劉 慧,龍友能,何思偉,崔業(yè)民,沈 躍
四輪獨立電驅(qū)動高地隙噴霧機(jī)輔助轉(zhuǎn)向系統(tǒng)設(shè)計與試驗
劉 慧1,龍友能1,何思偉1,崔業(yè)民2,沈 躍1※
(1. 江蘇大學(xué)電氣信息工程學(xué)院,鎮(zhèn)江 212013;2. 南通廣益機(jī)電有限責(zé)任公司,南通 226631)
針對四輪獨立電驅(qū)動高地隙噴霧機(jī)因輪轂電機(jī)控制器遇到較大擾動無法及時響應(yīng)而導(dǎo)致的轉(zhuǎn)向不穩(wěn)定問題,該研究提出了一種液壓輔助轉(zhuǎn)向方法。通過對四輪獨立電驅(qū)動高地隙噴霧機(jī)的自轉(zhuǎn)向底盤結(jié)構(gòu)原理的分析,設(shè)計了液壓輔助轉(zhuǎn)向系統(tǒng),在此基礎(chǔ)上建立了簡化二自由度車輛轉(zhuǎn)向模型,用于對輔助轉(zhuǎn)向系統(tǒng)轉(zhuǎn)角控制進(jìn)行分析,并通過仿真分析和試驗驗證自轉(zhuǎn)向和輔助轉(zhuǎn)向協(xié)調(diào)控制性能。四輪電驅(qū)動噴霧機(jī)分別在自轉(zhuǎn)向系統(tǒng)單獨作業(yè)以及自轉(zhuǎn)向系統(tǒng)和輔助轉(zhuǎn)向系統(tǒng)協(xié)同作業(yè)的工況下,以1 m/s的速度分別進(jìn)行了坡度為15°的下坡轉(zhuǎn)向?qū)Ρ仍囼灪退镛D(zhuǎn)向?qū)Ρ仍囼?。試驗結(jié)果表明:在下坡試驗中,單獨自轉(zhuǎn)向系統(tǒng)作業(yè)的最大跟蹤偏差為6.1°,自轉(zhuǎn)向和輔助轉(zhuǎn)向協(xié)同作業(yè)的最大跟蹤偏差為0.9°;水田試驗中,單獨自轉(zhuǎn)向系統(tǒng)作業(yè)的最大跟蹤偏差為10.3°,自轉(zhuǎn)向和輔助轉(zhuǎn)向協(xié)同作業(yè)的最大跟蹤偏差為1.5°。研究結(jié)果表明該文所設(shè)計的液壓輔助轉(zhuǎn)向系統(tǒng)具有可行性和較好的穩(wěn)定性,能夠滿足實際作業(yè)需求。
高地隙噴霧機(jī);電動底盤;四輪轉(zhuǎn)向;自轉(zhuǎn)向結(jié)構(gòu);液壓輔助轉(zhuǎn)向
高地隙噴霧機(jī)作為典型的田間植保機(jī)械[1],優(yōu)良的轉(zhuǎn)向性能是其在復(fù)雜場地環(huán)境中實現(xiàn)穩(wěn)定作業(yè)的關(guān)鍵。目前大部分高地隙噴霧機(jī)采用機(jī)械傳動結(jié)構(gòu),在松軟、泥濘水田等惡劣環(huán)境下,機(jī)械傳動結(jié)構(gòu)容易引發(fā)驅(qū)動輪故障、滑移、沉陷等現(xiàn)象,其機(jī)動性、穩(wěn)定性備受考驗。
近年來,國內(nèi)外眾多學(xué)者針對拖拉機(jī)、噴霧機(jī)的自動駕駛[2-5]、轉(zhuǎn)向系統(tǒng)[6-11]以及驅(qū)動系統(tǒng)[12-15]等開展研究,并取得了一系列研究成果。夏長高等研究了高地隙自走式噴霧機(jī)全液壓轉(zhuǎn)向系統(tǒng)[16],利用三位四通換向閥實現(xiàn)全液壓四輪轉(zhuǎn)向,解決了傳統(tǒng)高地隙噴霧機(jī)轉(zhuǎn)向不靈活、轉(zhuǎn)向半徑過大而且前后輪同轍重合度低的問題。李偉等設(shè)計了高地隙自走式噴霧機(jī)多輪轉(zhuǎn)向系統(tǒng)[17],提高了大型高地隙噴霧機(jī)的機(jī)動性能和作業(yè)效率。從現(xiàn)有研究成果分析得知,目前高地隙噴霧機(jī)的轉(zhuǎn)向方式主要采用側(cè)向轉(zhuǎn)彎原理[18-22]。當(dāng)噴霧機(jī)在水田作業(yè)過程中半個或整個輪子深陷淤泥時,車輪的轉(zhuǎn)向則需推開側(cè)邊所有淤泥,所需轉(zhuǎn)向力矩隨著轉(zhuǎn)向角度的增加而增加,直到滿足轉(zhuǎn)向機(jī)構(gòu)所能提供力矩的上限,輪子會深陷泥中或超出底盤承受力矩上限而損壞底盤,無法轉(zhuǎn)向。
