李方杰,王海潔,郭好娟,連延浩,任永哲,王志強(qiáng),辛澤毓,林同保
土壤調(diào)理劑對(duì)砂姜黑土農(nóng)田土壤理化性狀和夏玉米生長(zhǎng)的影響
李方杰1,2,3,王海潔1,2,3,郭好娟1,2,3,連延浩1,2,3,任永哲1,2,3,王志強(qiáng)1,2,3,辛澤毓1,2,3*,林同保1,2,3*
(1.河南農(nóng)業(yè)大學(xué) 農(nóng)學(xué)院,鄭州 450002;2.河南糧食作物協(xié)同創(chuàng)新中心,鄭州 450002;3.省部共建小麥玉米作物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,鄭州 450002)
砂姜黑土農(nóng)田由于土壤黏板僵閉,耕層淺薄以及肥力低下等問題,往往導(dǎo)致玉米根系下扎困難,倒伏嚴(yán)重,產(chǎn)量下降。利用土壤調(diào)理劑改善土壤理化性狀,以提高砂姜黑土農(nóng)田生產(chǎn)力,促進(jìn)玉米生長(zhǎng),增加玉米產(chǎn)量。在砂姜黑土農(nóng)田上以冬小麥播前旋耕(RT)為對(duì)照,設(shè)置深耕(DP)、旋耕+松土促根劑(RT+RP)、旋耕+土壤修復(fù)劑(RT+RA)和旋耕+土壤改良劑(RT+SI)等處理,研究了土壤調(diào)理劑對(duì)土壤理化性狀、土壤肥力和酶活性以及夏玉米抗倒伏性能和玉米產(chǎn)量的影響,并與深耕(DP)的作用效果進(jìn)行了比較。RT+RP、RT+RA和RT+SI處理均可提高砂姜黑土農(nóng)田的土壤含水率,并降低土壤體積質(zhì)量;顯著提高土壤脲酶、蔗糖酶和中性磷酸酶活性;顯著提高土壤中有效磷、銨態(tài)氮和硝態(tài)氮量;顯著增加了夏玉米株高和莖粗,提高了夏玉米莖稈抗彎曲力和地上部第三莖節(jié)橫折強(qiáng)度,增強(qiáng)抗倒伏性能;RT+RP、RT+RA和RT+SI處理下產(chǎn)量分別較RT處理增加15.73%、9.02%和8.82%,經(jīng)濟(jì)效益分別增加12.05%、5.40%和3.37%。3種土壤調(diào)理劑的產(chǎn)量普遍優(yōu)于深耕和旋耕處理,其中松土促根劑處理下的夏玉米產(chǎn)量最高,經(jīng)濟(jì)效益最好。施用土壤調(diào)理劑可以顯著改善砂姜黑土農(nóng)田的土壤環(huán)境,增加土壤含水率,提高土壤養(yǎng)分和土壤酶活性,增強(qiáng)夏玉米抗倒伏能力并實(shí)現(xiàn)增產(chǎn)。
砂姜黑土;土壤養(yǎng)分;土壤酶活性;抗倒伏;產(chǎn)量
【研究意義】砂姜黑土是典型的中低產(chǎn)農(nóng)田土壤類型之一,主要分布于黃淮海平原南部,尤以河南南部,安徽北部等地區(qū)面積最大[1-3]。河南省內(nèi)砂姜黑土總面積達(dá)126.7萬hm2,約占總耕地面積的1/4[4-5]。砂姜黑土黏粒比例大,具有濕脹干縮的不良特性,有研究表明砂姜黑土耕層土壤體積質(zhì)量高,土壤水分有效庫(kù)容小[6-7]。豫南砂姜黑土區(qū)自1990年以來,由于主要使用小麥季旋耕、玉米季免耕秸稈不還田的機(jī)械耕作措施,導(dǎo)致耕作層土壤變淺,犁底層變厚,土壤肥力下降,貯肥存水能力降低,加劇了作物水肥供應(yīng)不足的矛盾,嚴(yán)重制約農(nóng)田生產(chǎn)力[8-10]。土壤調(diào)理劑含有高活性物質(zhì)成分,可以通過與水的媒介作用,增加土壤微生物活性,促進(jìn)土壤團(tuán)粒結(jié)構(gòu)形成,進(jìn)而降低土壤體積質(zhì)量,提高土壤通透性,增強(qiáng)土壤保水保肥能力[11-12],因此可用于改良砂姜黑土的土壤環(huán)境,提高農(nóng)田生產(chǎn)力。
【研究進(jìn)展】目前,在經(jīng)濟(jì)作物上關(guān)于土壤調(diào)理劑施用效果的研究很多,主要集中在花生、煙草、西瓜、蔬菜、馬鈴薯等作物[13-17]。孫學(xué)武等[18]研究發(fā)現(xiàn),施用土壤調(diào)理劑可以顯著改善土壤,促進(jìn)花生生長(zhǎng)發(fā)育,提高花生產(chǎn)量和品質(zhì);靳輝勇等[19]研究表明,施用土壤調(diào)理劑能改善土壤微生態(tài)環(huán)境,提高烤煙根系活力;廉曉娟等[20]研究發(fā)現(xiàn),在正常旋耕基礎(chǔ)上蔬菜增施土壤調(diào)理劑能夠降低土壤體積質(zhì)量,提高土壤孔隙度,增加作物產(chǎn)量;王光飛等[14]研究發(fā)現(xiàn),施用生物有機(jī)類復(fù)合土壤調(diào)理劑能降低土壤鹽分,改善土壤生物學(xué)性狀,有效緩解連作障礙,進(jìn)而提高葉菜產(chǎn)量。【切入點(diǎn)】豫南砂姜黑土農(nóng)田的耕層較淺,土壤僵閉,導(dǎo)致玉米根系下扎困難,植株生長(zhǎng)偏弱,并且豫南地區(qū)在夏玉米抽雄期到成熟期遇到強(qiáng)風(fēng)天氣概率較大,植株易發(fā)生倒伏,嚴(yán)重影響玉米產(chǎn)量。目前,當(dāng)?shù)丶由罡麑?、疏松土壤的方式依然停留在傳統(tǒng)的深耕或深松等耕作措施上,耗時(shí)耗力。關(guān)于土壤調(diào)理劑在豫南砂姜黑土區(qū)夏玉米生產(chǎn)上的應(yīng)用以及土壤調(diào)理劑對(duì)玉米抗倒伏性能影響的研究鮮有報(bào)道。【擬解決的關(guān)鍵問題】通過施用3種土壤調(diào)理劑來探究其對(duì)砂姜黑土理化性狀,土壤肥力,夏玉米植株生長(zhǎng)和產(chǎn)量效益的影響,明確土壤調(diào)理劑在砂姜黑土農(nóng)田夏玉米生產(chǎn)上的作用效果,并據(jù)此提出一種簡(jiǎn)單實(shí)用的砂姜黑土土壤改良措施。
