• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diverse surface wavessupported by bianisotropic meta surfaces

    2021-09-03 08:13:16YOUOuboGAOWenlongLIUYachaoXIANGYuanjiangZHANGShuang
    中國光學(xué) 2021年4期
    關(guān)鍵詞:示意圖方向

    YOU Ou-bo,GAOWen-long,LIU Ya-chao,XIANG Yuan-jiang,ZHANG Shuang,2 *

    (1. Department of Physics,The University of Hong Kong, Hong Kong China;2. Department of Electrical & Electronic Engineering,The University of Hong Kong, Hong Kong China;3.School of Physicsand Electronics, Hunan University,Changsha 410082,China;4. Department of Physics, Paderborn University,WarburgerStra?e 100, 33098 Paderborn,Germany;5. Instituteof Microscale Optoelectronics,Shenzhen University,Shenzhen 518060,China)

    Abstract:Surface waves supported by structured metallic surfaces,i.e.metasurfaces,have drawn wide attention recently.They are promising for various applications ranging from integrated photonic circuits to imaging and bio-sensing in various frequency regimes.In this work,we show that surface states with diverse polarization configurations can be supported by a metasurface consisting of a single layer of bianisotropic metamaterial elements.The structure possesses D2d symmetry, which includes mirror symmetry in the xz and yz plane,and C2 rotational symmetry along y=±x axis.Due to this unique symmetry,the metasuface supports both transverse electric(TE)and transverse magnetic(TM) waves along kx and ky directions,while a purely longitudinal mode and an elliptically polarized transverse electromagnetic(TEM) mode along ky=±kx directions.The versatility of the surface modes on the metasurface may lead to new surface wave phenomena and device applications.

    Key words:surface plasmon; metasurface; bianisotropy;transverse electric;transverse magnetic

    1 Introduction

    Surface plasmon polaritons(SPPs),due to their tight confinement to a metal/dielectric interface and large wave vectors, represent an important platform for various applications ranging from integrated photonic circuits to sensing applications[1-2].However,at optical frequencies,due to the significant ohmic loss of metals,the applications of SPPs suffer from the short propagation lengths.At longer wavelengths,the loss of SPPs is significantly reduced at the cost of poor confinement of the SPPs in the dielectric material.In 2004,Pendry proposed the concept of spoof plasmon that could be supported by a corrugated metallic surface with an effective plasma frequency determined by the geometries of the metallic structures[3],which was subsequently experimentally verified[4].This new scheme greatly improves the confinement of surface waves to the structured surfaces,and has attracted tremendous interests from the community of photonics. Various explorations have been carried out based on spoof plasmons,including rainbow slow light trapping effect[5-6],focusing of terahertz waves[7],terahertz subwavelength waveguides[8],and terahertz sensing[9].

    Indeed,structured surfaces(or metasurfaces)can be engineered to provide more diverse functionalities that go beyond confinement of surface waves,such as wavefront and amplitude control[10-18],enhanced and tailored nonlinear optical processes[19-23],resulting in a wide range of applications including imaging, holography and bio-sensing[24-30].These new functionabilitiescan arisefrom judiciousengineering of the unit cells, benefitting from the unconventional electromagnetic responses of complex metamaterial designs such as artificial magnetism,hyperbolicity,chirality and bianisotropy[31-38].Bianisotropy refers to a cross coupling between electric and magnetic responses along orthogonal directions.It can exist in structures that lack inversion symmetry but with preserved mirror symmetry.Bianisotropic metamaterials have shown some highly intriguing phenomena such as asymmetric absorption[39-40], optical spin-orbit coupling[41],and topological optical effects[42].In the past decade, biansotropy has been employed for designing topological metamaterials,which have shown interesting phenomena such as Fermi arc states and transverse spin of bulk optical modes[43-46].Compared to three dimensional bulk metamaterials, the ultrathin nature of bianisotropic metasurfaces could lead to more practical applications due to its low fabrication cost and highly compact physical sizes.In this work,we experimentally investigate the surface states supported by a bianisotropic metasurface and showcase a number of interesting effects– the existence of both TE and TM surface modes along certain directions[47],while helical transverse electromagnetic mode and longitudinal mode in some other directions.

    2 Results and discussion

    The configuration of the metasurface is illustrated in Fig.1(a). Each unit cell of the metasurface consists of a saddle-shaped metallic loop.The same unit cell,when arranged in a three dimensional array,forms a type-I ideal Weyl metamaterial,as demonstrated previously[43].Here we are interested in a metasurface consisting of a single layer of such structure,and therefore the bulk property is not well defined.Each unit cell can be considered as two perpendicular split ring resonatorswith opposite orientation of the openings.The structure possesses D2dsymmetry, which includes mirror symmetry in thexzandyzplane,and C2rotational symmetry alongy= ±xaxis.The fundamental resonant mode of the unit cell is a combination of electrical dipole moment and magnetic dipole moment,each of which can be excited by both an electric field or a magnetic field oriented in thex?yplane.

