電極修飾方法。但在上述研究中,rGO均用于修飾玻碳電極,在絲網(wǎng)印刷電極修飾方面的研究報道較少。而且與玻碳電極相比,SPE的電子傳輸能力和電催化性能較差[20],所以本研究在應用rGO修飾SPE的基礎(chǔ)上,仍需進一步修飾以提高其對重金屬離子的檢測能力。
為了進一步改善SPE的電分析性能,本研究又應用離子液體(Ionic Liquid,IL)、Nafion和鉍膜,與rGO一同制備一種復合材料對SPE進行修飾。IL的高電導率可以提高SPE的電子傳輸能力[21]。Nafion表面豐富的磺酸基團,使其作為一種陽離子選擇性透過膜,可以有效抑制土壤樣本中活性物質(zhì)的干擾[22]。鉍膜(Bismuth film,Bi)可以與重金屬離子形成合金,有效降低重金屬電還原時所需的活化能,大大提高重金屬離子的溶出伏安響應[23-24]。綜上,本研究制備了一種鉍膜/Nafion/還原氧化石墨烯/離子液體復合材料修飾的絲網(wǎng)印刷電極(Bi/Nafion/rGO/IL/SPE),以期實現(xiàn)土壤中痕量Pb(Ⅱ)和Cd(Ⅱ)的準確檢測。
硝酸鉛(Pb(NO3)2)、硝酸鎘(Cd(NO3)2)和硝酸鉍(Bi(NO3)3)原液(1mg/mL)購買于國家標準物質(zhì)中心并按需要稀釋到指定濃度。氧化石墨烯(Graphene Oxide,GO)水溶液(1mg/mL)購買于先鋒納米有限公司(南京)。Nafion D-520分散液(Nafion)購買自美國Sigma-Aldrich公司。離子液體(1-丁基-3-甲基咪唑雙氰胺鹽,([bmin+][N(CN)]2-))購買自上海成捷化學有限公司,1-丁基-3-甲基咪唑雙氰胺鹽具有高電導率和良好的粘性度,常用于修飾絲網(wǎng)印刷電極[25]。乙酸/乙酸鈉緩沖液購買自奧博來公司(北京)作為電解質(zhì)以電化學分析Pb(Ⅱ)和Cd(Ⅱ)。NaOH、KCl、K3[Fe(CN)6]購于國藥基團化學試劑有限公司(上海),所有試劑均為分析純。電阻率為18.2 M?的超純水用于稀釋試劑和清洗容器。
使用型號為蔡司Supra 55的場發(fā)射掃描電鏡(光學儀器,上海)進行掃描電子顯微鏡(Scanning Electron Microscope,SEM)和能量色散譜的分析(Energy Dispersive Spectroscopy,EDS)。用上海辰華公司型號為CHI660D電化學工作站執(zhí)行循環(huán)伏安法和方波溶出伏安法測量分析。裸絲網(wǎng)印刷電極(Screen Printed Electrode,SPE)購買自長三角系統(tǒng)生物科學研究院公司(上海分公司)。裸SPE的參比電極材料為Ag/AgCl、對電極和工作電極(=3 mm)材料均為碳糊。電化學測量均在30 mL電解池中進行,其中電沉積過程中,用磁力攪拌器和攪拌子對待測溶液進行攪拌。
修飾之前,先將SPE浸入pH值9.0的磷酸鹽緩沖液(Phosphate Buffer Solution,PBS)中執(zhí)行3 min循環(huán)伏安,清除工作電極上的雜質(zhì),用超純水沖洗后,用氮氣吹干備用。IL和Nafion均用無水乙醇稀釋,得到1%質(zhì)量分數(shù)的IL和0.1%質(zhì)量分數(shù)的Nafion。將1 mg/mL的氧化石墨烯懸濁液超聲10 min使之均勻分散,再用pH值為 4.5的PBS溶液稀釋,得到0.1 mg/mL的氧化石墨烯-磷酸鹽緩沖液(GO-PBS)混合液,PBS在此充當電解質(zhì)以電還原氧化石墨烯。
取5L離子液體滴涂到SPE的工作電極表面,放入溫度為60 ℃的干燥箱中固化,得到離子液體修飾的SPE(IL/SPE)。將IL/SPE浸入到GO-PBS混合液中從?1.4至0.6 V循環(huán)掃描10圈,將氧化石墨烯電還原至工作電極表面,同時伴隨著300 r/min速度的攪拌,進一步得到還原氧化石墨烯修飾的IL/SPE(rGO/IL/SPE)。之后,用超純水清洗rGO/IL/SPE并用氮氣吹干,取5L的Nafion溶液滴涂到rGO/IL/SPE電極表面,干燥后得到Nafion/rGO/IL復合材料修飾的絲網(wǎng)印刷電極(Nafion/rGO/IL/SPE)。在重金屬沉積階段,向待測液中加入一定量的鉍離子,鉍離子與目標重金屬離子被同步電沉積到工作電極表面,實現(xiàn)原位電鍍鉍膜修飾Nafion/rGO/IL/SPE,最后得到Bi/Nafion/rGO/IL/SPE。
用乙酸-乙酸鈉緩沖液(0.2 mol/L,pH值5.0)配置20 mL標準濃度的Pb(Ⅱ)和Cd(Ⅱ)待測液置于電解池中,并加入一定濃度的鉍離子,將修飾過的絲網(wǎng)印刷電極與電化學工作站連接執(zhí)行方波陽極溶出伏安(SWASV)測量。主要步驟如下:向工作電極施加?1.2 V的電壓同步電沉積鉍離子和目標重金屬離子,同時以300 r/min的速度攪拌待測溶液,電沉積一段時間后停止攪拌,靜置10 s,執(zhí)行SWASV測量并記錄結(jié)果。方波溶出伏安法的參數(shù)如下:溶出電壓區(qū)間為?1~ ?0.4 V;方波頻率為25 Hz;方波振幅為25 mV;電壓增量為5 mV。每次SWASV測量后,應用計時電流技術(shù)在0.4 V的恒電壓下,清洗掉電極表面殘留的重金屬和鉍膜。