試驗(yàn)地點(diǎn)位于河南省駐馬店市西平縣二郎鄉(xiāng)張堯村河南農(nóng)業(yè)大學(xué)試驗(yàn)基地(33°18′49″N,114°01′23″ E),地處黃淮海平原南部,屬于黃淮沖積平原的一部分,地勢(shì)平坦,平均海拔49 m。年平均氣溫14.8 ℃,年均日照時(shí)間2 157 h,無霜期221 d,降水量852 mm,屬亞濕潤(rùn)大陸性季風(fēng)氣候,耕作制度為冬小麥旋耕夏玉米免耕,種植制度為一年二熟。試驗(yàn)土壤為砂姜黑土,屬黏板土質(zhì),0~20 cm耕層土壤基礎(chǔ)養(yǎng)分:土壤有機(jī)質(zhì)量14.73 g/kg,全氮量1.12 g/kg,有效磷量31.95 mg/kg,速效鉀量122.47 mg/kg,pH值5.87。
供試玉米品種為鄭單958。Agri-star松土促根劑購(gòu)自河南省火車頭農(nóng)業(yè)技術(shù)有限公司;土壤修復(fù)劑購(gòu)自北京金賽陽(yáng)生物技術(shù)有限公司,為土壤活力修復(fù)劑;土壤改良劑購(gòu)自山東土木啟生物科技有限公司,為聚谷氨酸蚯蚓蛋白酶土壤改良劑。各土壤調(diào)理劑的主要成分見表1。
表1 3種土壤調(diào)理劑成分組成
試驗(yàn)采用隨機(jī)區(qū)組設(shè)計(jì),在冬小麥季旋耕的基礎(chǔ)上設(shè)旋耕(RT)、深耕(DP)、旋耕+松土促根劑(RT+RP)、旋耕+土壤修復(fù)劑(RT+RA)和旋耕+土壤改良劑(RT+SI)5個(gè)處理,以旋耕(RT)為對(duì)照。每個(gè)處理設(shè)3個(gè)重復(fù),小區(qū)面積為48 m2(6 m×8 m)。小區(qū)內(nèi)統(tǒng)一播種小麥,待麥?zhǔn)蘸蠼斩挌埐缛糠鬯榱籼?。然后點(diǎn)播播種玉米,株距25 cm,行距66.7 cm,種植密度為6萬株/hm2。于玉米苗期施肥,在距幼苗10 cm處地面開溝,深約10 cm,溝內(nèi)撒施復(fù)合肥料(N、P、K質(zhì)量比為26∶6∶6)750 kg/hm2。土壤調(diào)理劑與復(fù)合肥混施,根據(jù)生產(chǎn)廠家推薦,松土促根劑用量為15kg/hm2;土壤修復(fù)劑用量為30kg/hm2;土壤改良劑用量為15kg/hm2。其他田間管理與當(dāng)?shù)厣a(chǎn)習(xí)慣保持一致。
1.4.1 土壤含水率和土壤體積質(zhì)量
分別于玉米拔節(jié)期和成熟期用土鉆取土,每個(gè)小區(qū)2行玉米中間隨機(jī)選3個(gè)樣點(diǎn)分別取0~20 cm和20~40 cm的土樣,每個(gè)土樣取25 g左右稱質(zhì)量,置于鋁盒中在105 ℃烘干至恒質(zhì)量,計(jì)算土壤含水率。
利用環(huán)刀法測(cè)定0~20、20~40 cm土壤的體積質(zhì)量。
1.4.2 土壤酶活性
于玉米開花期用土鉆取土,每個(gè)小區(qū)2行玉米中間隨機(jī)選3個(gè)樣點(diǎn)分別取0~20 cm和20~40 cm的土樣,每個(gè)土樣混合均勻后,風(fēng)干,過1 mm篩備用。土壤蔗糖酶采用3,5-二硝基水楊酸比色法測(cè)定;土壤脲酶采用靛藍(lán)比色法測(cè)定;土壤中性磷酸酶采用磷酸苯二鈉比色法測(cè)定,詳細(xì)測(cè)定方法見參考文獻(xiàn)[21]。
1.4.3 土壤養(yǎng)分量
于玉米開花期用土鉆取土,每個(gè)小區(qū)2行玉米中間隨機(jī)選3個(gè)樣點(diǎn)分別取0~20 cm和20~40 cm的土樣,每份新鮮土樣混合均勻后放入-20 ℃冰箱保存?zhèn)溆谩M寥冷@態(tài)氮測(cè)定采用靛藍(lán)比色法;土壤硝態(tài)氮測(cè)定采用雙波長(zhǎng)比色法;土壤有效磷測(cè)定采用鉬銻抗比色法,詳細(xì)測(cè)定方法見參考文獻(xiàn)[22]。
1.4.4 玉米根系傷流量、植株性狀和抗倒伏性狀
在夏玉米大口期、開花期和乳熟期,于每個(gè)小區(qū)隨機(jī)選取3株,在離地10 cm處切斷,于切口處用脫脂棉收集18:00至第2天06:00共12 h的傷流液,稱質(zhì)量,測(cè)定計(jì)算根系傷流量。