    Fig.1 (a)The schematic of the single-layer metasurface.Every unit cell consists of a saddle-shaped metallic inclusion possessing D2d point symmetry embedded in the dielectric substrate whose relative permittivity is 2.2.The period of the metasurface along kx or ky is p.(b)The band structure of the metasurface.The 1st,2nd,3rd bands and light cone are plotted in yellow,red, blue and green,respectively.(c)The dispersions of the surface modes along ky=0 direction.The modes along this direction corresponding to the 1st and 2nd bands can be regarded as electric plasmon and magnetic plasmon,respectively.(d)The dispersions of the surface modes along ky=kx direction.The modes along this direction for the1st and 2nd bandscan be regarded as transversemode (elliptically polarized)and longitudinal mode, respectively圖1 (a)單層超構(gòu)表面示意圖。每一個單元都由在介電常數(shù)為2.2的基底中的擁有D2d 點群對稱性的馬鞍形金屬內(nèi)嵌物構(gòu)成。該超構(gòu)表面沿kx 或ky 方向的周期是p;(b)該表面的能帶結(jié)構(gòu)。第1、2、3條能帶以及光錐分別由黃色、紅色、藍色以及綠色標出;(c)該超構(gòu)表面沿著ky=0 方向的色散。其中第1、2條能帶在這個方向的模場分別是電等離子體激元以及磁等離子體激元;(d)該超構(gòu)表面沿著ky=kx 方向的色散。其中第1、2條能帶在這個方向的模場分別是橫電磁模(橢偏)以及縱模

    The band structure of the metasurface is shown in Fig.1(b).There exist multiple bands in the system,with some bands located very close to the light cone (for example,the blue one).Here we are interested in the 1stand 2ndmodes(yellow and red)with larger wave numbers.Due to the D2dsymmetry of the system, the wave propagation alongxandydirectionscan berelated to each other by simply a rotation ofπ about thekx=±kyaxis.In order to have a clearer view of the dispersions of the surface waves,we plot the dispersions along thekx/kydirection in Fig.1(c).The two lowest modes,labelled electric and magnetic plasmon in the figure,exhibit the typical surface plasmon dispersion features, i.e. an approximately linear dispersion at lower frequency,and the dispersion gradually become flat when approaching the effective plasma frequency[3].We further plot the dispersions of the surface modes alongkx=±kydirections,as shown in Fig. 1(d). These 1stand 2ndmodes are TEM and longitudinal modes,respectively.Interestingly, these two surface modes become degenerate at the corner of the Brillounin zone,i.e.M point.As will be explained later,this degeneracy arisesfrom the D2dsymmetry of the system.

    The existence of TE and TM modes can be analyzed through the point group symmetry.For modes alongkx/kydirection,they must satisfy the mirror symmetry Mx/yaboutyzorxzplane.The eigen values ofM′are ±1.ForM′=+1,the normal E field with respect to mirror plane will cancel out when integrated over the unit cell,while the parallel E field remains.Meanwhile,the H field,which is a pseudo vector field, behaves in the opposite way.Therefore this represents a TM mode.TheM′=?1 mode,on the other hand,represents a TE mode based on a similar analysis.We further carry out full wave simulation,and present the field plotsof thexpropagating modes in thexzcross-section plane cutting through the center of the unit cell in Fig.2.For point ① on 1stmode in Fig.1(c), the electric field is aligned alongydirection,which is perpendicular to the propagation plane(Fig.2(a)),whereas the magnetic field lies in the propagation plane having bothxandzcomponents(Fig.2(b)).This confirms that 1stmode is not just a TE mode but also a magnetic surface plasmon mode, which is distinct from the conventional surface plasmon mode.It is interesting to note that the electric and magnetic field components are mostly confined to the top and bottom surfaces,respectively.On the other hand, the field distributions(Fig.2(c)and 2(d))of point②on 2ndmode show opposite configuration as that of TE mode. Namely,the electric field lies in the propagation plane and the magnetic field is perpendicular to it,which represent the main features of conventional TM polarized surface plasmon modes.The presence of both TE and TM polarized surface plasmon modes can be attributed to the fact that the unit cell of the bianisotropic metasurface supports both electric and magnetic resonances.

    Fig.2 Field distributionsof surface plasmon modespropagating along x direction.On theleft,theschematic of theunit cell illustrating the plane in which the fields are plotted is shown.(a, b)The E and H field distributions for point①on 1st mode in Fig.1 (c).(c,d)The E and H fields for point②on 2nd mode.kx of point①and ②is fixed at π/2p, where p is the period along x and y directions圖2 沿著x 方向傳播的表面等離子體激元的場分布。場分布所在截面的位置在最左邊的結(jié)構(gòu)單元示意圖中標出;(a,b)在圖1 (c)中第1個模式上的點①處E 和H 分布;(c,d)在圖1 (c)中第2 個模式上的點②處E和H 分布。點①和②處的kx 等于π/2p,p是沿x 和y 方向的結(jié)構(gòu)周期