沈躍等研究設(shè)計了一種四輪獨立電驅(qū)動自轉(zhuǎn)向結(jié)構(gòu)底盤噴霧機(jī)[23-24],通過協(xié)調(diào)控制四輪差速帶動前后橋臂同步轉(zhuǎn)動實現(xiàn)自轉(zhuǎn)向,在復(fù)雜水田環(huán)境中有更好的工作性能。由于噴霧機(jī)轉(zhuǎn)向結(jié)構(gòu)比較特殊,輪轂電機(jī)在遇到較大擾動時,現(xiàn)有輪轂電機(jī)控制器無法及時響應(yīng),因此無法實現(xiàn)穩(wěn)定、可靠的轉(zhuǎn)向控制。例如噴霧機(jī)在下坡過程中,輪子需要反向力矩保持車身姿態(tài),現(xiàn)有驅(qū)動系統(tǒng)無法及時響應(yīng),導(dǎo)致轉(zhuǎn)向不穩(wěn)定。此外,考慮到成本問題,噴霧機(jī)并沒有設(shè)計懸架系統(tǒng),當(dāng)行駛在高低不平的路面時容易出現(xiàn)因轉(zhuǎn)向輪懸空而導(dǎo)致前/后橋轉(zhuǎn)向不穩(wěn)定現(xiàn)象。當(dāng)單個輪轂電機(jī)出現(xiàn)故障時,系統(tǒng)轉(zhuǎn)向性能不穩(wěn)定;當(dāng)前后均有輪轂電機(jī)出現(xiàn)故障時,系統(tǒng)無法實現(xiàn)自動轉(zhuǎn)向。
本文以四輪獨立電驅(qū)動高地隙噴霧機(jī)為研究對象,通過分析現(xiàn)有自轉(zhuǎn)向底盤結(jié)構(gòu),提出基于液壓控制的輔助轉(zhuǎn)向系統(tǒng)。該系統(tǒng)使用電機(jī)驅(qū)動轉(zhuǎn)向閥的方式對液壓缸進(jìn)行控制,保證輔助轉(zhuǎn)向系統(tǒng)響應(yīng)性能。最后通過仿真測試和實地試驗驗證該方法的有效性。
噴霧機(jī)的轉(zhuǎn)向結(jié)構(gòu)如圖1所示。前后轉(zhuǎn)向橋通過平面軸承與噴霧機(jī)底盤相連,A、B為平面軸承的旋轉(zhuǎn)中心,前后轉(zhuǎn)向橋的兩側(cè)裝有輪轂電機(jī),通過兩側(cè)輪轂電機(jī)的差速轉(zhuǎn)動實現(xiàn)轉(zhuǎn)向橋的轉(zhuǎn)動,同時前后轉(zhuǎn)向橋通過連桿約束,以確保前后轉(zhuǎn)向橋的轉(zhuǎn)向角度絕對值相等。
1.底盤車架 2.約束連桿 3.前轉(zhuǎn)向橋 4.后轉(zhuǎn)向橋 5.輪轂電機(jī)
1.Chassis frame 2.Constraint connecting rod 3.Front steering axle 4.Rear steering axle 5.Wheel hub motor
注:A、B分別為前后橋的轉(zhuǎn)向中心。
Note: A, B are turning centers of the front/rear steering axle, respectively.
圖1 高地隙噴霧機(jī)轉(zhuǎn)向結(jié)構(gòu)示意圖
Fig.1 Diagram of steering structure of high clearance sprayer
1.2 轉(zhuǎn)向原理
區(qū)別于傳統(tǒng)高地隙的側(cè)向轉(zhuǎn)向方式(圖2a),本文研究的高地隙噴霧機(jī)采用一種自轉(zhuǎn)向結(jié)構(gòu)底盤,通過四輪差速帶動整個橋臂轉(zhuǎn)動實現(xiàn)自轉(zhuǎn)向,轉(zhuǎn)向原理如圖2b所示。當(dāng)高地隙噴霧機(jī)陷于淤泥中時,阻力集中在輪子的切線方向,與驅(qū)動電機(jī)力矩方向共線,而且轉(zhuǎn)向無需推開大片淤泥,所需力矩遠(yuǎn)小于傳統(tǒng)的側(cè)向轉(zhuǎn)向方式,所以本文研究的高地隙噴霧機(jī)在水田中行駛效率較高。
高地隙噴霧機(jī)在下坡過程中需要反向力矩來保持車身的姿態(tài),而現(xiàn)有驅(qū)動系統(tǒng)無法及時提供所需力矩,此外高地隙噴霧機(jī)沒有懸架系統(tǒng),當(dāng)行駛在高低不平的路面時容易出現(xiàn)因轉(zhuǎn)向輪懸空而導(dǎo)致轉(zhuǎn)向不穩(wěn)定現(xiàn)象。因此需要設(shè)計一套輔助轉(zhuǎn)向系統(tǒng),用于提高高地隙噴霧機(jī)行駛的穩(wěn)定性和可靠性。