于開花期在每小區(qū)內(nèi)隨機(jī)選取3株代表性植株,田間測(cè)定莖稈抗彎曲力。以穗下節(jié)間中部為支點(diǎn)用YYD-1型莖稈強(qiáng)度測(cè)定儀緩緩用力推,直至植株與地面成45°角,記錄數(shù)值。然后沿基部將玉米砍下測(cè)定株高、穗位高、重心高、莖粗,截取基部第3伸長(zhǎng)節(jié)間,使用YYD-1型莖稈強(qiáng)度測(cè)定儀測(cè)定橫折強(qiáng)度。依下式計(jì)算莖稈抗倒伏指數(shù):抗倒伏指數(shù)=莖稈橫折強(qiáng)度/植株重心高度。
1.4.5 產(chǎn)量及產(chǎn)量構(gòu)成要素
玉米收獲后,每個(gè)小區(qū)隨機(jī)取10穗進(jìn)行考種,測(cè)定玉米穗長(zhǎng)、穗粗、穗行數(shù)、行粒數(shù)、百粒質(zhì)量等指標(biāo),并計(jì)算單位面積產(chǎn)量。
利用Microsoft Excel 2010進(jìn)行數(shù)據(jù)計(jì)算分析和繪圖;SPSS20.0軟件進(jìn)行方差分析(ANOVA)和處理間顯著性檢驗(yàn)(Duncan’s)和配對(duì)樣本T檢分析。
施用土壤調(diào)理劑的處理,其0~20 cm和20~40 cm耕層的土壤含水率呈現(xiàn)出不同程度的增加趨勢(shì),而土壤體積質(zhì)量呈下降趨勢(shì)(表2)。0~20 cm和20~40 cm的土壤含水率在拔節(jié)期,DP、RT+RP、RT+RA和RT+SI處理分別較RT處理增加了0.81%、3.02%、3.94%、2.16%和10.76%、2.50%、2.40%、3.46%;體積質(zhì)量分別較RT處理降低了0.11、0.01、0.02、0.01和0.04、0.03、0、0 g/cm3;在成熟期,DP、RT+RP、RT+RA和RT+SI處理的0~20 cm和20~40 cm耕層土壤含水率分別較RT處理增加了7.55%、9.56%、6.64%、5.92%和6.18%、9.10%、5.17%、4.04%;體積質(zhì)量分別較RT處理降低了0.06、0.09、0.03、0.02和0.05、0.06、0.05、0.04 g/cm3。其中,RT+RP、RT+RA和RT+SI處理在成熟期,其0~20 cm耕層土壤的含水率均顯著高于RT處理,體積質(zhì)量顯著低于RT處理,且3種土壤調(diào)理劑的作用效果均好于DP和RT處理,其中以RT+RP處理表現(xiàn)最優(yōu)。
表2 不同處理下土壤物理性狀
注 同一列數(shù)字后不同小寫字母表示不同處理間差異達(dá) 0.05 顯著水平,下同。
DP、RT+RP、RT+RA和RT+SI處理的0~20 cm和20~40 cm耕層中,土壤脲酶活性分別較RT處理增加了16.10%、33.27%、17.79%、22.96%和19.79%、29.24%、23.61%、24.62%;土壤蔗糖酶活性分別較RT處理增加了10.79%、27.50%、16.05%、18.00%和17.68%、40.71%、25.36%、32.95%;土壤中性磷酸酶活性分別較RT處理增加了11.11%、25.40%、15.87%、19.05%和9.52%、19.05%、14.29%、14.29%(表3)。說明土壤調(diào)理劑和深耕均能提高土壤酶活性,改善土壤生化性質(zhì),其中松土促根劑的作用效果最顯著。
表3 不同處理土壤酶活性
DP、RT+RP、RT+RA和RT+SI處理的0~20 cm和20~40 cm耕層中,土壤銨態(tài)氮量分別較RT處理增加了31.74%、55.66%、34.45%、32.85%和13.16%、45.10%、15.57%、14.13%;土壤硝態(tài)氮量分別較RT處理增加了7.52%、5.75%、3.30%、3.61%和11.10%、16.64%、12.80%、13.66%;土壤有效磷量分別較RT處理增加了9.21%、14.86%、9.41%、10.52%和22.27%、31.15%、25.04%、26.78%(表4)。說明土壤調(diào)理劑能夠起到培肥地力,能夠提高土壤養(yǎng)分,且松土促根劑最高。
表4 不同處理土壤養(yǎng)分
DP、RT+RP、RT+RA和RT+SI處理的玉米單株根系傷流量在大口期、開花期和乳熟期均高于RT處理(圖1)。其中,在開花期RT+RP處理的單株根系傷流量比RT處理顯著提高了13.25%;在乳熟期DP、RT+RP、RT+RA處理和RT+SI處理的單株根系傷流量分別較RT處理顯著提高了31.25%、26.81%、25.46%和28.67%。
圖1 不同處理夏玉米單株根系傷流量
表5 不同處理夏玉米植株性狀和抗倒伏性狀
由表5可知,DP、RT+RP、RT+RA和RT+SI處理的夏玉米株高相對(duì)RT處理分別增加了3.18%、4.39%、4.17%和3.11%;莖粗分別增加13.76%、6.50%、6.74%和10.33%;各處理植株的穗位高和重心高無明顯差異;DP、RT+RP、RT+RA處理和RT+SI處理的植株抗彎曲力相對(duì)RT處理分別增加了13.12%、20.79%、13.90%和11.27%;橫折強(qiáng)度分別增加了18.82%、34.04%、20.43%和21.56%;抗倒伏指數(shù)分別增加了25.00%、37.29%、19.07%和31.36%。說明3種土壤調(diào)理劑均可顯著增加玉米的株高和莖粗,同時(shí)提升玉米的抗倒伏能力。其中,松土促根劑的作用效果最好。
