邵順成,康曉龍,閆背背,張?zhí)炻?,?鵬,鄒詩凡,孟 科,榮 軒,強(qiáng) 浩,馮登偵,李新海
(寧夏大學(xué) 農(nóng)學(xué)院,寧夏 銀川 750000)
生長分化因子9(Growth differentiation factor 9,GDF9)屬于轉(zhuǎn)化生長因子β(TGF-β)超家族卵母細(xì)胞衍生的生長因子。BODENSTEINER等[1]在1999年報道了綿羊GDF9基因的核苷酸序列,包含2個外顯子和1個內(nèi)含子。骨形態(tài)發(fā)生蛋白15(Bone morphogenetic protein 15,BMP15)在卵母細(xì)胞中特異表達(dá),通過阻止顆粒細(xì)胞凋亡來促進(jìn)卵母細(xì)胞的發(fā)育,對卵泡發(fā)育及動物的排卵率有著重要的調(diào)控作用[2-3]。GDF9和BMP15氨基酸序列和蛋白質(zhì)結(jié)構(gòu)具有高度的同源性,它們在卵巢中的表達(dá)方式和功能也密切相關(guān)[4-5]。在綿羊中,BMP15和GDF9基因同時純合突變可抑制卵泡的發(fā)育,但若2個基因雜合突變可導(dǎo)致排卵率增加[6]。研究表明,GDF9蛋白以旁分泌的方式影響卵丘細(xì)胞和顆粒細(xì)胞的功能,對卵泡形成和排卵的過程至關(guān)重要,同時還參與排卵[7]。在卵巢中,GDF9基因?qū)︻w粒細(xì)胞的增殖、分化和凋亡起到關(guān)鍵的調(diào)控作用[8]。研究表明,GDF9基因可作為綿羊多羔性狀的候選分子標(biāo)記[9-11]。目前,對于GDF9基因SNP與綿羊產(chǎn)羔數(shù)的相關(guān)性研究主要集中在GDF9編碼區(qū),其在綿羊中具有高度的品種特異性[12-13]。關(guān)于GDF9基因?qū)ρ蚍敝承誀畹挠绊懷芯款H多,如TONG等[14]研究發(fā)現(xiàn),蒙古羊GDF9基因g.46544883A>G、c.1040T>C和g.46547859C>T 3個SNP可能是影響蒙古羊產(chǎn)羔數(shù)的優(yōu)勢位點(diǎn);BI等[15]研究發(fā)現(xiàn),絨山羊GDF9基因的2個錯義突變SNP可影響山羊的產(chǎn)仔數(shù);WANG等[16]對山羊GDF9基因45個SNP進(jìn)行歸納分析,結(jié)果表明,在多種山羊品種中,3個錯義突變SNP(A240V、Q320P和V397I)和3個同義突變SNP(L61L、N121N和L141L)與山羊的產(chǎn)羔數(shù)具有一定的關(guān)聯(lián)性。同時,GDF9基因在山羊的多個組織中廣泛表達(dá),如卵巢、下丘腦、垂體、子宮等,但在卵巢中的表達(dá)最高,這也證實(shí)GDF9基因在生殖器官中可能起重要調(diào)控作用[17]。TANG等[18]報道,高產(chǎn)小尾寒羊的卵巢中GDF9基因的表達(dá)水平高于低產(chǎn)小尾寒羊,說明GDF9基因可能在小尾寒羊的產(chǎn)羔性能中發(fā)揮重要調(diào)控作用。趙茜等[19]研究發(fā)現(xiàn),GDF9基因可調(diào)控綿羊卵丘細(xì)胞雌二醇、黃體酮等生殖激素的分泌,并影響相關(guān)激素受體基因的相對表達(dá)量??梢姡瑢DF9基因錯義突變位點(diǎn)展開研究,尋找與產(chǎn)羔數(shù)具有關(guān)聯(lián)性的多態(tài)位點(diǎn)尤為重要。
綿羊的繁殖性狀在綿羊育種中具有很高的經(jīng)濟(jì)價值,但這種性狀的遺傳力很低,傳統(tǒng)育種進(jìn)程緩慢,通過分子標(biāo)記輔助選擇來探索和發(fā)現(xiàn)綿羊高繁殖力基因可以有效地提高其繁殖性能[20]。寧夏優(yōu)質(zhì)肉羊新品種(系)培育利用我國灘羊、小尾寒羊種質(zhì)品種,以杜泊羊?yàn)橹鲗?dǎo)品種,運(yùn)用現(xiàn)代分子育種技術(shù)和常規(guī)育種技術(shù)相結(jié)合方法,挖掘小尾寒羊和杜泊羊的多胎特色基因,以期培育具備較高繁殖力的肉羊新品種。以杜柏羊、灘羊和小尾寒羊3個群體雜交后開展特色基因的挖掘研究,因群體間的遺傳差異性較大,更容易篩選出差異顯著的目標(biāo)性狀特色基因。鑒于此,以杜泊羊、灘寒羊、雜一代、雜二代和橫交一代5個綿羊群體為研究對象,基于Ensembl數(shù)據(jù)庫中已有的GDF9基因的錯義突變位點(diǎn),采用Sequenom Mass ARRAY?SNP技術(shù)對5個綿羊群體GDF9基因rs425223128、 rs597009987、 rs415699275 和rs160076408等4個位點(diǎn)進(jìn)行檢測,利用相關(guān)生物信息學(xué)分析軟件對GDF9蛋白的理化性質(zhì)、差異位點(diǎn)突變前后的蛋白質(zhì)二級結(jié)構(gòu)、蛋白質(zhì)互作等進(jìn)行分析與預(yù)測,以期為研究綿羊GDF9基因的生物學(xué)功能提供參考。