本研究按照Tessier等[26]提出的土壤樣本順序浸提方法,用弱酸制備實際土壤待測液樣本,以測試本研究制備的修飾電極檢測性能。本研究共準備3個土壤樣本,取自本實驗室先前采集的全國34個地區(qū)土樣[27]。土壤樣本的處理過程如下:首先對土壤樣品進行研磨、并使用200m的篩子過篩,取2 g過篩后的土壤樣品轉(zhuǎn)移至浸提池中,加入40 mL 0.2 mol/L的乙酸-乙酸鈉緩沖液,將浸提液在室溫下用混勻儀進行24 h振蕩,然后用轉(zhuǎn)速為2 000 r/min的離心機對土壤浸提液進行2 min離心處理,取出上清液。之后使用孔隙為0.2m的濾紙對上清液進行過濾,去除不溶雜質(zhì),再用 NaOH將土壤待測液的pH值調(diào)整到5.0,得到土壤待測液。最后,取20 mL土壤待測液置入電解池中,供方波溶出伏安檢測。
圖1a為IL/SPE在磷酸鹽緩沖液-氧化石墨烯混合液中的10圈循環(huán)伏安掃描圖??梢钥闯鰣D中有一個陽極峰(a)和兩個陰極峰(b和c)。隨著循環(huán)伏安圈數(shù)的增加,電流峰值先逐漸增大,表明氧化石墨烯被成功電還原到工作電極表面構(gòu)成了石墨烯層,提高了工作電極的導電能力;之后趨于穩(wěn)定,是由于當還原氧化石墨達到一定厚度后,電子的傳輸路徑達到飽和,導致電流沒有進一步提高。陽極峰a和陰極峰b的存在,分別是由于石墨烯氧化物表面一些含氧基團被氧化和還原所致[18];陰極峰c主要由于氧化石墨烯中不可逆氧化基團被還原所致[19]。
本研究使用[Fe(CN)6]3-/4-作為氧化還原探針,研究了裸SPE和各修飾SPE的電化學屬性。圖1b所示為裸SPE、IL/SPE、rGO/IL/SPE和Nafion/rGO/IL/SPE 4種電極在5.0 mmol/L的[Fe(CN)6]3-/4-和0.1 mol/L的KCl混合溶液中的循環(huán)伏安掃描結(jié)果。對比圖中4條循環(huán)伏安曲線可知修飾IL和rGO后,電極的氧化/還原峰電流逐步增大且氧化/還原峰電壓差略有減小,原因是修飾離子液體能增大SPE的電導率,氧化石墨烯被電還原到IL/SPE上后,電極的電子傳輸速率得到進一步增大,而且增大幅度高于離子液體。而修飾Nafion后,電極的氧化/還原峰比裸SPE還小且氧化/還原峰電壓差比裸SPE還大,這是由于Nafion膜是陽離子交換膜對氧化還原探針[Fe(CN)6]3-/4-陰離子不導電所致。但是Nafion仍會提高SPE對重金屬的分析能力;因為Nafion的負電荷架構(gòu)可以促進重金屬離子在電極表面的吸附,進而提高重金屬的檢測靈敏度;并且,Nafion的高粘度特性可以防止修飾材料的脫落,大大提高了修飾電極的穩(wěn)定性[28]。
本研究應用掃面電子顯微鏡(Scanning Electron Microscope,SEM)表征了不同修飾電極的表面形貌,結(jié)果如圖2所示。圖2a顯示出裸SPE表面分布雜亂且形態(tài)不一,部分為糊狀、部分為片狀。圖2b顯示IL/SPE表面材質(zhì)平整且分布均勻,這是由于離子液體的填充在裸SPE的表面形成一層均勻分布的薄膜,這有助于氧化石墨烯被均勻地電還原至電極表面。從圖2c中可以清楚地看到rGO/IL/SPE表面上石墨烯薄膜的褶皺紋理,這說明rGO被成功修飾至電極表面,rGO的褶皺分布可提高修飾電極的比表面積,為電沉積重金屬提供更多的活性位點。
注:試驗條件:圖a為在0.1 mg?mL?1的氧化石墨烯和pH值為4.5的磷酸鹽混合液中以0.1 V?s?1的速度進行CV掃描;圖b為在5.0 mmol?L?1的[Fe(CN)6]3-/4-和0.1 mol?L?1的KCl混合溶液中以20 mV?s?1的掃描速度進行CV掃描。SPE為絲網(wǎng)印刷電極;IL為離子液體;rGO為還原氧化石墨烯;下同。
圖3a顯示了使用循環(huán)伏安法電還原氧化石墨烯修飾IL/SPE時,掃描圈數(shù)對20g/L Pb(Ⅱ)和Cd(Ⅱ)溶出信號的影響。當掃描圈數(shù)自0增加到10時,Pb(Ⅱ)和Cd(Ⅱ)的峰值電流逐步增大,并在10圈時取得最大值。掃描10圈之后,峰值電流隨著圈數(shù)的增加逐漸減小。該現(xiàn)象可解釋如下:當循環(huán)伏安掃描圈數(shù)小于10時,工作電極表面沒有被rGO完全覆蓋,所以在0~10圈內(nèi),隨著圈數(shù)的增加,工作電極的電子傳輸速率和活性位點數(shù)量逐漸增大,進而可以提高Pb(Ⅱ)和Cd(Ⅱ)的沉積量、增大溶出伏安信號;當掃描圈數(shù)超過10之后,過多的石墨烯層在電極表面堆積,影響了電極的電子轉(zhuǎn)移速率,從而降低重金屬的溶出伏安響應[18-19]。該結(jié)果與圖1a一致,均說明過多的rGO會對電極的檢測性能產(chǎn)生負面影響。因此,選擇10圈作為rGO修飾電極的最佳電還原圈數(shù)。
注:圖a試驗條件:CV掃描速度為0.1 V?s?1,氧化石墨烯濃度為0.1 mg?mL?1,緩沖液為磷酸鹽(pH值為4.5),鉛和鎘的濃度為20 μg?L?1;圖b試驗條件:沉積電壓為?1.2 V,緩沖液為乙酸緩沖液(pH值為5.0),鉛和鎘的濃度為10 μg?L?1。