DP、RT+RP、RT+RA處理和RT+SI處理的夏玉米穗長(zhǎng)、穗粗、穗粒數(shù)、百粒質(zhì)量和產(chǎn)量均高于RT處理(表6)。其中DP、RT+RP處理和RT+RA處理的玉米穗長(zhǎng)分別較RT處理增加了5.77%、12.35%和6.15%;DP、RT+RP、RT+RA處理和RT+SI處理的玉米穗粒數(shù)分別較RT處理增加了6.98%、12.91%、7.89%和7.12%;DP、RT+RP、RT+RA處理和RT+SI處理的玉米產(chǎn)量分別較RT處理增加了7.77%、15.73%、9.02%和8.82%,均達(dá)到顯著水平,說明施用3種土壤調(diào)理劑均可顯著提高玉米產(chǎn)量。其中,松土促根劑的作用效果最好。
表6 不同處理夏玉米產(chǎn)量及產(chǎn)量構(gòu)成要素
DP、RT+RP、RT+RA處理和RT+SI處理的夏玉米產(chǎn)量分別較RT處理增加了592.00、1 198.03、687.00和671.90 kg/hm2,投入成本分別較RT處理增加300.00、870.00、600.00 kg/hm2和870.00元/hm2,比較經(jīng)濟(jì)效益增幅分別較RT處理增加5.81%、12.05%、5.40%和3.37%(表7)。其中RT+RP處理的經(jīng)濟(jì)效益高于RT處理和DP處理,RT+RA處理和RT+SI處理的經(jīng)濟(jì)效益高于RT處理,但低于DP處理。在3種土壤調(diào)理劑中,松土促根劑的效益增幅最大。
表7 不同處理夏玉米經(jīng)濟(jì)效益
深耕和土壤調(diào)理劑均可以有效提高土壤含水率,改良土壤結(jié)構(gòu),改善砂姜黑土本身和連年旋耕造成的土壤黏閉,耕層淺薄等問題[23-24],本研究也證明深耕和3種土壤調(diào)理劑均能提高土壤含水率,降低土壤體積質(zhì)量,其中松土促根劑的作用效果最好。謝迎新等[25]和張淑利等[26]研究也證明,相對(duì)于20 cm深耕和旋耕,土壤施松土促根劑后降低了土壤體積質(zhì)量,提升了土壤含水率。
王亞玲等[27]研究發(fā)現(xiàn),土壤調(diào)理劑可以顯著增加土壤銨態(tài)氮、硝態(tài)氮和有效磷量。萬青等[28]對(duì)茶園土壤的研究表明,土壤調(diào)理劑可以顯著提升土壤的氮磷等土壤養(yǎng)分量。靳輝勇等[19]研究顯示,土壤調(diào)理劑可以顯著提高土壤有效磷量。本研究表明,施用3種土壤調(diào)理劑均可以顯著提高土壤有效磷量,同時(shí)也可以顯著增加土壤銨態(tài)氮和硝態(tài)氮量。
?ztürk等[29]研究表明,土壤調(diào)理劑可以顯著提高土壤酶活性。Sarangi等[30]在水稻土壤上研究發(fā)現(xiàn),粉煤灰土壤調(diào)理劑能夠顯著提高水稻土壤蔗糖酶活性。鄧子恒等[31]和趙青云等[32]研究發(fā)現(xiàn),施用土壤調(diào)理劑土壤脲酶活性和中性磷酸酶活性顯著升高。本研究表明,施用3種土壤調(diào)理劑均可以顯著增加土壤脲酶、蔗糖酶和中性磷酸酶的活性。
綜上,施用土壤調(diào)理劑后,增加了土壤含水率,提高了土壤通透性,改善了土壤環(huán)境,進(jìn)而提高了土壤的酶活性,從而增加了土壤養(yǎng)分量。土壤養(yǎng)分的增加,又促進(jìn)了土壤酶活性的進(jìn)一步增強(qiáng),因此有助于改善土壤的環(huán)境。
植物傷流量代表了根系生理活動(dòng)的強(qiáng)弱,根系傷流量可作為研判植物根系活力的指標(biāo),能比較準(zhǔn)確地反映根系活性的變化[33]。本研究表明,DP、RT+RP、RT+RA處理和RT+SI處理的玉米根系傷流量顯著高于RT處理,說明DP、RT+RP、RT+RA處理和RT+SI處理的根系活力更強(qiáng)。特別是在夏玉米生長(zhǎng)的大喇叭口期以后,土壤調(diào)理劑處理的玉米植株仍然可以保持較高的根系活性,保證了根系吸收水分和養(yǎng)分的能力,滿足生育中后期玉米植株對(duì)肥水需求的供應(yīng)。
玉米的抗倒伏能力主要和株高、穗位高、重心高、抗彎曲力(45°)和莖節(jié)橫折強(qiáng)度等植株性狀相關(guān)[34]。有研究發(fā)現(xiàn)[35],土壤環(huán)境改善可以增加玉米株高和莖粗,降低玉米穗位高和重心高,使玉米抗彎曲力(45°)和莖節(jié)橫折強(qiáng)度增加,進(jìn)而提高玉米的抗倒伏指數(shù),增強(qiáng)玉米的抗倒伏能力。本研究表明,土壤調(diào)理劑可以增加玉米的株高和莖粗。這可能是因?yàn)槭┯猛寥勒{(diào)理劑后,土壤的理化性狀得到改善,土壤水分和養(yǎng)分的升高有利于玉米根系下扎,根系發(fā)育較好,進(jìn)而使株高和莖粗增加。玉米莖粗的增加使玉米莖稈的抗彎曲力(45°)和莖節(jié)橫折強(qiáng)度也隨之增強(qiáng),因此提高了玉米植株的抗倒伏能力。
合理的栽培耕作措施不但能改善土壤水肥氣熱狀況,同時(shí)有利于作物生長(zhǎng)發(fā)育、養(yǎng)分吸收積累和籽粒產(chǎn)量增加[36-37]。本研究表明,施用土壤調(diào)理劑后,玉米的穗長(zhǎng)和穗粒數(shù)顯著增加,產(chǎn)量顯著提高。這可能是由于施用土壤調(diào)理劑后,土壤肥力增加,玉米根系活力增強(qiáng),植株生長(zhǎng)更健壯,后期穗部發(fā)育更好,籽粒灌漿能力增強(qiáng),因此可以獲得更高的產(chǎn)量和經(jīng)濟(jì)效益。