    However,away fromkx/kydirections, the surface plasmon modes are not exactly TE and TM modes anymore, but generally a hybridization between them.Interestingly,alongkx=±kydirections, this hybridization leads to a complete re-arrangement of the field components,and the longitudinal mode and TEM mode emerge.The existence of the longitudinal mode and TEM can also be analyzed through the symmetry of the point group with respect to this direction.As the metasurface has C2symmetry alongkx=±kydirections, the eigen values of C2are ±1.For the C2=+1 mode,if we rotate the field byπabout the symmetry axis,we will get the samefield.Thismeans that all thefield components,both E and H perpendicular to the symmetry axis will cancel out when integrated over the unit cell,while fields components parallel to the symmetry axis remains, and therefore this corresponds to a longitudinal mode.For the C2= ?1 mode,the situation is opposite, i.e. all longitudinal components cancel out while transverse components remain,which corresponds to a TEM mode.This is illustrated by the fields shown in Fig.3.Fig.3(a)and 3(b)show the distribution of the electric and magnetic fields of point③(kx=ky=π/2p)in Fig.1(d),respectively,in a cross section plane perpendicular to the propagation direction.It is observed that both the E and H fields primarily lie in the plane,while the longitudinal components of the fields at different locations are opposite and cancel out,leading to an overall TEM mode.It is interesting to note that both the E and H fields rotate anticlockwise with time in the plane,i.e.the TEM mode is elliptically polarized.On the other hand,the distribution of E and H fieldsof point④,as illustrated in Fig.3(c)and 3(d)respectively,are primarily aligned along the propagation direction.Thus,it is confirmed that 1stmode is a pure longitudinal mode with both longitudinal E and longitudinal H components.We further look into the field distributionsof thetwo points⑤ and ⑥in Fig.1(d)close to M point in a horizontal plane(xyplane)cutting through the center of the unit cell,as shown by Fig.3(e?h).The fields clearly show that the two modes can be related to each other through the following symmetry operations:a rotation of 90°in thexyplane about the center of the unit cell,followed by a mirror symmetry inzdirection,which are consistent with the D2dsymmetry of the metasurface structure.Thus,this symmetry argument explains the degeneracy between the two modes at M point as shown in Fig.1(d).

    Fig.3 Field distributions of surface plasmon modes propagating along kx=ky direction.(a, b)Field distributions of 1st mode at point ③ (kx=ky= π/2p)in Fig.1(d).The simulated E(a)and H(b)field distributions in the plane perpendicular to the propagation direction,corresponding to the cutting plane shown in the schematic above.In both plots, the overall field distribution lie in the plane,indicating that this is a TEM mode.(c,d)Field distributions of 2nd mode at point ④ (kx=ky =π/2p)in Fig.1(d).The simulated E(c)and H(d)field distributions in the plane perpendicular to the propagation direction,corresponding to the cutting plane shown in the schematic above.In both plots,the overall field distributions are out of plane(along the propagation direction),indicating that this is a pure longitudinal mode with both longitudinal components of E and H fields.(e-h)Field distributions of points⑤and ⑥ in Fig.1(d),closing to the M point(phase advance is 170°),for a horizontal xy plane cutting through the center of the unit cell,as indicated by the schematic above.(e,f)correspond to the E and H field distributions of point⑤,and(g, h)correspond to E and H field distributions of point⑥.It is observed that the two modes are related to each other through an in-plane rotation of 90°about the center of the unit cell,followed by a mirror symmetry in z direction圖3 沿kx=ky 方向的表面等離子體激元模式的場分布。(a, b)圖1 (d)中第1 個模式在點③處(kx=ky = π/2p)的場分布。仿真得到的在垂直傳播方向的面上的E(a)和H (b)場分布,截面位置顯示在上方示意圖中。在兩個圖中,總體的場分布都在面內(nèi),證明了這是一個橫電磁模。(c,d)圖1(d)中第2 個模式在點④處(kx=ky = π/2p)的場分布。仿真得到的在垂直傳播方向的面上的E(c)和H (d)場分布,截面位置顯示在上方示意圖中。在兩個圖中,總體的場分布都指向面外(沿著傳播方向),證明了這是一個同時擁有電場和磁場的縱模。(e-h)圖1(d)中非常接近M 點的⑤和⑥處的穿過結(jié)構(gòu)單元中心的xy 截面處的場分布,(e,f)分別代表了點⑤處的E和H 場分布;(g, h)分別代表了點⑥處的E和H場分布。通過一個面內(nèi)關(guān)于結(jié)構(gòu)單元中心的90°旋轉(zhuǎn)以及z 方向上的鏡面對稱操作,這兩個模式之間可以進行互相轉(zhuǎn)換

    To measure the dispersion of the surface modes,we place a source antenna at the center of bottom surface of the sample, which consists of 90×70 unit cells, while the electric field distribution is mapped by a probe antenna raster-scanning the top surface.The Fourier transformations of the electric field,which represent the equal frequency contours(EFCs),at two representative frequencies of 10.9 GHz and 13.3 GHz are shown in Fig.4(a) and 4(c),respectively,to illustrate the 1stand 2ndmodes.The corresponding simulated results are shown in Fig.4(b)and 4(d).The EFC of 1stband appears roughly as a round loop,as shown in Fig.4(a, b).Inside the EFC of 1stband,the light cone and higher modes are crowded together into a bright smaller circle.The measured EFCs match well with the simulated ones shown in Fig.4(b).At a higher frequency of 13.3 GHz,the EFC of 2ndband shows a more complicated pattern ?an ellipse centered at theΓpoint and four nearly straight lines close to the corner(Fig.4(c)).Considering the periodic boundary of the Brilloun zone,these four lines indeed form a closed contour around the M point.The measured EFC agrees well with the simulation result(Fig.4(d)),except for the missing of half of the elliptical contour with long axis oriented alongxdirection.This is because in the experiment only the top surface is measured,whereas the mode corresponding to the missing contour is mainly localized at the bottom surface.From the measured EFCs at different frequencies,one can retrieve the dispersion curves along different directions.As shown in Fig.4(e), the experimentally retrieved dispersion of 1stand 2ndbands alongkx/kydirections clearly show the characteristics of typical surface plasmons and they correspond to the TE and TM surface plasmon modes with different effective electric and magnetic plasma frequencies.However,alongkx=±kydirections, the two bands show very distinct features–whilemode 1 shows similar dispersion as a conventional surface plasmon, mode 2 exhibits a negative dispersion at large wavevectors(Fig.4(f)).They become degenerate at M point, matching very well with thenumerical resultsasindicated by the dashed lines.