為實現(xiàn)輔助轉(zhuǎn)向功能,提高高地隙噴霧機(jī)作業(yè)性能,本文在現(xiàn)有自轉(zhuǎn)向系統(tǒng)上設(shè)計了一套基于電控液壓的輔助轉(zhuǎn)向系統(tǒng),輔助轉(zhuǎn)向系統(tǒng)的安裝位置如圖3所示。轉(zhuǎn)向閥4及其驅(qū)動電機(jī)2、齒輪泵3及其驅(qū)動電機(jī)1、溢流閥5和油箱6都安裝在車架的右上角,轉(zhuǎn)向油缸7的固定端安裝在車架上,移動端安裝在后轉(zhuǎn)向橋上,通過控制轉(zhuǎn)向油缸的伸縮長度控制后轉(zhuǎn)向橋的轉(zhuǎn)動,而后轉(zhuǎn)向橋與前轉(zhuǎn)向橋則通過連桿約束,即前后轉(zhuǎn)向橋的轉(zhuǎn)向角度相等,所以轉(zhuǎn)向油缸只需控制后轉(zhuǎn)向橋轉(zhuǎn)角即可控制噴霧機(jī)的前后轉(zhuǎn)向橋同步轉(zhuǎn)向。
液壓輔助轉(zhuǎn)向系統(tǒng)原理如圖4所示。圖中P為系統(tǒng)壓力油輸入口、T為系統(tǒng)回油口、CL為轉(zhuǎn)向閥6左腔、CR為轉(zhuǎn)向閥6右腔。其中油箱1的作用是裝載液壓油,為整個液壓系統(tǒng)提供液壓油;溢流閥2的作用是保護(hù)油路;齒輪泵4的作用是控制液壓系統(tǒng)的油壓,確保系統(tǒng)油壓的穩(wěn)定;直流電機(jī)3的作用是驅(qū)動齒輪泵4,確保齒輪泵4的轉(zhuǎn)速可控;轉(zhuǎn)向閥6的作用是控制油路的流向、流速和流量;直流電機(jī)5的作用是驅(qū)動轉(zhuǎn)向閥6,通過調(diào)節(jié)轉(zhuǎn)向閥6的轉(zhuǎn)向、轉(zhuǎn)速和轉(zhuǎn)角從而控制轉(zhuǎn)向油缸7的伸縮、伸縮速度和伸縮距離。轉(zhuǎn)向閥6的工作原理圖如圖5所示,當(dāng)驅(qū)動轉(zhuǎn)向閥6的直流電機(jī)5不轉(zhuǎn)動時,閥套和閥芯在回位彈簧的作用下處于中立位置如圖5a所示,通往左腔CL和右腔CR的通道被關(guān)閉,從進(jìn)油口P流進(jìn)的壓力油最后經(jīng)回油口T流回油箱1,轉(zhuǎn)向油缸7兩腔的油液不流動,活塞不移動,高地隙噴霧機(jī)沿原定方向行駛;當(dāng)驅(qū)動轉(zhuǎn)向閥6的直流電機(jī)5逆時針轉(zhuǎn)動時,通過電機(jī)軸帶動閥芯旋轉(zhuǎn),閥套由于制動而暫時不轉(zhuǎn),閥芯與閥套產(chǎn)生相對運動如圖5b所示,左腔CL和右腔CR的油路逐漸被打開,回油口T的油路逐漸被關(guān)閉,腔內(nèi)的壓力油使閥套跟隨電機(jī)軸同向旋轉(zhuǎn),電機(jī)軸繼續(xù)轉(zhuǎn)動,則閥套始終跟隨閥芯保持一定的相對轉(zhuǎn)角同步旋轉(zhuǎn)。這一轉(zhuǎn)角保證了向該方向轉(zhuǎn)向所需要的油液通道,液壓油從進(jìn)油口P流經(jīng)左腔CL然后流向轉(zhuǎn)向油缸7的右腔而將液壓缸推出,另一腔的油液經(jīng)轉(zhuǎn)向閥6的右腔CR流經(jīng)回油口T流回油箱1,電機(jī)軸連續(xù)轉(zhuǎn)動,轉(zhuǎn)向閥便把與電機(jī)軸轉(zhuǎn)角成比例的油量泵入轉(zhuǎn)向油缸7,使活塞運動,推動橋臂轉(zhuǎn)動,完成轉(zhuǎn)向動作。電機(jī)軸停止轉(zhuǎn)動后,閥芯停止轉(zhuǎn)動,由于閥套的隨動和回位彈簧的作用,閥芯與閥套的相對轉(zhuǎn)角立即消失,轉(zhuǎn)向閥6恢復(fù)到中立位置,高地隙噴霧機(jī)沿著操縱方向行駛。
1.油箱 2.溢流閥 3.直流電機(jī) 4.齒輪泵 5.直流電機(jī) 6.轉(zhuǎn)向閥 7.轉(zhuǎn)向油缸
1.Oil tank 2.Relief valve 3.DC motor 4.Gear pump 5.DC motor 6.Steering valve 7. Steering cylinder
注:P為系統(tǒng)壓力油輸入口; T為系統(tǒng)回油口;CL為轉(zhuǎn)向閥6左腔;CR為轉(zhuǎn)向閥6右腔。下同。
Note: P represents inlet; T represents return port; CLrepresents left cavity; CRrepresents right cavity. The same as below.