1)施用土壤調(diào)理劑能夠改善砂姜黑土土壤理化性狀,增加土壤養(yǎng)分,提高土壤酶活性,促進(jìn)玉米根系活力,增加莖粗,提高莖稈的抗彎曲力(45°)和莖節(jié)橫折強(qiáng)度,增強(qiáng)玉米抗倒伏能力。
2)施用土壤調(diào)理劑,有助于提高豫南砂姜黑土農(nóng)田的夏玉米產(chǎn)量,增加經(jīng)濟(jì)效益。在3種土壤調(diào)理劑中,施用松土促根劑的效果最好。
[1] 谷豐. 典型砂姜黑土區(qū)農(nóng)田土壤水分養(yǎng)分動(dòng)態(tài)變化特征及模擬[D]. 北京: 中國(guó)農(nóng)業(yè)大學(xué), 2018.
GU Feng. Characteristics and modeling of soil water and nutrition dynamics in a typical calcic vertisol[D]. Beijing:China Agricultural University, 2018.
[2] 張景略, 王存興. 河南省黃淮海平原低產(chǎn)土壤的現(xiàn)狀及其改良途徑[J]. 河南科技, 1989(Z1): 14-16.
ZHANG Jinglue, WANG Cunxing. Status quo of low-yielding soil in The Huang-Huai-Hai Plain of Henan Province and its improvement approaches [J]. Henan Science & Technology, 1989(Z1): 14-16.
[3] 閻占元, 吳聆益, 陳常友. 黃淮海平原砂姜黑土分布特點(diǎn)與綜合開發(fā)治理途徑研究[J]. 河南科學(xué), 1989, 7(Z1): 171-179.
YAN Zhanyuan, WU Lingyi, CHEN Changyou. The study on distributive peculiarity and synthetic control and exploitation of the black soils with calcium carbonate concretions[J]. Henan Science, 1989, 7(Z1): 171-179.
[4] 程思賢. 深松深度對(duì)砂姜黑土土壤特性、作物生長(zhǎng)發(fā)育和水分利用效率的影響[D]. 鄭州: 河南農(nóng)業(yè)大學(xué), 2018.
CHENG Sixian. Effects of subsoiling depth on soil properties, crop growth and water use efficiency in lime concretion black soil[D]. Zhengzhou: Henan Agricultural University, 2018.
[5] 楊青華, 高爾明, 馬新明. 干旱與漬澇對(duì)砂姜黑土玉米根系干重變化及其分布的影響[J]. 生態(tài)學(xué)雜志, 2000, 19(3): 28-31.
YANG Qinghua, GAO Erming, MA Xinming. Effects of drought and waterlogging on root dry weight and its distribution of maize in Shajiang black soil[J]. Chinese Journal of Ecology, 2000, 19(3): 28-31.
[6] ZHANG M, LI W Q, YANG Y C, et al. Effects of readily dispersible colloid on adsorption and transport of Zn, Cu, and Pb in soils[J]. Environment International, 2005, 31(6): 840-844.
[7] 楊遠(yuǎn)照. 長(zhǎng)期秸稈還田模式下典型砂姜黑土有機(jī)礦質(zhì)復(fù)合體的形成機(jī)制[D]. 合肥: 安徽農(nóng)業(yè)大學(xué), 2019.
YANG Yuanzhao. Formation mechanism of organic-mineral complex in typical Shajiang black soil under long-term straw returning model[D]. Hefei: Anhui Agricultural University, 2019
[8] 孟慶陽(yáng), 王永華, 靳海洋, 等. 耕作方式與秸稈還田對(duì)砂姜黑土土壤酶活性及冬小麥產(chǎn)量的影響[J]. 麥類作物學(xué)報(bào), 2016, 36(3): 341-346.