    Fig.4 Measured EFC and dipersion curves of the surface modes.The measured(a)and simulated(b)EFC at frequency of 10.9 GHz.The measured(c)and simulated(d)EFC at frequency of 13.3 GHz.(e,f)The dispersion of the surface modesalong kx/ky and kx=±ky directions,respectively.The dashed linesin the plotscorrespond to the simulation results圖4 測量得到的表面模式的等頻面以及色散曲線。測量(a)以及仿真(b)得到的在10.9 GHz 處的等頻面。測量(c)以及仿真(d)得到的在13.3 GHz 處的等頻面。(e,f)表面模式沿著kx/ky 和kx=±ky 方向上的色散曲線,虛線代表仿真結(jié)果

    Finally we experimentally investigate the excitation of the surface waves by controlling the orientation of the source dipole antenna.The experimental setup for the measurement is shown in Fig.5(a).A source antenna is oriented along eitherxorzdirection in the middle of the edge alongxdirection.For both configurations,we measure the field distributionson either the top surface or the bottom surface of the metasurface.By combining the two measured field distributions with source dipole antenna oriented along the two orthogonal directions(xandz),one can retrieve the field distribution for tilted dipole antenna (e.g.orientation of +45°and?45°)and for circularly polarized antenna(left and right handed).Fig.5(b)and 5(c)show the field patterns excited by a dipole antenna oriented along+45°and ?45°, respectively, wherein the surface wave primarily propagates towards the left or the right hand side depending on the polarization of the exciting antenna.The field distributions also show very distinct features on the two sides when the source antenna is circularly polarized-a single beam appearing on one side and two split beams appearing on the other side,as shown by Fig.5(d)and 5(e).The configurations are swapped when the rotating direction of the source antenna is flipped.This directly demonstrates the spin and orientation controlled excitation of the surface waves on the metasurface.In this experiment,the excitation efficiency is not very high, but sufficient to see all exotic featuresof thismetasurface.For achieving a higher excitation efficiency,the size and orientation of the antenna would require very fine adjustment to match the polarization of the mode.

    Fig.5 Measurement of polarization controllable excitation of surface modes.(a)The experimental setup for measuring the surface mode.The excitation dipole antenna is oriented either in the vertical direction(upper panel)or the horizontal direction(lower panel).(b,c)Electric field distribution on top surfaces under polarization of px?pz and px+pz,respectively.(d,e)Sameas(b,c) but thefields are measured on bottom surfaces under LCPand RCPexcitation,respectively.All subplots attached to(b-e)are the corresponding EFCs in the Brillouin zone圖5 入射偏振依賴的表面模式激發(fā)的實驗結(jié)果。(a)測量表面模式的實驗設(shè)置。激發(fā)偶極天線的擺放方向或者垂直(上方示意圖)或者水平(下方示意圖);(b,c)上表面在px?pz 或px+pz 激發(fā)下的電場分布。(d,e)下表面在LCP 或RCP 激發(fā)下的電場分布。(b~e)所有的子圖都代表了布里淵區(qū)等頻面

    3 Summary

    In summary,we have designed and demonstrated a bianisotropic metasurface with a unique symmetry configuration and investigated the rich features of surface waves supported by the metasurface.We have shown that both TE and TM surface plasmon waves can exist along certain directions,while along some other directions,there exist a pure longitudinal mode with both electric and magnetic components,and an elliptically polarized transverse electromagnetic mode.Such diverse dispersion and polarization configurations of the surface plasmon modes provide new degrees of freedom for constructing compact photonic integrated devices.