為了進一步提高電極的分析性能,用Nafion/rGO/IL復合材料修飾SPE之后,又向待測溶液中加入鉍離子,利用原位電鍍的方式對工作電極修飾鉍膜,得到Bi/Nafion/rGO/IL/SPE電極。圖3b顯示了鉍離子濃度對電極檢測10g/L Pb(Ⅱ)和Cd(Ⅱ)性能的影響。當鉍離子濃度在0~120g/L范圍內(nèi)增加時,Pb(Ⅱ)和Cd(Ⅱ)的峰值電流隨之逐漸增大,鉍離子高于120g/L之后峰值電流逐漸減小。上述現(xiàn)象主要因為:當鉍離子濃度較低時,不能與重金屬離子充分形成合金,無法有效降低Pb(Ⅱ)和Cd(Ⅱ)還原所需的活化能[29];但是,鉍離子濃度過高時,會占據(jù)工作電極表面的大量活性位點,降低重金屬的沉積量,進而減小Pb(Ⅱ)和Cd(Ⅱ)的溶出伏安電流[30]。因此,選擇120g/L為最佳鉍離子濃度。
圖4a顯示了乙酸緩沖液的pH值對10g/L Pb(Ⅱ)和Cd(Ⅱ)溶出峰值電流的影響。pH值自3.5升至5.0時,峰值電流隨之增大,當pH值大于5.0之后,峰值電流隨之減小。其現(xiàn)象可解釋為:當pH值太低時,大量的H+離子會占據(jù)工作電極表面,由于靜電力作用和“析氫”作用降低Pb2+和Cd2+的電沉積量[31];當pH過高時,緩沖液中存在相當量的OH?,會與Pb(Ⅱ)和Cd(Ⅱ)形成不溶性的氫氧根配合物,也會降低Pb(Ⅱ)和Cd(Ⅱ)的溶出伏安信號[32]。因此,選擇pH值為5.0的乙酸緩沖液作為溶出伏安測量的支持電解質(zhì)。
圖4b顯示了在?1.4~?0.8V范圍內(nèi),沉積電壓對10g/L Pb(Ⅱ)和Cd(Ⅱ)溶出伏安響應的影響。沉積電壓自?1.4 V升高至?1.2 V時,Pb(Ⅱ)和Cd(Ⅱ)的峰值電流隨之增大,在?1.2 V之后,隨著沉積電壓的升高峰值電流快速下降,而且Cd(Ⅱ)的下降程度大于Pb(Ⅱ)。此現(xiàn)象可解釋為:過負的電壓會導致電極表面發(fā)生“析氫”現(xiàn)象,影響重金屬的電沉積;但是過正的電壓無法提供充足的電化學能以電還原重金屬離子[33]。在過正的電壓下,Cd(Ⅱ)的峰值電流下降更快的原因是:金屬鎘的活潑性高于鉛,需要更高的還原電壓才能將其還原。
圖4c顯示了沉積時間對10g/L Pb(Ⅱ)和Cd(Ⅱ)溶出伏安檢測結(jié)果的影響。在210 s之前隨著沉積時間的增長,Pb(Ⅱ)和Cd(Ⅱ)的峰值電流逐漸增大,表明越來越多的重金屬離子被沉積到了電極表面。但是210 s之后,由于工作電極表面的活性位點有限,峰值電流的增速減緩,該現(xiàn)象與文獻[28, 34]報道一致。綜合考慮檢測效率和靈敏度,本研究最終選擇150 s作為Pb(Ⅱ)和Cd(Ⅱ)的沉積時間。
圖5顯示了不同修飾電極對25g/L的Pb(Ⅱ)和Cd(Ⅱ)的溶出伏安響應。從圖中可以看出,Pb(Ⅱ)和Cd(Ⅱ)在裸SPE(曲線a)上的電流信號非常微弱,在Bi/SPE上峰值電流增大(曲線b),這是因為鉍與鉛和鎘形成合金,降低了目標重金屬的電還原活化能,提高了重金屬的電沉積量。在Bi/IL/SPE上(曲線c)電流響應再次增強,是由于離子液體提高了電極的電子傳輸能力。相對于Bi/IL/SPE,鉛離子和鎘離子在Bi/rGO/IL/SPE(曲線d)上的峰值電流提升幅度較大,這是因為rGO增大了工作電極的比表面積和活性位點數(shù)量,較大幅度地提高了重金屬的電沉積量,進而較大程度地增強了溶出伏安響應。由于Nafion的負電荷架構(gòu)對重金屬離子具有吸附作用,會進一步提高鉛離子和鎘離子的沉積量,最終使Pb(Ⅱ)和Cd(Ⅱ)在Bi/Nafion/rGO/IL/SPE(曲線e)上取得最大的溶出伏安響應。
為了探究修飾材料對電極檢測性能的改善機理,本研究應用能量色散譜(Energy Dispersive Spectroscopy,EDS)表征了不同修飾電極表面Pb(0)和Cd(0)的沉積量,結(jié)果如圖6所示。圖6a顯示裸SPE表面鉛和鎘的沉積量最少、且鎘的沉積量低于鉛,原因是裸SPE比表面積小、活性位點少且導電性差。圖6b顯示Bi/SPE電極表面上鉛和鎘的沉積量相對于裸SPE明顯增多,證明了鉍膜可以增大Pb(Ⅱ)和Cd(Ⅱ)的沉積量。圖6c顯示rGO和IL的修飾進一步提高了鉛和鎘的沉積量,結(jié)合圖1b和圖2c可分析其原因為:IL和rGO提高了電極的導電性且rGO增大了電極的比表面積進而增多了供重金屬沉積的活性位點。圖6d顯示Nafion材料再次增多目標重金屬的沉積量,證實了Nafion的負電荷骨架可以促進電極表面對重金屬陽離子的吸附、提高重金屬離子的沉積量。
在最佳試驗條件下,應用Bi/Nafion/rGO/IL/SPE對濃度范圍為1~95g/L的Pb(Ⅱ)和Cd(Ⅱ)標準溶液進行溶出伏安檢測,伏安圖譜如圖7a所示。在1~80g/L內(nèi)Pb(Ⅱ)和Cd(Ⅱ)的峰值電流隨濃度增高逐步上升,但當重金屬濃度超過80g/L時,峰值電流趨于穩(wěn)定。該現(xiàn)象主要是因為工作電極的活性位點有限,即使?jié)舛壤^續(xù)增高,工作電極上也無法沉積更多的重金屬所致。如圖7b和圖7c所示,在1~80g/L內(nèi)Pb(Ⅱ)和Cd(Ⅱ)濃度和其峰值電流表現(xiàn)出良好的線性相關(guān)關(guān)系,Pb(Ⅱ)和Cd(Ⅱ)的檢測校準模型分別為=0.544?2.962(2=0.993)和=0.427?2.155(2=0.985)。在線性范圍內(nèi),電極對Pb(Ⅱ)和Cd(Ⅱ)的檢測靈敏度分別為0.544和0.427A/(g/L)。在信噪比為3:1條件下(S/N=3),Pb(Ⅱ)和Cd(Ⅱ)的理論檢測下限分別為0.124和0.232g/L。