圖4 輔助轉(zhuǎn)向液壓系統(tǒng)原理圖
Fig.4 Principle diagram of auxiliary steering hydraulic system
由于條件限制,不能通過實測獲得噴霧機(jī)的轉(zhuǎn)向阻力矩,因此,通過計算來估計噴霧機(jī)的轉(zhuǎn)向阻力矩。如圖6所示,A、B分別為前后轉(zhuǎn)向橋的轉(zhuǎn)向中心,為轉(zhuǎn)向中心到輪子中心的距離。前后轉(zhuǎn)向橋通過連桿連接,以確保前后轉(zhuǎn)向角相等。假設(shè)噴霧機(jī)有2個輪子出現(xiàn)故障時仍可轉(zhuǎn)向,則其中有2個輪子處于滾動狀態(tài),另外2個輪子處于滑動狀態(tài)。
滾動狀態(tài)的輪子在轉(zhuǎn)向時的轉(zhuǎn)向阻力矩為
滑動狀態(tài)的輪子在轉(zhuǎn)向時的轉(zhuǎn)向阻力矩為
式中M為滾動狀態(tài)輪子轉(zhuǎn)向阻力矩,N·mm;M為滑動狀態(tài)輪子轉(zhuǎn)向阻力矩,N·mm;1為滾動摩擦系數(shù),查閱機(jī)械設(shè)計手冊,取0.035;2為地面附著系數(shù),查閱機(jī)械設(shè)計手冊,取0.9;為轉(zhuǎn)向中心與輪子中心距離,取755 mm;為噴霧機(jī)整車質(zhì)量,取1 380 kg;為重力加速度,取9.8 N/kg。
由式(1)和式(2)可得,M=89.3 N·m,M=2 297.4 N·m,整車的轉(zhuǎn)彎阻力矩為M1=2M+2M=4 773.4 N·m。
由于噴霧機(jī)主要工作環(huán)境為水田,因此需要考慮土壤對輪胎的阻力矩[25]。為了計算方便,近似取為M2= 226.6 N·m。最終計算得出噴霧機(jī)的總轉(zhuǎn)向阻力矩為
查閱機(jī)械設(shè)計手冊,按照系統(tǒng)壓力低于液壓泵額定壓力的2/3的原則,本文噴霧機(jī)液壓輔助轉(zhuǎn)向系統(tǒng)工作壓力選取為1=10 MPa。
根據(jù)選取的工作壓力及最大總負(fù)載可以確定液壓缸內(nèi)徑和活塞桿直徑,液壓缸受力分析如圖7所示。
活塞桿受壓時:
活塞桿受拉時:
查閱機(jī)械設(shè)計手冊,取2=0.8,取/=0.71,將數(shù)據(jù)代入公式,求得液壓缸內(nèi)徑尺寸=63 mm,活塞桿直徑尺寸=35 mm。
為了獲得行走中橋臂轉(zhuǎn)向角度和輔助轉(zhuǎn)向液壓缸的映射關(guān)系以及橋臂轉(zhuǎn)向的角速度和液壓缸伸縮的線速度關(guān)系,建立輔助轉(zhuǎn)向系統(tǒng)幾何模型如圖8所示。圖中A、B分別為前后橋臂的轉(zhuǎn)向中心,C為液壓缸的固定端,D為液壓缸的移動端,前后橋臂通過連桿約束(圖中未畫出),以確保前后橋臂的轉(zhuǎn)角絕對值基本相等,橋臂轉(zhuǎn)角即為轉(zhuǎn)向輪轉(zhuǎn)角。當(dāng)車輛從直線方向向左轉(zhuǎn)向時活塞桿向外伸出,C、D之間的距離增大。
根據(jù)三角函數(shù)關(guān)系可得:
求得:
同理得:
由三角形關(guān)系得:
將式(8)~(9)代入式(10)得到車輪轉(zhuǎn)角和液壓油缸行程的映射關(guān)系:
根據(jù)試驗分析,3WPZ-500噴霧機(jī)在轉(zhuǎn)向時轉(zhuǎn)向角范圍是?30°~30°,根據(jù)上述計算和參考其他田間行走機(jī)器的轉(zhuǎn)向液壓缸,最終選擇HSG63雙向液壓缸,該液壓缸的額定壓力16 MPa,最高壓力19 MPa,額定推力49 850 N,額定拉力31 681 N,機(jī)械效率M≥92%,容積效率V≥98%,最高速度0.3 m/s,行程300 mm,缸徑63 mm,外徑73 mm,桿徑35 mm,銷孔30 mm,安裝距離570 mm,閉合總長630 mm,伸出總長930 mm。經(jīng)計算得到液壓油缸的安裝距離=720 mm,1=780 mm,2= 300 mm,經(jīng)測量油缸缸體長度=570 mm,得到液壓油缸行程與轉(zhuǎn)向橋轉(zhuǎn)向角之間的映射關(guān)系如圖9所示。
由圖9可知,油缸行程與轉(zhuǎn)角近似呈線性關(guān)系,通過計算數(shù)據(jù)擬合所得比例系數(shù)為3.49 rad/m。為驗證比例系數(shù)的準(zhǔn)確性,通過采集油缸行程和橋臂轉(zhuǎn)角數(shù)據(jù),試驗數(shù)據(jù)擬合得到比例系數(shù)為3.42 rad/m,相對誤差0.2%。因此液壓油缸行程與后橋轉(zhuǎn)向角之間的映射關(guān)系可近似為:
對車輪轉(zhuǎn)角求導(dǎo)
通過試驗,轉(zhuǎn)向橋從-30°轉(zhuǎn)到30°平均需要3.5 s,HSG63液壓缸最高速度0.3 m/s,行程300 mm,理論上從一個極限點到另一個極限點只需1 s,滿足要求。
查閱機(jī)械設(shè)計手冊,所需轉(zhuǎn)向閥和液壓泵的流量應(yīng)滿足:
式中為轉(zhuǎn)向閥和液壓泵輸出的最大流量,L/min;為系統(tǒng)泄漏系數(shù),一般取1.1~1.3;max為進(jìn)入液壓缸的最大流量,L/min;π2/4為無桿腔活塞最大容積,m3;經(jīng)計算得max=16.02 L/min,則轉(zhuǎn)向閥和液壓泵流量≥17.62 L/min。