MENG Qingyang, WANG Yonghua, JIN Haiyang, et al. Effect of tillage and straw returning on soil enzyme activity and yield of winter wheat in lime concretion black soil[J]. Journal of Triticeae Crops, 2016, 36(3): 341-346.
[9] 叢聰. 耕作方式及有機(jī)物還田對(duì)黑土坡耕地土壤物理性質(zhì)和玉米生長(zhǎng)的影響[D]. 北京: 中國(guó)農(nóng)業(yè)科學(xué)院, 2019.
CONG Cong. Effects of tillage practices and organic material application on soil physical properties and maize growth in sloping farmland of mollisol [D]. Beijing: Chinese Academy of Agricultural Sciences, 2019.
[10] 張玉娥, 楊習(xí)文, 王勇, 等. 耕作模式與氮肥運(yùn)籌對(duì)土壤主要理化性狀及作物產(chǎn)量的影響[J]. 干旱地區(qū)農(nóng)業(yè)研究, 2018, 36(1): 186-193.
ZHANG Yu’e, YANG Xiwen, WANG Yong, et al. Effects of tillage and nitrogen fertilization regimes on main physicochemical properties of soil and crop yield[J]. Agricultural Research in the Arid Areas, 2018, 36(1): 186-193.
[11] 中華人民共和國(guó)國(guó)家質(zhì)量監(jiān)督檢驗(yàn)檢疫總局, 中國(guó)國(guó)家標(biāo)準(zhǔn)化管理委員會(huì). 肥料和土壤調(diào)理劑分類: GB/T 32741—2016[S]. 北京: 中國(guó)標(biāo)準(zhǔn)出版社, 2017.
General Administration of quality Supervision, Inspection and Quarantine of the people’s Republic of China, China National Standardization Administration. Classification of fertilizers and soil conditioners: GB/T32741—2016 [S]. Beijing: China Standards Publishing House, 2017.
[12] HOU J Q, LI M X, MAO X H, et al. Response of microbial community of organic-matter-impoverished arable soil to long-term application of soil conditioner derived from dynamic rapid fermentation of food waste[J]. PLoS One, 2017, 12(4): e0175715.
[13] 張龍輝, 粟戈璇, 鄧小華, 等. 改良劑施用對(duì)酸性植煙土壤養(yǎng)分的影響效應(yīng)[J]. 中國(guó)煙草科學(xué), 2020, 41(5): 20-27.
ZHANG Longhui, SU Gexuan, DENG Xiaohua, et al. Effects of modifier application on nutrient contents of acid tobacco soil[J]. Chinese Tobacco Science, 2020, 41(5): 20-27.
[14] 王光飛, 高曉東, 馬艷, 等. 生物有機(jī)類復(fù)合調(diào)理劑在設(shè)施葉菜障礙土壤上的應(yīng)用效果[J]. 中國(guó)土壤與肥料, 2020(2): 56-65.
WANG Guangfei, GAO Xiaodong, MA Yan, et al. Amendment effect of bio-organic soil conditioner on leafy vegetable greenhouse soil with continuous cropping obstacle[J]. Soil and Fertilizer Sciences in China, 2020(2): 56-65.
[15] 嚴(yán)建輝. 牡蠣殼土壤調(diào)理劑對(duì)黃泥田花生產(chǎn)量及土壤酸化改良的影響[J]. 農(nóng)學(xué)學(xué)報(bào), 2019, 9(11): 17-20.
YAN Jianhui. Oyster shell soil conditioner: Effects on peanut yield and acidified soil amendment in yellow clayey field[J]. Journal of Agriculture, 2019, 9(11): 17-20.
[16] 周先林, 朱海勇, 覃琴, 等. 土壤調(diào)理劑與有機(jī)肥配施對(duì)西瓜生長(zhǎng)、產(chǎn)量及品質(zhì)的影響[J]. 中國(guó)瓜菜, 2019, 32(8): 86-89.
ZHOU Xianlin, ZHU Haiyong, QIN Qin, et al. Effects of combined application of soil conditioner and organic fertilizer on growth, yield and quality of watermelon[J]. China Cucurbits and Vegetables, 2019, 32(8): 86-89.
[17] 鄭祥洲, 郭寶玲, 王英男, 等. 施用新型土壤調(diào)理劑改善煙草產(chǎn)量品質(zhì)及土壤理化性質(zhì)[J]. 熱帶作物學(xué)報(bào), 2019, 40(7): 1 278-1 283.
ZHENG Xiangzhou, GUO Baoling, WANG Yingnan, et al. New type soil conditioner improves soil properties and tobacco yield and quality[J]. Chinese Journal of Tropical Crops, 2019, 40(7): 1 278-1 283.
[18] 孫學(xué)武, 于天一, 沈浦, 等. 土壤調(diào)理劑對(duì)花生產(chǎn)量品質(zhì)和土壤理化性狀的影響[J]. 花生學(xué)報(bào), 2018, 47(1): 43-46,51.
SUN Xuewu, YU Tianyi, SHEN Pu, et al. Effects of soil conditioner on yield and quality of peanut and physical and chemical properties of soil[J]. Journal of Peanut Science, 2018, 47(1): 43-46, 51.
[19] 靳輝勇, 黎娟, 朱益, 等. 土壤調(diào)理劑對(duì)烤煙根系活力及根際土壤微生物碳代謝特征的影響[J]. 核農(nóng)學(xué)報(bào), 2019, 33(1): 158-165.
JIN Huiyong, LI Juan, ZHU Yi, et al. Effect of soil conditioner on root vigor and carbon metabolism characteristics of rhizosphere soil microorganisms in flue-cured tobacco[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(1): 158-165.