表1對比了Bi/Nafion/rGO/IL/SPE與其他修飾電極對Pb(Ⅱ)和Cd(Ⅱ)的檢測性能,結(jié)果如下:與2D Biexf/SPCE 相比Bi/Nafion/rGO/IL/SPE的檢測限較高但是具有更寬的檢測范圍;與其他修飾電極相比Bi/Nafion/rGO/IL/SPE有相當?shù)臋z測范圍且具有更低的檢測限。
表1 不同修飾電極對Pb(Ⅱ)和Cd(Ⅱ)的檢測性能對比
Note: GR/PANI/PS/SPCE: Graphene/polyaniline/polystyrene fibers modified screen-printed carbon electrode; Bi/RGO-MWCNT-AuNP/SPE: Bismuth film/reduced grophene oxide-multiwalled carbon nanotubes-gold nanoparticle modified SPE; Poly-dendrimer/carbon black/SPE: Poly-dendrimer/carbon black modified screen-printed electrode; Bi/glassy carbon microparticle/SPE: Bismuth film/glassy carbon microparticle modified screen-printed electrode; 2D Biexf/SPCE: two-dimensional exfoliated layered bismuth modified screen-printed carbon electrode.
2.5.1 穩(wěn)定性分析
為了驗證Bi/Nafion/rGO/IL/SPE的穩(wěn)定性和重復性,應用該電極在最佳試驗條件下對20g/L的Pb(Ⅱ)和15g/L的Cd(Ⅱ)進行6次重復測試,結(jié)果如圖8所示。Pb(Ⅱ)和Cd(Ⅱ)6次溶出伏安測量結(jié)果的相對標準偏差(Relative Standard Deviation,RSD)分別為1.57%和2.32%,說明Bi/Nafion/rGO/IL/SPE具有較高的穩(wěn)定性和可重復性。
2.5.2 Pb(Ⅱ)和Cd(Ⅱ)的相互干擾分析
當同時檢測多個重金屬離子時,必須確保兩種目標重金屬之間不存在嚴重的相互干擾,否則會大大降低校準模型的檢測精度[35]。因此,本研究評估了Bi/Nafion/rGO/IL/SPE同時檢測Pb(Ⅱ)和Cd(Ⅱ)時的相互干擾程度。如圖9a所示,當Cd(Ⅱ)濃度在10~80g/L范圍變化時,20g/L Pb(Ⅱ)溶出伏安響應的相對標準偏差(RSD)為2.97%。如圖9b所示,當Pb(Ⅱ)濃度在10~80g/L變化時,20g/L Cd(Ⅱ)溶出伏安信號的相對標準偏差(RSD)為2.52%。綜上分析表明,Pb(Ⅱ)和Cd(Ⅱ)的溶出伏安響應之間無顯著的相互干擾,同時說明本研究制備的Bi/Nafion/rGO/IL/SPE具有同時檢測Pb(Ⅱ)和Cd(Ⅱ)的能力。
此外,本研究還考察了當Pb(Ⅱ)或Cd(Ⅱ)在某一固定濃度存在時,Bi/Nafion/rGO/IL/SPE對鉛和鎘的單獨檢測性能。如圖9c所示,當存在20g/L的Pb(Ⅱ)時,Cd(Ⅱ)在10~80g/L內(nèi)的校準模型為=0.416?4.116(2=0.983),靈敏度為0.416A/(g/L)。如圖9d所示,當存在20g/L的Cd(Ⅱ)時,Pb(Ⅱ)的校準模型為=0.507?2.274(2=0.999),靈敏度為0.507A/(g/L)。與在1~80g/L范圍內(nèi)同時檢測Pb(Ⅱ)和Cd(Ⅱ)的校準模型相比(如圖7所示),檢測靈敏度分別降低了6.86%和2.37%,誤差在10%以內(nèi)、差異較小[36],進一步說明了Bi/Nafion/rGO/IL/SPE可以同時檢測Pb(Ⅱ)和Cd(Ⅱ)。
2.5.3 其他非目標重金屬的干擾分析
本實驗室前期研究結(jié)果表明,Na+、K+和Ca2+等非重金屬離子對Pb(Ⅱ)和Cd(Ⅱ)溶出伏安響應的干擾非常小,可以不做考慮[37]。在最佳試驗條件下,本研究分析了Zn2+、Hg2+、Cr2+、As2+、Cu2+對Pb(Ⅱ)和Cd(Ⅱ)溶出伏安響應的干擾程度。設置干擾離子與目標檢測離子的濃度比為10:1。結(jié)果如圖10所示,除了Cu2+之外,其他重金屬離子均沒有對Pb(Ⅱ)和Cd(Ⅱ)伏安響應產(chǎn)生嚴重干擾(峰值電流的變化小于5%)。Cu(Ⅱ)作為最大的干擾離子,對Pb(Ⅱ)和Cd(Ⅱ)峰值電流的抑制程度分別是40.02%和62.85%,干擾原因可能是:銅與鉛和鎘會形成Cu-Pb-Cd金屬合金,影響了Pb(Ⅱ)和Cd(Ⅱ)的電沉積[38]。據(jù)文獻報道,鐵氰化物(ferricyanide,F(xiàn)CN)可以與Cu2+發(fā)生配位反應形成不溶性絡合物[39-40]。因此,為了抑制Cu2+的干擾,向待測液中加入適量的鐵氰化鉀溶液。并對鐵氰化鉀的濃度進行優(yōu)化,結(jié)果如圖10所示,鐵氰化鉀的最佳濃度為0.1 mmol/L。進一步分析可知,加入鐵氰化物較大程度上削弱了Cu2+對Pb(Ⅱ)的干擾,而對Cd(Ⅱ)的干擾仍然較為嚴重。