    猜你喜歡
    示意圖方向
    構(gòu)建示意圖,深度把握
    2022年組稿方向
    2022年組稿方向
    2021年組稿方向
    2021年組稿方向
    2021年組稿方向
    先畫示意圖再解答問題
    黔西南州旅游示意圖
    當代貴州(2019年41期)2019-12-13 09:28:56
    兩張圖讀懂“青年之聲”
    中國共青團(2015年7期)2015-12-17 01:24:38
    位置與方向
    亚洲精品影视一区二区三区av| 国产日本99.免费观看| 婷婷精品国产亚洲av在线| 欧美日本视频| 中出人妻视频一区二区| 国产亚洲av嫩草精品影院| 国产一区二区三区在线臀色熟女| 深夜精品福利| 亚洲精品一卡2卡三卡4卡5卡| 国产精品98久久久久久宅男小说| 国产乱人视频| 色综合亚洲欧美另类图片| 国产精品免费一区二区三区在线| 叶爱在线成人免费视频播放| 欧美黑人巨大hd| 可以在线观看的亚洲视频| 特大巨黑吊av在线直播| 特级一级黄色大片| 久久久久亚洲av毛片大全| 99热只有精品国产| 天天躁日日操中文字幕| xxxwww97欧美| 欧美一级a爱片免费观看看| 九色国产91popny在线| netflix在线观看网站| 日本黄大片高清| 免费电影在线观看免费观看| 亚洲精品影视一区二区三区av| 国产中年淑女户外野战色| 亚洲男人的天堂狠狠| 天堂av国产一区二区熟女人妻| 动漫黄色视频在线观看| 婷婷六月久久综合丁香| 久久天躁狠狠躁夜夜2o2o| 很黄的视频免费| 黄色丝袜av网址大全| 手机成人av网站| 国产午夜精品久久久久久一区二区三区 | 国产伦精品一区二区三区四那| 亚洲一区二区三区不卡视频| 伊人久久大香线蕉亚洲五| 国产精品免费一区二区三区在线| 嫁个100分男人电影在线观看| 狂野欧美激情性xxxx| 亚洲成av人片在线播放无| 老汉色∧v一级毛片| 九九久久精品国产亚洲av麻豆| а√天堂www在线а√下载| 欧美日韩福利视频一区二区| 国产欧美日韩精品一区二区| 日韩欧美 国产精品| 亚洲国产欧洲综合997久久,| bbb黄色大片| av专区在线播放| 又紧又爽又黄一区二区| 最新中文字幕久久久久| 天天躁日日操中文字幕| 九色国产91popny在线| 天天一区二区日本电影三级| 啦啦啦免费观看视频1| 哪里可以看免费的av片| 一级作爱视频免费观看| 国产又黄又爽又无遮挡在线| 精品一区二区三区视频在线观看免费| 床上黄色一级片| 十八禁人妻一区二区| 两人在一起打扑克的视频| 看片在线看免费视频| 老汉色∧v一级毛片| www.色视频.com| 久久亚洲真实| 国产综合懂色| 两个人的视频大全免费| www.999成人在线观看| 国产亚洲精品久久久com| 丰满人妻熟妇乱又伦精品不卡| 无限看片的www在线观看| 亚洲专区中文字幕在线| 中文字幕人妻丝袜一区二区| 国产精品美女特级片免费视频播放器| 真人做人爱边吃奶动态| 精品一区二区三区视频在线观看免费| 天堂动漫精品| 国产精品嫩草影院av在线观看 | 国产伦人伦偷精品视频| 国产亚洲欧美98| 看免费av毛片| 免费在线观看影片大全网站| 他把我摸到了高潮在线观看| 18禁裸乳无遮挡免费网站照片| 色尼玛亚洲综合影院| 狂野欧美激情性xxxx| 99精品欧美一区二区三区四区| 亚洲精品影视一区二区三区av| 国产av不卡久久| 国产伦精品一区二区三区视频9 | 在线天堂最新版资源| 91九色精品人成在线观看| 一本精品99久久精品77| 法律面前人人平等表现在哪些方面| 国模一区二区三区四区视频| 最近在线观看免费完整版| 亚洲精品一卡2卡三卡4卡5卡| 我要搜黄色片| 亚洲中文字幕日韩| 免费观看人在逋| 午夜影院日韩av| 久久国产精品影院| 欧美三级亚洲精品| 亚洲中文字幕日韩| 国内少妇人妻偷人精品xxx网站| 动漫黄色视频在线观看| 成人av一区二区三区在线看| 久久欧美精品欧美久久欧美| 国内揄拍国产精品人妻在线| 91麻豆精品激情在线观看国产| 国产av不卡久久| 久久精品综合一区二区三区| 国产一区二区三区在线臀色熟女| 精品无人区乱码1区二区| 精品人妻一区二区三区麻豆 | 女人高潮潮喷娇喘18禁视频| 国产精品自产拍在线观看55亚洲| 非洲黑人性xxxx精品又粗又长| 高潮久久久久久久久久久不卡| 一个人看的www免费观看视频| 亚洲国产精品999在线| 国内毛片毛片毛片毛片毛片| 欧美国产日韩亚洲一区| 欧美一区二区精品小视频在线| 97超视频在线观看视频| 51国产日韩欧美| 国产av麻豆久久久久久久| 成人特级黄色片久久久久久久| 日韩欧美三级三区| 