[20] 廉曉娟, 路遙, 王艷, 等. 土壤調(diào)理劑對(duì)日光溫室土壤理化性質(zhì)和蔬菜產(chǎn)量、品質(zhì)的影響[J]. 中國(guó)土壤與肥料, 2015(5): 56-60.
LIAN Xiaojuan, LU Yao, WANG Yan, et al. Effects of soil conditioners on soil physical-chemical properties and yield and quality of vegetable in solar greenhouse[J]. Soil and Fertilizer Sciences in China, 2015(5): 56-60.
[21] 關(guān)松蔭. 土壤酶及其研究法[M]. 北京: 農(nóng)業(yè)出版社, 1986.
Guan Songyin. Soil enzyme and its research method [M]. Beijing: Agricultural Press, 1986.
[22] 魯如坤. 土壤農(nóng)業(yè)化學(xué)分析方法[M]. 北京: 中國(guó)農(nóng)業(yè)科技出版社, 2000.
LU Rukun. Methods for soil agrochemical analysis [M]. Beijing: China Agriculture Scientech Press, 2000.
[23] 張敬智. 一種土壤調(diào)理劑及其制備方法和應(yīng)用: CN109652093B[P]. 2018-06-22.
ZHANG Jingzhi. Soil conditioner and preparation method and application thereof: CN109652093B [P]. 2018-06-22
[24] GARAU G, CASTALDI P, DEIANA S, et al. Assessment of the use potential of edible sea urchins (Paracentrotus lividus) processing waste within the agricultural system: Influence on soil chemical and biological properties and bean (Phaseolus vulgaris) and wheat (Triticum vulgare) growth in an amended acidic soil[J]. Journal of Environmental Management, 2012, 109: 12-18.
[25] 謝迎新, 白雪瑩, 張傳忠, 等. 松土促根劑對(duì)土壤質(zhì)地、冬小麥產(chǎn)量和淀粉糊化特性的影響[J]. 華北農(nóng)學(xué)報(bào), 2015, 30(3): 230-233.
XIE Yingxin, BAI Xueying, ZHANG Chuanzhong, et al. Effects of soil root promoter on soil texture, gain yield and starch pasting traits of winter wheat: A result from a field experiment[J]. Acta Agriculturae Boreali-Sinica, 2015, 30(3): 230-233.
[26] 張淑利, 謝迎新, 張傳忠, 等. 松土促根劑對(duì)麥田土壤容重及小麥籽粒產(chǎn)量的影響[J]. 河南農(nóng)業(yè)科學(xué), 2015, 44(7): 32-35.
ZHANG Shuli, XIE Yingxin, ZHANG Chuanzhong, et al. Effects of root growth promoting agent on soil bulk density and grain yield of wheat in farmland of rotary tillage[J]. Journal of Henan Agricultural Sciences, 2015, 44(7): 32-35.
[27] 王亞玲, 王赫, 彭正萍, 等. 設(shè)施黃瓜產(chǎn)量、品質(zhì)及養(yǎng)分利用對(duì)不同土壤調(diào)理措施的響應(yīng)[J]. 水土保持學(xué)報(bào), 2020, 34(6): 275-280.
WANG Yaling, WANG He, PENG Zhengping, et al. Responses of yield, quality and nutrient utilization in facility cucumber to different soil conditioning measures[J]. Journal of Soil and Water Conservation, 2020, 34(6): 275-280.
[28] 萬青, 胡振民, 李歡, 等. 調(diào)理劑對(duì)茶園土壤和茶葉產(chǎn)量及品質(zhì)的影響[J]. 土壤, 2019, 51(6): 1 086-1 092.
WAN Qing, HU Zhenmin, LI Huan, et al. Effects of soil conditioners on soil properties and yield and quality components of tea in tea garden[J]. Soils, 2019, 51(6): 1 086-1 092.
[29] ?ZTüRK H S, TüRKMEN C, ERDOGAN E, et al. Effects of a soil conditioner on some physical and biological features of soils: Results from a greenhouse study[J]. Bioresource Technology, 2005, 96(17): 1 950-1 954.
[30] SARANGI P K, MAHAKUR D, MISHRA P C. Soil biochemical activity and growth response of rice Oryza sativa in flyash amended soil[J]. Bioresource Technology, 2001, 76(3): 199-205.
[31] 鄧子恒, 戴林建, 張惠林. 施用改良劑對(duì)植煙土壤養(yǎng)分含量和酶活性的影響[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2020, 46(5): 580-584.
DENG Ziheng, DAI Linjian, ZHANG Huilin. Effects of amendments on nutrient content and enzyme activity of tobacco-planting soil[J]. Journal of Hunan Agricultural University (Natural Sciences), 2020, 46(5): 580-584.
[32] 趙青云, 邢詒彰, 孫燕, 等. 施用土壤調(diào)節(jié)劑對(duì)咖啡苗生長(zhǎng)及連作酸化土壤酶活性的影響[J]. 熱帶作物學(xué)報(bào), 2017, 38(10): 1 868-1 873.
ZHAO Qingyun, XING Yizhang, SUN Yan, et al. Effects of different soil conditioner application on coffee seedlings growth and soil enzyme activities in acidic continuous cropping soil[J]. Chinese Journal of Tropical Crops, 2017, 38(10): 1 868-1 873.
[33] KAMRAN M, WENNAN S, AHMAD I, et al. Application of paclobutrazol affect maize grain yield by regulating root morphological and physiological characteristics under a semi-arid region[J]. Scientific Reports, 2018, 8(1): 4818.