因此,選用BZZ1-E250擺線轉(zhuǎn)閥式開芯無反應(yīng)型全液壓轉(zhuǎn)向器搭配DM08RC有刷直流減速電機(jī),CBN-E310齒輪油泵搭配DC72 V直流減速電機(jī);BZZ1-E250擺線轉(zhuǎn)閥式開芯無反應(yīng)型全液壓轉(zhuǎn)向器基本參數(shù):排量250 mL/r,流量19 L/min,轉(zhuǎn)速100 r/min,最大入口壓力16 MPa,最大連續(xù)背壓2.5 MPa,質(zhì)量6.48 kg,總長181.5 mm,最高工作油溫80 ℃,動力轉(zhuǎn)向力矩1.7~5.0 N·m,最大人力轉(zhuǎn)向力矩136 N·m;DM08RC有刷直流減速電機(jī)基本參數(shù):工作電壓72 V,功率90 W,轉(zhuǎn)速120 r/min,最大轉(zhuǎn)矩6.98 N·m;CBN-E310齒輪油泵基本參數(shù):額定壓力16 MPa,最大壓力20 MPa,排量10 mL/r,額定轉(zhuǎn)速2 000 r/min,最大轉(zhuǎn)速3 000 r/min,輸入功率7.7 kW;DC72 V直流電機(jī)為常用的液壓系統(tǒng)電機(jī),功率4 kW。
2.3 控制系統(tǒng)設(shè)計
閥控缸系統(tǒng)為非線性傳遞,本文采用PID控制算法實現(xiàn)轉(zhuǎn)向系統(tǒng)閉環(huán)控制。根據(jù)車速、轉(zhuǎn)角對應(yīng)的四個輪子的速度以及對應(yīng)的液壓缸伸縮長度和伸縮速度關(guān)系,建立Matlab/Simulink仿真模型如圖11所示。
仿真結(jié)果如圖12所示,由仿真結(jié)果可以看出,自轉(zhuǎn)向單獨作業(yè)、輔助轉(zhuǎn)向單獨作業(yè)以及自轉(zhuǎn)向和輔助轉(zhuǎn)向協(xié)調(diào)作業(yè)都在1.8 s左右跟蹤到目標(biāo)角度。自轉(zhuǎn)向單獨作業(yè)前期響應(yīng)相對較慢,后期跟蹤到目標(biāo)角度時比單獨輔助轉(zhuǎn)向較快,單獨輔助轉(zhuǎn)向作業(yè)跟蹤到目標(biāo)角度后有微小的超調(diào)并在后期一直保持了這微小的誤差,自轉(zhuǎn)向和輔助轉(zhuǎn)向協(xié)同作業(yè)相比前兩種單獨作業(yè)系統(tǒng)有更快的響應(yīng)性能,而且到達(dá)目標(biāo)角度后也更加穩(wěn)定。
為驗證液壓輔助轉(zhuǎn)向系統(tǒng)性能,在水田和坡度為15°路面的工況下分別進(jìn)行獨立自轉(zhuǎn)向系統(tǒng)作業(yè)以及自轉(zhuǎn)向系統(tǒng)和輔助轉(zhuǎn)向系統(tǒng)協(xié)同作業(yè)試驗,試驗車速為1 m/s。試驗情況如圖13所示。圖13a為獨立自轉(zhuǎn)向(無推桿)下坡試驗圖,圖13b為自轉(zhuǎn)向和輔助轉(zhuǎn)向系統(tǒng)協(xié)同作業(yè)(有推桿)下坡試驗圖,圖13c為獨立自轉(zhuǎn)向(無推桿)水田試驗圖,圖13d為自轉(zhuǎn)向和輔助轉(zhuǎn)向系統(tǒng)協(xié)同作業(yè)(有推桿)水田試驗圖。水田場地為長50 m、寬40 m的試驗田,水田中有多條寬20 cm、深40 cm的溝,田里有水浸泡,場地較為泥濘。
下坡試驗的角度跟蹤軌跡如圖14和圖15所示,其中圖14為獨立自轉(zhuǎn)向系統(tǒng)作業(yè)角度跟蹤軌跡,圖15為自轉(zhuǎn)向系統(tǒng)和輔助轉(zhuǎn)向系統(tǒng)協(xié)同作業(yè)的角度跟蹤軌跡。由試驗結(jié)果可知:下坡過程中,獨立自轉(zhuǎn)向系統(tǒng)作業(yè)的轉(zhuǎn)向角度出現(xiàn)震蕩,震蕩角度在2.5°左右,最大角度跟蹤偏差為6.1°,自轉(zhuǎn)向系統(tǒng)和輔助轉(zhuǎn)向系統(tǒng)協(xié)同作業(yè)的轉(zhuǎn)向角度出現(xiàn)高頻震蕩,震蕩角度在0.6°左右,最大角度跟蹤偏差為0.9°。圖14a中0~2 s為噴霧機(jī)的下坡啟動時間,圖14b中抖動現(xiàn)象由約束連桿和液壓缸與噴霧機(jī)底盤的連接存在機(jī)械間隙引起。
水田試驗的角度跟蹤軌跡如圖15所示,其中圖15a為獨立自轉(zhuǎn)向系統(tǒng)作業(yè)的角度跟蹤軌跡,圖15b為自轉(zhuǎn)向系統(tǒng)和輔助轉(zhuǎn)向系統(tǒng)協(xié)同作業(yè)的角度跟蹤軌跡,由試驗結(jié)果可知:獨立自轉(zhuǎn)向系統(tǒng)作業(yè)的轉(zhuǎn)向角度出現(xiàn)震蕩,震蕩角度在3.0°左右,最大角度跟蹤偏差為10.3°,自轉(zhuǎn)向系統(tǒng)和輔助轉(zhuǎn)向系統(tǒng)協(xié)同作業(yè)的轉(zhuǎn)向角度出現(xiàn)震蕩,震蕩角度在1.0°左右,最大角度跟蹤偏差為1.5°。
1)針對四輪獨立電驅(qū)動高地隙噴霧機(jī)因輪轂電機(jī)驅(qū)動器響應(yīng)不及時導(dǎo)致的轉(zhuǎn)向不穩(wěn)定問題,設(shè)計了基于電機(jī)驅(qū)動轉(zhuǎn)向閥的液壓輔助轉(zhuǎn)向系統(tǒng);結(jié)合底盤自轉(zhuǎn)向結(jié)構(gòu)特點,采用PID算法對自轉(zhuǎn)向和輔助轉(zhuǎn)向協(xié)調(diào)控制進(jìn)行了Matlab仿真驗證。仿真結(jié)構(gòu)表明:噴霧機(jī)從0°轉(zhuǎn)到10°的響應(yīng)時間為1.8 s。
2)分別進(jìn)行了高地隙噴霧機(jī)液壓輔助轉(zhuǎn)向系統(tǒng)下坡和水田試驗,試驗結(jié)果表明:該系統(tǒng)可實現(xiàn)既定角度行走,在下坡和水田兩種不同的環(huán)境下,跟蹤的最大角度偏差分別為0.9°和1.5°;該液壓輔助轉(zhuǎn)向系統(tǒng)具有良好的行駛穩(wěn)定性和精度,能夠滿足作業(yè)需求。