免费观看的影片在线观看| 精品人妻一区二区三区麻豆 | 欧美性猛交黑人性爽| 午夜激情福利司机影院| 少妇熟女aⅴ在线视频| www日本黄色视频网| 亚洲av熟女| 欧美成人免费av一区二区三区| 色老头精品视频在线观看| 婷婷六月久久综合丁香| x7x7x7水蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 国产精品香港三级国产av潘金莲| 天天躁日日操中文字幕| 制服人妻中文乱码| 国产野战对白在线观看| 亚洲欧美日韩卡通动漫| 欧美大码av| 久久久久久人人人人人| 69av精品久久久久久| 日本在线视频免费播放| 人妻夜夜爽99麻豆av| 成人特级av手机在线观看| 国产69精品久久久久777片| 久久精品亚洲精品国产色婷小说| 亚洲国产精品999在线| 丝袜美腿在线中文| 精品午夜福利视频在线观看一区| 动漫黄色视频在线观看| or卡值多少钱| 亚洲国产中文字幕在线视频| 欧美三级亚洲精品| 岛国视频午夜一区免费看| 一进一出抽搐动态| 精品不卡国产一区二区三区| 成人特级av手机在线观看| 欧美丝袜亚洲另类 | 欧美一级毛片孕妇| 国产精品电影一区二区三区| 成人国产一区最新在线观看| 国内毛片毛片毛片毛片毛片| 亚洲国产中文字幕在线视频| 亚洲成人免费电影在线观看| 淫秽高清视频在线观看| 女人被狂操c到高潮| 亚洲国产日韩欧美精品在线观看 | 亚洲不卡免费看| 免费一级毛片在线播放高清视频| 91字幕亚洲| 国产精品日韩av在线免费观看| av女优亚洲男人天堂| 日日夜夜操网爽| 91字幕亚洲| 国产黄色小视频在线观看| 99久久综合精品五月天人人| 黄色成人免费大全| 亚洲熟妇熟女久久| 欧美日韩一级在线毛片| 一级毛片高清免费大全| 国内揄拍国产精品人妻在线| 国产欧美日韩一区二区精品| 一个人看视频在线观看www免费 | 免费av观看视频| 色哟哟哟哟哟哟| 一二三四社区在线视频社区8| 51国产日韩欧美| 两人在一起打扑克的视频| 观看美女的网站| 夜夜夜夜夜久久久久| 日本精品一区二区三区蜜桃| 午夜免费观看网址| 少妇人妻一区二区三区视频| 色在线成人网| 国产精品日韩av在线免费观看| 九九热线精品视视频播放| a在线观看视频网站| 色视频www国产| 老司机福利观看| 亚洲成a人片在线一区二区| 色播亚洲综合网| 国产aⅴ精品一区二区三区波| 日韩欧美精品免费久久 | 最近最新中文字幕大全免费视频| 成人无遮挡网站| 成人性生交大片免费视频hd| 精品99又大又爽又粗少妇毛片 | 色精品久久人妻99蜜桃| x7x7x7水蜜桃| 最新美女视频免费是黄的| 一区二区三区国产精品乱码| 国产高清视频在线播放一区| 亚洲美女视频黄频| 嫁个100分男人电影在线观看| 99久久精品一区二区三区| 国产野战对白在线观看| 亚洲成av人片免费观看| 国产精品国产高清国产av| 在线免费观看的www视频| 日本撒尿小便嘘嘘汇集6| 日本成人三级电影网站| 在线观看美女被高潮喷水网站 | 中文字幕久久专区| 亚洲精品成人久久久久久| 99精品久久久久人妻精品| 亚洲午夜理论影院| 有码 亚洲区| 色尼玛亚洲综合影院| 精品人妻偷拍中文字幕| www.www免费av| 特级一级黄色大片| 深夜精品福利| 成熟少妇高潮喷水视频| 每晚都被弄得嗷嗷叫到高潮| 最近视频中文字幕2019在线8| 免费av毛片视频| 免费人成在线观看视频色| 日韩精品中文字幕看吧| 日韩中文字幕欧美一区二区| 欧美三级亚洲精品| 国产av在哪里看| 久久精品国产亚洲av香蕉五月| 欧美黑人欧美精品刺激| 亚洲性夜色夜夜综合| 最后的刺客免费高清国语| 精品无人区乱码1区二区| 国产精品亚洲av一区麻豆| 国产综合懂色| 少妇高潮的动态图| 国产成人系列免费观看| 亚洲国产欧美人成| 国产中年淑女户外野战色| 午夜日韩欧美国产| 久久欧美精品欧美久久欧美| 有码 亚洲区| 麻豆成人午夜福利视频| 国产激情偷乱视频一区二区| 午夜两性在线视频| 欧美午夜高清在线| 非洲黑人性xxxx精品又粗又长| 欧美区成人在线视频| 90打野战视频偷拍视频| 观看免费一级毛片| 久久精品国产自在天天线| 免费在线观看成人毛片| 伊人久久大香线蕉亚洲五| 日本一二三区视频观看| 亚洲精品一卡2卡三卡4卡5卡| 欧美性感艳星| 少妇的逼水好多| 波多野结衣高清作品| 亚洲男人的天堂狠狠| 人人妻人人澡欧美一区二区| 女警被强在线播放| 一进一出抽搐gif免费好疼| 久久精品91无色码中文字幕| 精品福利观看| 国产高清有码在线观看视频| 国产精品99久久久久久久久| 99国产综合亚洲精品| 精品国内亚洲2022精品成人| 