為了測試Bi/Nafion/rGO/IL/SPE的實用性,應用該電極檢測3個土壤樣本中Pb(Ⅱ)和Cd(Ⅱ)的含量。采用標準添加法分析土樣中的重金屬濃度,并考察了Pb(Ⅱ)和Cd(Ⅱ)的加標回收率。標準添加法是向待測實際樣本中滴定目標檢測離子,以測定樣本中目標離子的含量。由于滴定前后樣本基質(zhì)一致,所以該方法可以消除實際樣本存在的基質(zhì)效應[41]。首先,按照1.4節(jié)準備土壤待測液樣本,然后向待測液中加入0.1 mmol/L的亞鐵氰化鉀,以抑制土壤中Cu2+的干擾。圖11顯示了3個土壤樣本及加標后的溶出伏安檢測結(jié)果。由于不同土壤有不同的理化性質(zhì)(即樣本基質(zhì)不同),所以即使加標濃度相同,樣本間溶出電流的變化量也不一致,如圖11a和11b所示。因此,對于特定的樣本需要建立各自的檢測校準模型,再采用標準添加法計算實際樣本加標前后的Pb(Ⅱ)和Cd(Ⅱ)濃度,進一步計算樣本的加標回收率。為了驗證修飾電極與火焰原子吸收光譜(Flame Atomic Absorption Spectroscopy,F(xiàn)AAS)在檢測結(jié)果上無顯著差異,在95%置信水平下進行雙樣本-檢驗,結(jié)果如表2所示。Pb(Ⅱ)和Cd(Ⅱ)的值均小于臨界值(2.776,4個自由度),說明修飾電極的檢測結(jié)果與FAAS的檢測結(jié)果沒有顯著性差異。此外表2顯示了3個土壤樣本的Pb(Ⅱ)和Cd(Ⅱ)檢測結(jié)果和其加標回收率結(jié)果,Pb(Ⅱ)的回收率在96.99%~101.85%之間,平均回收率為98.71%,Cd(Ⅱ)的回收率在97.34%~101.73%之間,平均回收率為98.93%。試驗結(jié)果表明,本研究制備的Bi/Nafion/rGO/IL/SPE電極可以用于實際土壤樣本中痕量Pb(Ⅱ)和Cd(Ⅱ)的檢測。
表2 Bi/Nafion/rGO/IL/SPE電極對實際土壤樣本中Pb(Ⅱ)和Cd(Ⅱ)的檢測結(jié)果
本研究制備了一種鉍膜/Nafion/還原氧化石墨烯/離子液體復合材料修飾的絲網(wǎng)印刷電極(Bi/Nafion/rGO/IL/SPE)用于檢測土壤中Pb(Ⅱ)和Cd(Ⅱ)含量。在最佳檢測條件下,Bi/Nafion/rGO/IL/SPE對Pb(Ⅱ)和Cd(Ⅱ)的檢測線性范圍均為1~80g/L、校準模型的2分別為0.993和0.985、檢測限分別為0.124和0.232g/L。應用修飾電極進行6次溶出伏安測量,Pb(Ⅱ)和Cd(Ⅱ)峰值電流的相對標準偏差分別為1.57%和2.32%,表明修飾電極具有較高的穩(wěn)定性和可重復性??疾炝薖b(Ⅱ)和Cd(Ⅱ)的相互影響,當Cd(Ⅱ)濃度在10~80g/L范圍變化時,20g/L Pb(Ⅱ)峰值電流的相對標準偏差為2.97%,當Pb(Ⅱ)濃度在10~80g/L變化時,20g/L Cd(Ⅱ)峰值電流的相對標準偏差為2.52%,表明Pb(Ⅱ)和Cd(Ⅱ)對雙方的溶出伏安響應之間無顯著相互干擾,同時表明Bi/Nafion/rGO/IL/SPE具有同時檢測Pb(Ⅱ)和Cd(Ⅱ)的能力。在干擾離子與目標離子的濃度比為10:1時,Zn2+、Hg2+、Cr2+、As2+、Cu2+對Pb(Ⅱ)和Cd(Ⅱ)峰值電流的干擾程度均小于5%,但Cu2+對Pb(Ⅱ)和Cd(Ⅱ)峰值電流的抑制程度分別是40.02%和62.85%。向待測溶液中加入0.1 mmol/L的鐵氰化鉀溶液,能夠基本上消除Cu2+的對Pb(Ⅱ)干擾,但是Cu2+對Cd(Ⅱ)的干擾仍然較為嚴重。應用標準添加法對實際土壤樣本進行檢測,結(jié)果顯示Pb(Ⅱ)和Cd(Ⅱ)的平均加標回收率分別為98.71%和98.93%。表明本研究制備的Bi/Nafion/rGO/IL/SPE電極可以用于土壤中痕量鉛和鎘的檢測。
研究結(jié)果顯示:加入適量的鐵氰化鉀可以一定程度上抑制Cu2+對Pb(Ⅱ)和Cd(Ⅱ)溶出信號的干擾,但并不能消除其干擾。雖然Cu2+會嚴重干擾Pb(Ⅱ)和Cd(Ⅱ)的溶出信號,但是仍可檢測到Pb(Ⅱ)和Cd(Ⅱ)的溶出峰值電流。因此,在未來的研究中可以分析不同濃度Cu2+對Pb(Ⅱ)和Cd(Ⅱ)峰值電流的干擾規(guī)律,通過構(gòu)建化學計量學檢測模型消除Cu2+的干擾。
[1] Rehman A U, Nazir S, Irshad R, et al. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles[J]. Journal of Molecular Liquids, 2021, 321: 114455.