[1] 莊騰飛,楊學(xué)軍,董祥,等. 大型自走式噴霧機(jī)噴桿研究現(xiàn)狀及發(fā)展趨勢分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2018,49(S1):189-198.Zhuang Tengfei, Yang Xuejun, Dong Xiang, et al. Research status and development trend of large self-propelled sprayer booms[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(S1): 189-198. (in Chinese with English abstract)
[2] 劉兆朋,張智剛,羅錫文,等. 雷沃ZP9500高地隙噴霧機(jī)的GNSS自動導(dǎo)航作業(yè)系統(tǒng)設(shè)計[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(1):15-21.
Liu Zhaopeng, Zhang Zhigang, Luo Xiwen, et al. Design of automatic navigation operation system for Levol ZP9500 high clearance boom sprayer based on GNSS[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(1): 15-21. (in Chinese with English abstract)
[3] 劉進(jìn)一,杜岳峰,張碩,等. 基于GNSS/MIMU/DR的農(nóng)業(yè)機(jī)械組合導(dǎo)航定位方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2016,47(S1):1-7.
Liu Jinyi, Du Yuefeng, Zhang Shuo, et al. Automatic navigation method for agricultural machinery based on GNSS/MIMU/DR information fusion[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(S1): 1-7. (in Chinese with English abstract)
[4] 陳黎卿,許澤鎮(zhèn),解彬彬,等. 無人駕駛噴霧機(jī)電控系統(tǒng)設(shè)計與試驗[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2019,50(1):122-128.
Chen Liqing, Xu Zezhen, Xie Binbin, et al. Design and test of electronic control system for unmanned drive sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1): 122-128. (in Chinese with English abstract)
[5] 張漫,季宇寒,李世超,等. 農(nóng)業(yè)機(jī)械導(dǎo)航技術(shù)研究進(jìn)展[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2020,51(4):1-18.
Zhang Man, Ji Yuhan, Li Shichao, et al. Research progress of agricultural machinery navigation technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 1-18. (in Chinese with English abstract)
[6] Sahin H, Akalin O. Articulated vehicle lateral stability management via active rear-wheel steering of tractor using fuzzy logic and model predictive control[J]. SAE International Journal of Commercial Vehicles, 2020, 13(2): 115-128.
[7] Hanifah R A, Toha S F, Hassan M K, et al. Power reduction optimization with swarm based technique in electric power assist steering system[J]. Energy, 2016, 102: 444-452.
[8] Li M X, Jia Y M. Decoupling control in velocity-varying four-wheel steering vehicles with∞performance by longitudinal velocity and yaw rate feedback[J]. International Journal of Vehicle Mechanics and Mobility, 2014, 52(12): 1563-1583.