五月玫瑰六月丁香| 黑人欧美特级aaaaaa片| 欧美黄色片欧美黄色片| 国产aⅴ精品一区二区三区波| 国产精品香港三级国产av潘金莲| 精品午夜福利视频在线观看一区| 少妇人妻一区二区三区视频| 性欧美人与动物交配| 老熟妇仑乱视频hdxx| 久久久久国内视频| 99视频精品全部免费 在线| 亚洲av熟女| 亚洲无线观看免费| 香蕉丝袜av| 久久久久久久久中文| 国产欧美日韩精品亚洲av| 99久久成人亚洲精品观看| 欧美在线黄色| 欧美中文日本在线观看视频| 亚洲国产精品999在线| 午夜激情福利司机影院| 一进一出抽搐gif免费好疼| 给我免费播放毛片高清在线观看| 在线天堂最新版资源| 成人午夜高清在线视频| 少妇高潮的动态图| 一个人观看的视频www高清免费观看| 91九色精品人成在线观看| 午夜福利免费观看在线| 午夜免费男女啪啪视频观看 | 亚洲不卡免费看| 搡老岳熟女国产| e午夜精品久久久久久久| 日韩人妻高清精品专区| 操出白浆在线播放| 午夜福利高清视频| 操出白浆在线播放| 日韩精品青青久久久久久| 午夜精品久久久久久毛片777| 久久精品91蜜桃| 国产成人影院久久av| 亚洲va日本ⅴa欧美va伊人久久| 国产不卡一卡二| av天堂在线播放| 又黄又爽又免费观看的视频| av在线蜜桃| 九色成人免费人妻av| 欧美乱妇无乱码| 99久久99久久久精品蜜桃| 性欧美人与动物交配| a级一级毛片免费在线观看| 老熟妇仑乱视频hdxx| 国产精品av视频在线免费观看| 久久九九热精品免费| 窝窝影院91人妻| 国产精品影院久久| 欧美性猛交╳xxx乱大交人| 国产成人影院久久av| 99精品欧美一区二区三区四区| 岛国在线免费视频观看| 色综合欧美亚洲国产小说| 欧美+日韩+精品| 12—13女人毛片做爰片一| 欧美黄色片欧美黄色片| 十八禁人妻一区二区| 国产成人啪精品午夜网站| 99国产精品一区二区三区| 一进一出好大好爽视频| 最近最新免费中文字幕在线| 亚洲国产欧美网| 97人妻精品一区二区三区麻豆| 99riav亚洲国产免费| 国产又黄又爽又无遮挡在线| 国产三级中文精品| 亚洲狠狠婷婷综合久久图片| 色综合婷婷激情| 淫秽高清视频在线观看| 午夜免费男女啪啪视频观看 | 亚洲avbb在线观看| 精品国产超薄肉色丝袜足j| 亚洲av电影在线进入| 成人一区二区视频在线观看| 国产高清激情床上av| 真人一进一出gif抽搐免费| 欧美最新免费一区二区三区 | 亚洲精品久久国产高清桃花| 女同久久另类99精品国产91| 成年人黄色毛片网站| av福利片在线观看| 亚洲精品久久国产高清桃花| 小说图片视频综合网站| 一边摸一边抽搐一进一小说| 又紧又爽又黄一区二区| 中亚洲国语对白在线视频| 一级黄色大片毛片| 天天躁日日操中文字幕| 国产精品久久久久久久电影 | 亚洲精品亚洲一区二区| 美女 人体艺术 gogo| 好男人电影高清在线观看| 日韩有码中文字幕| 国产爱豆传媒在线观看| 狂野欧美白嫩少妇大欣赏| 久久欧美精品欧美久久欧美| 亚洲精品456在线播放app | 亚洲精品一区av在线观看| 很黄的视频免费| 2021天堂中文幕一二区在线观| 欧美丝袜亚洲另类 | 成人特级黄色片久久久久久久| 男插女下体视频免费在线播放| 国产亚洲精品久久久久久毛片| 免费看十八禁软件| 久久香蕉精品热| 男人的好看免费观看在线视频| 全区人妻精品视频| 十八禁人妻一区二区| 亚洲成人免费电影在线观看| 精品一区二区三区视频在线 | 99久国产av精品| 国产精品香港三级国产av潘金莲| 丰满人妻熟妇乱又伦精品不卡| 宅男免费午夜| 人妻丰满熟妇av一区二区三区| 久久久久久久久大av| 99久久精品国产亚洲精品| 在线国产一区二区在线| 性欧美人与动物交配| 内射极品少妇av片p| 18禁黄网站禁片免费观看直播| 禁无遮挡网站| 亚洲无线观看免费| 91麻豆精品激情在线观看国产| 亚洲成人久久爱视频| 成人永久免费在线观看视频| 亚洲精品成人久久久久久| 青草久久国产| 99热精品在线国产| 亚洲精品在线观看二区| a级毛片a级免费在线| 性欧美人与动物交配| 全区人妻精品视频| 亚洲av电影在线进入| 黄色丝袜av网址大全| 日本五十路高清| 天天躁日日操中文字幕| 久久精品国产综合久久久| x7x7x7水蜜桃| 一区二区三区高清视频在线| 美女 人体艺术 gogo| 亚洲av成人不卡在线观看播放网| 欧美中文日本在线观看视频| 美女大奶头视频| 精品午夜福利视频在线观看一区| 黄色女人牲交| 国产色爽女视频免费观看| 亚洲,欧美精品.