[2] Wang L, Cui X F, Cheng H G, et al. A review of soil cadmium contamination in China including a health risk assessment[J]. Environment Science and Pollution Research, 2015, 22: 16441-16452.
[3] 張秋霞,張合兵,劉文鍇,等. 高標準基本農(nóng)田建設區(qū)域土壤重金屬含量的高光譜反演[J]. 農(nóng)業(yè)工程學報,2017,33(12):230-239.Zhang Qiuxia, Zhang Hebing, Liu Wenkai, et al. Inversion of heavy metals content with hyperspectral reflectance in soil of well-facilitied capital farmland construction areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(12): 230-239. (in Chinese with English abstract)
[4] 黃迪,黃志紅,孔輝,等. 重金屬污染農(nóng)田土壤的穩(wěn)定化修復技術(shù)及其修復實踐研究[J]. 中國農(nóng)學通報,2021,37(8):72-78.
Huang Di, Huang Zhihong, Kong Hui, et al. Stabilization remediation technology and remediation practice of heavy metal contaminated farmland soil[J]. Chinese Agricultural Science Bulletin, 2021, 37(8): 72-78. (in Chinese with English abstract)
[5] 李新民,劉桀佳. 農(nóng)田土壤重金屬污染快速檢測及修復方法研究[J]. 環(huán)境科學與管理,2021,46(2):128-133.
Li Xinmin, Liu Jiejia. Rapid detection and remediation of heavy metal pollution in farmland soil[J]. Environmental Science and Management, 2021, 46(2): 128-133. (in Chinese with English abstract)
[6] Liu N, Zhao G, Liu G. Accurate SWASV detection of Cd(II) under the interference of Pb(II) by coupling support vector regression and feature stripping currents[J]. Journal of Electroanalytical Chemistry, 2021, 889: 115227.
[7] Wang L W, Li X R, Tsang D C W, et al. Green remediation of Cd and Hg contaminated soil using humic acid modified montmorillonite: Immobilization performance under accelerated ageing conditions[J]. Journal of Hazardous Materials, 2020, 387: 122005.
[8] Ye J J, Lin C H, Huang X J, et al. Analyzing the anodic stripping square wave voltammetry of heavy metal ions via machine learning: Information beyond a single voltammetric peak[J]. Journal of Electroanalytical Chemistry, 2020, 872: 113934.
[9] Zhang T, Jin H N, Fang Y N, et al. Detection of trace Cd2+, Pb2+and Cu2+ions via porous activated carbon supported palladium nanoparticles modified electrodes using SWASV[J]. Materials Chemistry and Physics, 2019, 225: 433-442.
[10] Promphet N, Rattanarat P, Rangkupan R, et al. An electrochemical sensor based on graphene/polyaniline/ polystyrene nano-porous fibers modified electrode for simultaneous determination of lead and cadmium[J]. Sensors and Actuators B-Chemistry, 2015, 207: 526-534.
[11] Wang H, Yin Y, Zhao G, et al. Graphene oxide/multi-walled carbon nanotubes/gold nanoparticle hybrid functionalized disposable screen-printed carbon electrode to determine Cd(II) and Pb(II) in soil[J]. International Journal of Agricultural and Biological Engineering, 2019; 12(3): 194-200.
[12] Mazzaracchio V, Tshwenya L, Moscone D, et al. A poly (propylene imine) dendrimer and carbon black modified flexible screen printed electrochemical sensor for lead and cadmium co-detection[J]. Electroanalysis, 2020, 32: 3009-3016.
[13] Kava A, Beardsley C, Hofstetter J, et al. Disposable glassy carbon stencil printed electrodes for trace detection of cadmium and lead[J]. Analytica Chimica Acta, 2020, 1103: 58-66.
[14] Tapia M A, C Pérez-Ràfols, Rui G, et al. Enhanced voltammetric determination of metal ions by using a bismuthene-modified screen-printed electrode[J]. Electrochimica Acta, 2020, 362: 137144.
[15] Alejandro G M F, Samuel J R N, Craig E B. Screen-printed electrodes: Transitioning the laboratory in-to-the field[J]. Talanta Open, 2021, 3: 100032.
[16] Bao Q W, Li G, Yang Z C, et al. Electrochemical performance of a three-layer electrode based on Bi nanoparticles, multi-walled carbon nanotube composites for simultaneous Hg(II) and Cu(II) detection[J]. Chinese Chemical Letters, 2020, 31(10): 2752-2756.
[17] Kanjana K, Phuktra C, Eda M, et al. A highly sensitive fenobucarb electrochemical sensor based on graphene nanoribbons-ionic liquid-cobalt phthalocyanine composites modified on screen-printed carbon electrode coupled with a flow injection analysis[J]. Journal of Electroanalytical Chemistry, 2019, 855: 113630.
[18] 李杜娟,徐楓,樊凱,等. 原位合成納米金/石墨烯修飾玻碳電極檢測水和土壤中痕量鉛[J]. 農(nóng)業(yè)工程學報,2018,34(11):203-208.