[9] 許超,陳永成,李瑞敏,等. 高地隙自走式噴桿噴霧機(jī)的設(shè)計與研究[J]. 中國農(nóng)機(jī)化學(xué)報,2016,37(1):51-54.
Xu Chao, Chen Yongcheng, Li Ruimin, et al. Design and research on highland gap self-propelled lance spray[J]. Chinese Journal of Agricultural Mechanization, 2016, 37(1): 51-54. (in Chinese with English abstract)
[10] 李忠利,喬冬冬,鄒會勉. 基于變論域方法的拖拉機(jī)電液轉(zhuǎn)向系統(tǒng)控制研究[J]. 江蘇農(nóng)業(yè)科學(xué),2020,48(4):203-208.
Li Zhongli, Qiao Dongdong, Zou Huimian. Study on control of tractor electro-hydraulic steering system based on variable universe method[J]. Jiangsu Agricultural Sciences, 2020, 48(4): 203-208. (in Chinese with English abstract)
[11] 羅燈明,鮑遠(yuǎn)通,林海. 多軸重型全掛車機(jī)械液壓全輪轉(zhuǎn)向裝置設(shè)計[J]. 機(jī)械設(shè)計,2013,30(6):86-89.
Luo Dengming, Bao Yuantong, Lin Hai. Design of mechanical-hydraulic full-wheel steering device for multi-axle heavy-duty full trailer[J]. Journal of Mechanical Design, 2013, 30(6): 86-89.(in Chinese with English abstract)
[12] Ariff M H M, Hairi Z, Idris N R N, et al. Independent torque control of an independent-wheel-drive electric vehicle[J]. Applied Mechanics and Materials, 2014, 663(1): 493-497.
[13] Guo Q B, Zhang C M, Li L Y, et al. Design and implementation of a loss optimization control for electric vehicle in-wheel permanent-magnet synchronous motor direct drive system[J]. Applied Energy, 2017, 105: 2253-2259.
[14] 丁力,陳永成,張曼,等. 輪式高地隙噴霧機(jī)行走液壓驅(qū)動系統(tǒng)的設(shè)計研究[J]. 農(nóng)機(jī)化研究,2015,37(12):106-109.
Ding Li, Chen Yongcheng, Zhang Man, et al. Wheeled high clearance sprayer walking hydraulic drive system design research[J]. Journal of Agricultural Mechanization Research, 2015, 37(12): 106-109. (in Chinese with English abstract)
[15] 張京,陳度,王書茂,等. 農(nóng)用輪式機(jī)器人四輪獨立轉(zhuǎn)向驅(qū)動控制系統(tǒng)設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(18):63-70.
Zhang Jing, Chen Du, Wang Shumao, et al. Design and experiment of four-wheel independent steering driving and control system for agricultural wheeled robot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(18): 63-70.(in Chinese with English abstract)
[16] 夏長高,羅汞偉. 噴霧機(jī)全液壓四輪轉(zhuǎn)向系統(tǒng)設(shè)計與分析[J]. 重慶理工大學(xué)學(xué)報:自然科學(xué),2016,30(11):65-70.
Xia Changgao, Luo Gongwei. Design and analysis of sprayer with full hydraulic four-wheel steering system[J]. Journal of Chongqing University of Technology: Natural Science, 2016, 30(11): 65-70. (in Chinese with English abstract)
[17] 李偉,薛濤,毛恩榮,等. 高地隙自走式噴霧機(jī)多輪轉(zhuǎn)向系統(tǒng)設(shè)計與試驗[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2019,50(1):141-151.
Li Wei, Xue Tao, Mao Enrong, et al. Design and experiment of multifunctional steering system for high clearance self-propelled sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1): 141-151. (in Chinese with English abstract)
[18] 張尚青,王衛(wèi)兵,馮靜安,等. 高地隙噴霧機(jī)驅(qū)動輪獨立式驅(qū)動系統(tǒng)轉(zhuǎn)向控制模型研究[J]. 農(nóng)機(jī)化研究,2015,37(1):31-34.
Zhang Shangqing, Wang Weibing, Feng Jingan, et al. The research of vehicles driving wheel free standing driving system steering control model[J]. Journal of Agricultural Mechanization Research, 2015, 37(1): 31-34.(in Chinese with English abstract)
[19] 魯植雄,龔佳慧,魯楊,等. 拖拉機(jī)線控液壓轉(zhuǎn)向系統(tǒng)的雙通道PID控制仿真與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(6):101-106.
Lu Zhixiong, Gong Jiahui, Lu Yang, et al. Simulation and experiment of dual channel PID control for hydraulic steerby-wire system of tractor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 101-106. (in Chinese with English abstract)
[20] 毛罕平,倪靜,韓綠化,等. 高地隙液壓四輪驅(qū)動噴霧機(jī)轉(zhuǎn)向防滑控制系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2012,43(6):58-62.
Mao Hanping, Ni Jing, Han Lühua, et al. Turning anti-slip control system of hydraulic four-wheel drive high clearance sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(6): 58-62.(in Chinese with English abstract)
[21] 陳黎卿,許鳴,柏仁貴,等. 高地隙植保機(jī)輔助駕駛系統(tǒng)設(shè)計與試驗[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2019,50(9): 25-32.