| 成人欧美大片| 男女之事视频高清在线观看| 99视频精品全部免费 在线| 久久久色成人| 亚洲精品在线观看二区| 亚洲avbb在线观看| 他把我摸到了高潮在线观看| 亚洲在线自拍视频| 中文字幕熟女人妻在线| 亚洲最大成人中文| 男插女下体视频免费在线播放| 国产高清视频在线播放一区| 夜夜夜夜夜久久久久| 国产一区在线观看成人免费| 国产又黄又爽又无遮挡在线| 久久香蕉国产精品| 国产精品乱码一区二三区的特点| 成人午夜高清在线视频| 在线观看免费视频日本深夜| 成年人黄色毛片网站| 精品人妻偷拍中文字幕| 成人鲁丝片一二三区免费| 久久精品国产自在天天线| 久久久久精品国产欧美久久久| 亚洲av成人av| 国产熟女xx| 久久6这里有精品| 亚洲av二区三区四区| а√天堂www在线а√下载| 中文字幕高清在线视频| 亚洲av成人不卡在线观看播放网| 此物有八面人人有两片| 狠狠狠狠99中文字幕| av专区在线播放| 国产精品免费一区二区三区在线| 最新在线观看一区二区三区| 91久久精品电影网| 国产精品久久久久久人妻精品电影| 亚洲人成网站在线播放欧美日韩| 91在线精品国自产拍蜜月 | 99久久精品热视频| 亚洲国产中文字幕在线视频| eeuss影院久久| 中出人妻视频一区二区| 亚洲美女黄片视频| 免费在线观看亚洲国产| 亚洲中文字幕一区二区三区有码在线看| 亚洲av电影在线进入| 狠狠狠狠99中文字幕| 国产色婷婷99| 国产高清激情床上av| 欧美日韩亚洲国产一区二区在线观看| 亚洲美女黄片视频| 首页视频小说图片口味搜索| 99国产极品粉嫩在线观看| 亚洲人成伊人成综合网2020| 久久精品人妻少妇| 麻豆国产av国片精品| 久久久久久九九精品二区国产| 一本一本综合久久| 12—13女人毛片做爰片一| 操出白浆在线播放| 午夜福利高清视频| 亚洲人与动物交配视频| 久久久久亚洲av毛片大全| 国内精品久久久久久久电影| 97碰自拍视频| 亚洲欧美激情综合另类| 亚洲精品一区av在线观看| 国产亚洲欧美98| 久久国产乱子伦精品免费另类| 首页视频小说图片口味搜索| 久久国产乱子伦精品免费另类| 亚洲精品456在线播放app | 国产高清videossex| 日韩欧美三级三区| 久久久精品大字幕| 午夜福利免费观看在线| h日本视频在线播放| 国产精品 国内视频| 国产精品98久久久久久宅男小说| 精品欧美国产一区二区三| 丁香欧美五月| 成熟少妇高潮喷水视频| 日韩欧美一区二区三区在线观看| xxx96com| 男女之事视频高清在线观看| 免费在线观看影片大全网站| 特大巨黑吊av在线直播| 床上黄色一级片| 成年版毛片免费区| 国产成人av教育| 久久这里只有精品中国| 看片在线看免费视频| 母亲3免费完整高清在线观看| 好男人电影高清在线观看| 亚洲精品乱码久久久v下载方式 | 欧美不卡视频在线免费观看| 麻豆国产av国片精品| 日韩 欧美 亚洲 中文字幕| 亚洲欧美日韩高清在线视频| 成人午夜高清在线视频| 国内少妇人妻偷人精品xxx网站| 国产成人啪精品午夜网站| 亚洲av日韩精品久久久久久密| 国产精品1区2区在线观看.| 国产淫片久久久久久久久 | 男女下面进入的视频免费午夜| 啦啦啦观看免费观看视频高清| 一夜夜www| 亚洲中文字幕一区二区三区有码在线看| 少妇的丰满在线观看| 精品乱码久久久久久99久播| 国产午夜精品论理片| a在线观看视频网站| 国产av在哪里看| 国产色爽女视频免费观看| 国产黄色小视频在线观看| 亚洲成人久久性| 国产精品久久电影中文字幕| 国产av不卡久久| 亚洲国产精品合色在线| 女警被强在线播放| 草草在线视频免费看| 亚洲午夜理论影院| 免费观看的影片在线观看| eeuss影院久久| 成人一区二区视频在线观看| 欧美黑人巨大hd| 欧美+亚洲+日韩+国产| 国产精品永久免费网站| 精品久久久久久久毛片微露脸| av天堂中文字幕网| 午夜激情福利司机影院| 他把我摸到了高潮在线观看| 成人永久免费在线观看视频| 最近在线观看免费完整版| 久久婷婷人人爽人人干人人爱| 国产伦精品一区二区三区四那| 男女视频在线观看网站免费| 亚洲精品亚洲一区二区| 尤物成人国产欧美一区二区三区| 国产精品爽爽va在线观看网站| 夜夜看夜夜爽夜夜摸| 亚洲欧美精品综合久久99| 少妇的逼好多水| 婷婷亚洲欧美| 三级毛片av免费| 香蕉av资源在线| 伊人久久精品亚洲午夜| 国产成人aa在线观看| 一进一出好大好爽视频| 好看av亚洲va欧美ⅴa在| 亚洲成av人片免费观看| eeuss影院久久| 天堂av国产一区二区熟女人妻| 中亚洲国语对白在线视频| av天堂在线播放| 黑人欧美特级aaaaaa片| 99国产精品一区二区蜜桃av| 大型黄色视频在线免费观看| 国产又黄又爽又无遮挡在线| 男女之事视频高清在线观看|