[34] 劉志銘, 蓋旭東, 李寶玉, 等. 化控對(duì)高密度春玉米抗倒伏能力及產(chǎn)量的影響[J]. 東北農(nóng)業(yè)科學(xué), 2019, 44(6): 1-5.
LIU Zhiming, GAI Xudong, LI Baoyu, et al. Effect of chemical regulators on lodging resistance and yield of spring maize under high density conditions[J]. Journal of Northeast Agricultural Sciences, 2019, 44(6): 1-5.
[35] 賈桂平, 邊大紅, 蔡麗君, 等. 土壤耕作方式對(duì)夏玉米抗莖倒伏能力的影響[J]. 華北農(nóng)學(xué)報(bào), 2013, 28(4): 163-168.
JIA Guiping, BIAN Dahong, CAI Lijun, et al. Soil tillage methods on stalk lodging resistance of summer maize[J]. Acta Agriculturae Boreali-Sinica, 2013, 28(4): 163-168.
[36] 殷文, 趙財(cái), 于愛忠, 等. 秸稈還田后少耕對(duì)小麥/玉米間作系統(tǒng)中種間競(jìng)爭(zhēng)和互補(bǔ)的影響[J]. 作物學(xué)報(bào), 2015, 41(4): 633-641.
YIN Wen, ZHAO Cai, YU Aizhong, et al. Effect of straw returning and reduced tillage on interspecific competition and complementation in wheat/maize intercropping system[J]. Acta Agronomica Sinica, 2015, 41(4): 633-641.
[37] 白偉, 張立禎, 逄煥成, 等. 秸稈還田配施氮肥對(duì)東北春玉米光合性能和產(chǎn)量的影響[J]. 作物學(xué)報(bào), 2017, 43(12): 1 845-1 855.
BAI Wei, ZHANG Lizhen, PANG Huancheng, et al. Effects of straw returning combined with nitrogen fertilizer on photosynthetic performance and yield of spring maize in northeast China[J]. Acta Agronomica Sinica, 2017, 43(12): 1 845-1 855.
Efficacy of Soil Conditioners in Improving Properties of Lime Concretion Black Soil and Their Consequence for Summer Maize Yield
LI Fangjie1,2,3, WANG Haijie1,2,3, GUO Haojuan1,2,3, LIAN Yanhao1,2,3,REN Yongzhe1,2,3, WANG Zhiqiang1,2,3, XIN Zeyu1,2,3*, LIN Tongbao1,2,3*
(1. College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; 2. Collaborative Innovation Center for Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China; 3. State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China)
【】Lime concretion black soil is widely distributed in central China including Henan and Anhui provinces. Apart from its low fertility, it is also hard and less porous for roots to penetrate. These combine to hinder crop growth and comprise crop yield. Traditional remediation methods including deep tillage to loosen the soil are effective but are tedious and laborious. As an alternative, soil conditioners have been increasingly used over the past years to improve the properties of the black soil to sustain its productivity.【】The objective of this paper is to compare the effectiveness of different soil conditioners in improving soil properties and the consequence for crop growth and yield.【】We took summer maize as an example and the soil was plowed using conventional tillage after maize harvest but before winter wheat was drilled. There were three treatments: rotary tillage + application of root promoter (RT+RP), rotary tillage + application of soil remediating agent (RT+RA), rotary tillage + soil improvement agent (RT+SI). Traditional deep tillage was taken as the control (CK). In each treatment, we measured the changes in soil properties and fertility, enzyme activity, as we as the resistance of the maize against lodging and the eventual yield.【】Compared to CK, all treatments increased soil water content and reduced soil bulk density although the change varied with treatments; they also boosted the activity of soil enzymes including urease, sucrase and neutral phosphatase, and improved the contents of available P, ammonium N and nitrate N in the soils, as well as plant height and stem diameter. All improvements and increases were at significant level (<0.05). These together improved the cross breaking strength of the third shoot node, thereby enhancing the resistance of the maize against bending loading. Compared with CK, RT+RP, RT+RA and RT+SI increased crop yield by 15.73%, 9.02% and 8.82%, respectively, and the economic benefit by 12.05%, 5.40% and 3.37%, respectively.【】Amending the lime concretion black soil with soil conditioners is more effective than deep ploughs in improving soil properties and crop yield. Of the three treatments we studied, rotary tillage combined with root-promoting agent was most effective in improving soil water contents, enzymatic activity and summer maize yield.
lime concretion black soil; soil nutrients; soil enzyme activity; lodging resistance; yield
S513
A
10.13522/j.cnki.ggps.2020687
1672 – 3317(2021)08 - 0035 - 08
李方杰, 王海潔, 郭好娟, 等. 土壤調(diào)理劑對(duì)砂姜黑土農(nóng)田土壤理化性狀和夏玉米生長(zhǎng)的影響[J]. 灌溉排水學(xué)報(bào), 2021, 40(8): 35-41.
LI Fangjie, WANG Haijie, GUO Haojuan, et al.Efficacy of Soil Conditioners in Improving Properties of Lime Concretion Black Soil and Their Consequence for Summer Maize Yield [J]. Journal of Irrigation and Drainage, 2021, 40(8): 35-41.
2020-12-09
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFD0300706)
李方杰(1991-),男,河南鹿邑人。碩士研究生,主要從事作物生理生化研究。E-mail: 18838917047@163.com。
辛澤毓(1970-),男,河南博愛人。教授,碩士生導(dǎo)師。E-mail: mrxxtz@163.com
林同保(1962-),男,河南武陟人。教授,博士生導(dǎo)師。E-mail: linlab@163.com
責(zé)任編輯:趙宇龍