Li Dujuan, Xu Feng, Fan Kai, et al. In-suit synthesis of graphene/gold nanoparticles modified glassy carbon electrode for detection of lead in water and soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(11): 203-208. (in Chinese with English abstract)
[19] Zhao G, Wang H, Liu G, et al. Simultaneous determination of trace Cd(II) and Pb(II) based on Bi/Nafion/reduced graphene oxide-gold nanoparticle nanocomposite film-modified glassy carbon electrode by one-step electrodeposition[J]. Ionics, 2017, 23(3): 767-777.
[20] Wang Z Q, Wang H, Zhang Z H, et al. Electrochemical determination of lead and cadmium in rice by a disposable bismuth/electrochemically reduced graphene/ ionic liquid composite modi?ed screen-printed electrode[J]. Sensors and Actuators B: Chemical, 2014, 199: 7-14.
[21] Chaiyo S, Mehmeti E, ?agar K, et al. Electrochemical sensors for the simultaneous determination of zinc, cadmium and lead using a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode[J]. Analytica Chimica Acta, 2016, 918: 26-34.
[22] Rehacek V, Hotovy I, Vojs M, et al. Nafion-coated bismuth film electrodes on pyrolyzed photoresist/alumina supports for analysis of trace heavy metals[J]. Electrochimica Acta, 2012, 63: 192-196.
[23] Lee S, Park S K, Choi E, et al. Voltammetric determination of trace heavy metals using an electrochemically deposited graphene/bismuth nanocomposite film-modified glassy carbon electrode[J]. Journal of Electroanalytical Chemistry, 2016, 766: 120-127.
[24] Carlos R R, Margarita E A, Verónica A. Determination of molybdenum (VI) via adsorptive stripping voltammetry using an ex?situ bismuth screen-printed carbon electrode[J]. Microchemical Journal, 2020, 154: 104589.
[25] Abo-Hamad A, AlSaadi M A, Hayyan M, et al. Ionic liquid-carbon nanomaterial hybrids for electrochemical sensor applications: A review[J]. Electrochimica Acta, 2016, 193: 321-343.
[26] TessierA, CampbellPG, BissonM. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851.
[27] 王圣偉. 農(nóng)田環(huán)境土壤重金屬評測技術(shù)與時空信息發(fā)布系統(tǒng)研究[D]. 北京:中國農(nóng)業(yè)大學,2013.
Wang Shengwei. Soil Heavy Metals Evaluation Technology Based on Farmland Environment with Spatial-temporal Information Publish Research[D]. Beijing: China Agriculture University, 2013. (in Chinese with English abstract)
[28] Liu N, Zhao G, Liu, G. Sensitive stripping voltammetric determination of Pb(II) in soil using a Bi/single-walled carbon nanotubes-Nafion/ionic liquid nanocomposite modified screen-printed electrode[J]. International Journal of Electrochemical Science, 2020, 15(8): 7868-7882.
[29] Domańska K, Tyszczuk-Rotko K. Integrated three-electrode screen-printed sensor modified with bismuth film for voltammetric determination of thallium(I) at the ultratrace level[J]. Analytica Chimica Acta, 2018, 1036: 16-25.
[30] MarianM, PavolM, MiroslavB, et al. Bismuth modified boron doped diamond electrode for simultaneous determination of Zn, Cd and Pb ions by square wave anodic stripping voltammetry: Influence of boron concentration and surface morphology[J]. Vacuum, 2019, 167: 182-188.
[31] Deng X J, Lyu L L, Li H W, et al. The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method[J]. Journal of Hazardous Materials, 2010, 183(1/2/3): 923-930.
[32] Xu R X, Yu X Y, Gao C, et al. Non-conductive nanomaterial enhanced electrochemical response in stripping voltammetry: The use of nanostructured magnesium silicate hollow spheres for heavy metal ions detection[J]. Analytica Chimica Acta, 2013, 790: 31-38.
[33] Jayadevimanoranjitham J, Sriman N S. A mercury free electrode based on poly O-cresophthalein complexone film matrixed MWCNTs modified electrode for simultaneous detection of Pb(II) and Cd(II)[J]. Microchemical Journal, 2019, 148: 92-101.
[34] Liu, N, Zhao G, Lyu G. Coupling square wave anodic stripping voltammetry with support vector regression to detect the concentration of lead in soil under the interference of copper accurately[J].2020,: 6792.
[35] Zhao G, Liu G. Interference effects of Cu(II) and Pb(II) on the stripping voltammetric detection of Cd(II): Improvement in the detection precision and interference correction[J]. Journal of Electrochemical Society, 2018, 165: H488-H495.
[36] Kitte A S, Li S P, Nsabimana A, et al. Stainless steel electrode for simultaneous stripping analysis of Cd(II), Pb(II), Cu(II) and Hg(II)[J]. Talanta, 2019, 191: 485-490.
[37] Xiao L L, Xu H B, Zhou S H, et al. Simultaneous detection of Cd(II) and Pb(II) by differential pulse anodic stripping voltammetry at a nitrogen-doped microporous carbon/Nafion/bismuth-film electrode[J]. Electrochimica Acta, 2014, 143: 143-151.
[38] Zhang X, Zhang Y, Ding D, et al. On-site determination of Pb2+and Cd2+in seawater by double stripping voltammetry with bismuth-modified working electrodes[J]. Microchemical Journal, 2016, 126: 280-286.
[39] Rashid O K, Ibtisam E T. Development of disposable bulk-modified screen-printed electrode based on bismuth oxide for stripping chronopotentiometric analysis of lead (II) and cadmium (II) in soil and water samples[J]. Analytica chimica acta, 2008, 623(1): 76-81.
[40] Christos K, Anastasios E, Ioannis R. Lithographically fabricated disposable bismuth-film electrodes for the trace determination of Pb (II) and Cd (II) by anodic stripping voltammetry[J]. Electrochimica Acta, 2008, 53(16): 5294-5299.