共采集5個綿羊群體共768只綿羊的耳組織,其中有產(chǎn)羔數(shù)記錄的599只(表1)。試驗(yàn)羊均為母羊,來自寧夏宇泊科技有限公司。同時記錄各群體母羊的產(chǎn)羔季節(jié)、胎次與產(chǎn)羔數(shù)。
表1 試驗(yàn)羊群信息Tab.1 Test sheep information
使用組織DNA提取試劑盒對綿羊耳組織樣本DNA進(jìn)行提取,DNA質(zhì)量利用0.8%的瓊脂糖凝膠電泳檢測。
采用Mass ARRAY Assay Design 3.1軟件設(shè)計檢測GDF9基因4個位點(diǎn)的單堿基延伸引物和聚合酶鏈?zhǔn)椒磻?yīng)程序。
使用Microsoft Excel 2016軟件對綿羊各基因位點(diǎn)的基因型頻率、基因頻率、期望雜合度(He)、觀察雜合度(Ho)、多態(tài)信息含量(PIC)和有效等位基因數(shù)(Ne)等進(jìn)行計算,并進(jìn)行Hardy-Weinberg平衡檢驗(yàn)。利用SPSS25.0軟件程序中一般線性模型對5個綿羊群體各基因型與產(chǎn)羔表型數(shù)據(jù)進(jìn)行關(guān)聯(lián)分析,其中,產(chǎn)羔數(shù)/產(chǎn)羔次數(shù)為每只羊的平均產(chǎn)羔數(shù)[21]。所有數(shù)據(jù)均以平均值±標(biāo)準(zhǔn)差表示。
采用ExPASy在線軟件的ProtParam(http://web.expasy.org/protparam/)程序分析綿羊GDF9蛋白的理化性質(zhì)[22];使用SOPMA工具(http://npsa-prabi.ibcp.fr/npsa_sopma.htmL)分析GDF9蛋白的二級結(jié)構(gòu);運(yùn)用STRING數(shù)據(jù)庫(http://string-db.org/)構(gòu)建與綿羊GDF9蛋白相互作用的蛋白質(zhì)網(wǎng)絡(luò)。
由圖1可以看出,rs425223128和rs597009987位點(diǎn)均為純合型TT,rs415699275位點(diǎn)為純合型CC,rs160076408位點(diǎn)在5個群體中存在CC、TC、TT等3種基因型。
圖1 綿羊GDF9基因4個位點(diǎn)的分型結(jié)果Fig.1 Typing results of four lociof GDF9 gene in sheep
rs425223128、rs597009987和rs415699275位點(diǎn)均為純合型,故不進(jìn)行多態(tài)性及關(guān)聯(lián)分析。由表2可知,rs160076408位點(diǎn)在5個群體間均為低度多態(tài),除了在雜二代群體不處于Hardy-Weinberg平衡狀態(tài),在其他4個群體中均處于Hardy-Weinberg平衡狀態(tài)。
表2 綿羊GDF9基因rs160076408位點(diǎn)群體遺傳結(jié)構(gòu)分析Tab.2 Analysis of population genetic structure of GDF9 gene rs160076408 locus in sheep
對GDF9基因rs160076408位點(diǎn)的不同基因型與5個群體的產(chǎn)羔數(shù)進(jìn)行關(guān)聯(lián)分析(表3),結(jié)果表明,雜一代群體TC基因型產(chǎn)羔數(shù)顯著高于CC基因型(P<0.05),說明rs160076408位點(diǎn)適用于雜一代綿羊群體多羔性狀的選育。
表3 綿羊GDF9基因rs160076408位點(diǎn)各基因型與產(chǎn)羔數(shù)的關(guān)聯(lián)分析Tab.3 Association Analysis of litter size and different genotypes at rs160076408 locusof GDF9 gene in sheep
[14]TONG B,WANG J,CHENG Z,et al.Novel variants inGDF9gene affect promoter activity and litter size in mongolia sheep[J].Genes(Basel),2020,11(4):375.
[15]BI Y,LI J,WANG X,et al.Two novel rare strongly linked missense SNPs(P27R and A85G)within theGDF9gene were significantly associated with litter size in shaanbei white cashmere(SBWC)goats[J].Frontiers in Veterinary Science,2020,7:406.