Chen Liqing, Xu Ming, Bai Rengui, et al. Design and test of auxiliary driving system for high-gap plant protection machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(9): 25-32. (in Chinese with English abstract)
[22] 扈凱,張文毅. 高地隙自走式噴霧機(jī)多模式液壓轉(zhuǎn)向系統(tǒng)設(shè)計與試驗[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2020,51(9):366-373. Hu Kai, Zhang Wenyi. Design and experiment of multi-mode hydraulic steering system of high clearance self-propelled sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 366-373. (in Chinese with English abstract)
[23] 沈躍,何思偉,劉慧,等. 高地隙噴霧機(jī)自轉(zhuǎn)向電動底盤控制系統(tǒng)設(shè)計與試驗[J]. 農(nóng)業(yè)機(jī)械學(xué)報,2020,51(11):385-392,402. Shen Yue, He Siwei, Liu Hui, et al. Modeling and control of self-steering electric chassis structure of high clearance sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 385-392, 402. (in Chinese with English abstract)
[24] Shen Y, Zhang B N, Liu H, et al. Design and development of a novel independent wheel torque control of 4WD electric vehicle[J]. Mechanical, 2019, 25(3): 210-218.
[25] 王靜,魯植雄,金月,等. 拖拉機(jī)全液壓轉(zhuǎn)向阻力矩與油缸推力的研究[J].中國農(nóng)機(jī)化學(xué)報,2013,34(4):168-173.Wang Jing, Lu Zhixiong, Jin Yue, et al. Study on resistant torque and piston thrust of wheeled tractor with hydraulic steering system[J]. Journal of Chinese Agricultural Mechanization, 2013, 34(4): 168-173. (in Chinese with English abstract)
Design and experiment of the auxiliary steering system for a four-wheel independent electrically driven high clearance sprayer
Liu Hui1, Long Youneng1, He Siwei1, Cui Yemin2, Shen Yue1※
(1.,,212013,;2.,226631,)
Aiming at the unstable steering of a four-wheel independent electrically driven high clearance sprayer due to the failure of the hub motor controller to respond to a large disturbance, an auxiliary steering method based on electrically controlled hydraulic pressure was proposed. Firstly, the structure and steering principle of the self-steering chassis of the four-wheel independent electrically driven highland gap sprayer were briefly introduced. Secondly, the realization method of the hydraulic assisted steering system was described, including the establishment of the steering resistance moment calculation model, and the analysis of the steering resistance moment required by the wheels under rolling and sliding conditions. The upper limit of the steering resistance moment can be calculated when the two wheels fail turning. Thirdly, based on the structural characteristics of the self-steering chassis, the kinematics model of the hydraulic auxiliary steering was established, the relevant parameters of the important components of the hydraulic system were calculated, the installation position of the hydraulic cylinder was determined, and the key components of the hydraulic system were selected. Finally, the simulation and experiment were carried out to verify the performance of coordinated control of auto steering and auxiliary steering. In the simulation test, the independent operation of self-steering, the independent operation of auxiliary steering, and the collaborative operation of the self-steering and auxiliary steering of the sprayer were simulated and adjusted to make the angle tracking trajectory of the self-steering and the auxiliary steering as consistent as possible. The simulation results showed that, self-steering alone, auxiliary steering alone, and coordinated self-steering and auxiliary steering could all track to the target angle by about 1.8 s. The response of the self-steering is relatively slow in the early stage, but it is a little faster than the auxiliary steering when tracking the target Aangle in the later stage. The auxiliary steering has a slight overshoot after tracking the target Aangle and keeps this slight error in the later stage. Since the self-steering and auxiliary work together has faster response performance than the first two separate operating systems, they are more stable when they reach the target angle. Under the working conditions of independent operation of the self-steering system and cooperative operation of the self-steering system and auxiliary steering system, the comparison tests of downhill and paddy field with a gradient of 15° were carried out at a speed of 1 m/s respectively. The test results showed that in the downhill test, the maximum tracking deviation of the independent auto-steering system operation was 6.1°, and the maximum tracking deviation of the co-operation of auto-steering and auxiliary steering was 0.9°. In the paddy field test, the maximum tracking deviation of the independent auto-steering system operation was 10.3°, and the maximum tracking deviation of the co-operation of auto-steering and auxiliary steering was 1.5°. The experimental results verify the feasibility and stability of the proposed hydraulic auxiliary steering system. The system has good test performance and can meet the actual operation requirements.
high clearance sprayer; electric chassis; four-wheel steering; self-steering structure; hydraulic auxiliary steering
2021-03-15
2021-05-04
國家自然科學(xué)基金項目(51975260);江蘇省重點研發(fā)計劃(BE2018372);江蘇省自然科學(xué)基金(BK20181443);江蘇高校青藍(lán)工程項目和鎮(zhèn)江市重點研發(fā)計劃(NY2018001)
劉慧,教授,博士生導(dǎo)師,研究方向為農(nóng)業(yè)電氣化與自動化、智能控制與信號處理研究。Email:amity@ujs.edu.cn
沈躍,教授,博士生導(dǎo)師,研究方向為無人農(nóng)機(jī)與智能控制、農(nóng)業(yè)機(jī)器人研究。Email:shen@ujs.edu.cn
10.11975/j.issn.1002-6819.2021.13.004
S491
A
1002-6819(2021)-13-0030-08