[41] Zhao G, Liu G. A portable electrochemical system for the on-site detection of heavy metals in farmland soil based on electrochemical sensors[J]. IEEE Sensors Journal, 2018, 18(14): 5645-5655.
Detection of lead and cadmium in soil using composite nanomaterials modified screen-printed electrode
Liu Ning1,2, Zhao Guo3, Wang Xuming2, Liu Gang1,2※
(1. Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, China Agricultural University, Beijing 100083, China; 2. Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China; 3. College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China)
Lead Pb (Ⅱ) and cadmium Cd (Ⅱ) are toxic heavy metals, particularly difficult to be biodegraded in soil. Furthermore, lead and cadmium at trace levels can cause serious damage to brains, kidneys, blood, nerves, and other organs. A large amount of Pb (Ⅱ) and Cd (Ⅱ) can also be deposited in the soil environment after anthropogenic improper activities, such as sewage irrigation, the abuse of chemical fertilizers and pesticides, as well as the excessive discharge of industrial wastes. Pb (Ⅱ) and Cd (Ⅱ) can be absorbed by crops, and then accumulated in animals, finally enriched thousands of times into the human body under the biomagnification of the food chain, thereby causing economic losses and a great threat to human health. Therefore, it is highly urgent to accurately detect the accumulation of Pb (Ⅱ) and Cd (Ⅱ) in soil. An electrochemical Square Wave Anodic Stripping Voltammetry (SWASV) is widely utilized to combine with chemically modified working electrodes for the detection of heavy metal ions. Screen-Printed Electrodes (SPEs) have also been commonly used in recent years, due to easy preparation, disposable capability, and low cost. Particularly, SPEs with a small size are quite qualified as the sensing device ofminiature electrochemical detection equipment, suitable for many detection scenarios, such as flow cells and microfluidics. In this study, electrochemical reduction and coating were applied to fabricate a modified SPE (Bi/Nafion/rGO/IL/SPE) with the bismuth film/Nafion/reduced graphene oxide/ionic liquid composite nanomaterials, to accurately, fast, and reliably detect trace Pb (Ⅱ) and Cd (Ⅱ) in soil with a low-cost. Cyclic Voltammetry (CV) was also selected to characterize the electron transport capability of the modified electrodes. It was found that the composite nanomaterials greatly improved the electron transport capability of SPE and the stripping voltammetry responses for Pb (Ⅱ) and Cd (Ⅱ) on the SPE. Moreover, Scanning Electron Microscopy (SEM) was utilized to characterize the morphology of the modified electrodes. It was found that the rGO greatly enhanced the specific surface area of bare SPEs, thereby obtaining much more active sites for the electro-deposition of heavy metal ions. Energy Dispersive Spectroscopy (EDS) was used to identify the deposition amount of heavy metal ions on the surface of different modified electrodes. The results demonstrated that the modification with the bismuth film, rGO, and Nafion gradually increased the deposition amount of Pb (Ⅱ) and Cd(Ⅱ) on the modified SPE surface. Additionally, the Pb(Ⅱ) and Cd(Ⅱ) standard solutions were selected to optimize the experimental parameters, including the pH value of support electrolyte, bismuth ions concentration, deposition potential, and potential time. There were linear responses of Bi/Nafion/rGO/IL/SPE to Pb(Ⅱ) and Cd(Ⅱ) in the concentration from 1 to 80g/L, with the critical values of 0.124g/L for Pb(Ⅱ) and 0.232g/L for Cd(Ⅱ) (S/N=3), under an optimal experimental condition. The determination coefficients (2) of linear correction models were 0.993 and 0.985 for Pb(Ⅱ) and Cd(Ⅱ), respectively. In six SWASV measurements, the relative standard deviation (RSD) of Pb(Ⅱ) and Cd(Ⅱ) peak currents were 1.57% and 2.32%, respectively, indicating high stability and repeatability of Bi/Nafion/rGO/IL/SPE. Other heavy metal ions were also added to investigate the anti-interference performance of modified electrodes. It was found that there was no serious interference of other heavy metal ions (except for Cu(Ⅱ)) on the voltammetry responses of Pb(Ⅱ) and Cd(Ⅱ), where the changes of peak currents were all less than 5%. Since Cu(Ⅱ) inhibited the Pb(Ⅱ) and Cd(Ⅱ) peak currents by 40.02% and 62.85%, respectively, the Cu2+interference could be alleviated by adding ferricyanide. Finally, actual soil samples under the standard addition were used to verify the practicability of modified SPEs. Results demonstrated that the average recovery rates of Pb(Ⅱ) and Cd(Ⅱ) were 98.71% and 98.93%, respectively, indicating that the Bi/Nafion/rGO/IL/SPE can be applied to detect the trace lead and cadmium in soil.
heavy metals; soils; ionic liquid; graphene oxide; bismuth film; Nafion; screen-printed electrode
劉寧,趙國,王旭明,等. 復合納米材料修飾絲網(wǎng)印刷電極檢測土壤中鉛和鎘[J]. 農(nóng)業(yè)工程學報,2021,37(13):180-189.
10.11975/j.issn.1002-6819.2021.13.021 http://www.tcsae.org
Liu Ning, Zhao Guo, Wang Xuming, et al. Detection of lead and cadmium in soil using composite nanomaterials modified screen-printed electrode[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(13): 180-189. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.13.021 http://www.tcsae.org
2021-04-06
2021-05-29
國家自然科學基金資助項目(32071898,32001411);中央高?;究蒲袠I(yè)務費專項資金資助項目(2021TC111)
劉寧,博士生,研究方向為電化學分析和光譜分析。Email:ningliu@cau.edu.cn
劉剛,博士,教授,博士生導師,研究方向為電子信息技術(shù)在農(nóng)業(yè)中應用。Email:pac@cau.edu.cn
10.11975/j.issn.1002-6819.2021.13.021
S24; O657.1
A
1002-6819(2021)-13-0180-10