[16]WANG X,YANG Q,ZHANG S,et al.Genetic effects of single nucleotide polymorphisms in the goatGDF9gene on prolificacy:True or false positive?[J].Animals(Basel),2019,9(11):886.
[17]YANG C X,ZI X D,WANG Y,et al.Cloning and mRNA expression levels ofGDF9,BMP15,andBMPR1Bgenes in prolific and non-prolific goat breeds[J].Molecular Reproduction and Development,2012,79(1):2.
[18]TANG J,HU W,DI R,et al.Expression analysis of the prolific candidate genes,BMPR1B,BMP15,andGDF9in small tail han ewes with three fecundity(FecBgene)genotypes[J].Animals(Basel),2018,8(10):166.
[19]趙茜,努日比婭姆·麥麥提托合提,宋玉坤,等.GDF9對綿羊卵丘細(xì)胞增殖的影響[J].中國畜牧獸醫(yī),2020,47(10):3289-3296.ZHAO X,NURIBIYAMU M,SONG Y K,et al.Effect of GDF9 on sheep cumulus cell proliferation[J].China Animal Husbandry&Veterinary Medicine,2020,47(10):3289-3296.
[20] WILLIAMS J L.The use of marker-assisted selection in animal breeding and biotechnology[J].Scientific and Technical Review,2005,24(1):379-391.
[21]鄒輝,瞿秋紅,夏琴,等.努比亞山羊BMPR-IB基因多態(tài)性與其產(chǎn)羔性狀的關(guān)聯(lián)分析[J].南方農(nóng)業(yè)學(xué)報,2019,50(4):860-866.ZOU H,QU Q H,XIA Q,et al.Correlation analysis between Nubian goatsBMPR-ⅠBgene polymorphism and its lambing traits[J].Journal of Southern Agriculture,2019,50(4):860-866.
[22]龍廣麗,牟騰慧,劉洋,等.貴州地方白羽雞種MSTN基因SNP位點(diǎn)快速篩查及其蛋白功能預(yù)測[J].南方農(nóng)業(yè)學(xué)報,2020,51(8):1840-1848.LONGGL,MOUTH,LIUY,et al.Rapid screening and protein function prediction ofMSTNgene SNP sites in Guizhou local chicken breeds[J].Journal of Southern Agriculture,2020,51(8):1840-1848.
[23]VARNOSFADERANI S,OSTADHOSSEINI S,HAJIAN M,et al.Importance of theGDF9signaling pathway on cumulus cell expansion and oocyte competency in sheep[J].Theriogenology,2013,80(5):470-478.
[24]MONTE A,SANTOS J M,MENEZES V G,et al.Growth differentiation factor-9 improves development,mitochondrial activity and meiotic resumption of sheep oocytes afterin vitroculture of secondary follicles[J].Reproduction in Domestic Animals,2019,54(9):1169-1176.
[25]ZHANG Y,DU H,CHEN J,et al.Porcine growth differentiation factor 9 gene polymorphisms and their associations with litter size[J].Genet Genomics,2008,35(3):163-169.
[26]TORRECILHA R,MILANESI M,WADE C M,et al.Association of missense variants inGDF9with litter size in Entlebucher mountain dogs[J].Animal Genetics,2020,51(1):78-86.
[27]LOU Q,LI T,WU P,et al.Polymorphism identification inGDF9gene and its association analysis with reproduction traits in Jinghai yellow chicken[J].Animal Biotechnology,2019,30(4):332-341.
[28]LIU L B,CUI Z F,XIAO Q H,et al.Polymorphisms in the chicken growth differentiation factor 9 gene associated with reproductive traits[J]. BioMed Research International,2018,2018:9345473.
[29]JIA P,QINGLEI L,KAREN W,et al.Growth differentiation factor 9:Bone morphogenetic protein 15 heterodimers are potent regulators of ovarian functions[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(8):2700.
[30]DURELL S R,BEN-NAIM A.Hydrophobic-hydrophilic forces in protein folding[J].Biopolymers,2017,107(8):23020.
[31] DAVID A P,F(xiàn)REDERICK H.The hydrophobic moment and its use in the classification of amphiphilic structures(Review)[J].Molecular Membrane Biology,2002,19(1):1-10.
[32]ZHANG X Y,ZHANG L P,SUN W B,et al.Study on the correlation between BMPR1B protein in sheep blood and reproductive performance[J].Journal of Animal Science,2020,98(5):1-6.
[33]LI H X,XU H W,AKHATAYEVA Z,et al.Novel indel variations of the sheepFecBgene and their effects on litter size[J].Gene,2021,767:145176.
[34]WANG W M,LIU SJ,LI F D,et al.Polymorphisms of the ovineBMPR-ⅠB,BMP-15andFSHRand their associations with litter size in two Chinese indigenous sheep breeds[J].International Journal of Molecular Sciences,2015,16(5):11385-11397.