李剛,李舒維,邱偉
(廣西大學(xué)電氣工程學(xué)院,廣西南寧 530004)
在全球能源危機日益嚴峻的今天,新能源的發(fā)展越來越受到人們的重視,對于風(fēng)力發(fā)電、光伏發(fā)電等的應(yīng)用也愈加廣泛。由于新能源發(fā)電等級的多樣性,電能變換器有時需要通過級聯(lián)方能滿足實際需求[1-2]。當(dāng)前級電能變換器與后級帶有純電阻負載并以閉環(huán)方式控制的變換器級聯(lián)時,可將后級變換器視為前級變換器的恒功率負載(constant power load,CPL)[3]。典型的例子如利用閉環(huán)控制的Buck 穩(wěn)壓變換器接一個純電阻負載,在其負載固定時該Buck變換器的輸入功率為一個定值,即可視為一個恒功率負載。
利用新能源發(fā)電需要通過大量的電能變換器才能實現(xiàn)并網(wǎng)[4]。由于電能變換器大多為電力電子器件,因此在能量轉(zhuǎn)換過程中的諧波問題是無法忽略的。Boost PFC 變換器是眾多功率因數(shù)校正變換器中應(yīng)用十分廣泛的一種。Boost PFC變換器的控制方法經(jīng)過多年的發(fā)展,已經(jīng)由簡單的電流內(nèi)環(huán)及電壓外環(huán)構(gòu)成的雙閉環(huán)PI 控制結(jié)構(gòu),發(fā)展到如今通過利用無橋拓撲[5-7]或者將微分平坦[8]、占空比預(yù)估算以及模糊控制[9-10]引入控制算法的設(shè)計方法等,以期達到良好的控制效果。而一種利用通過狀態(tài)變換和狀態(tài)反饋將一個非線性系統(tǒng)轉(zhuǎn)化為線性系統(tǒng),然后利用經(jīng)典控制理論進行控制器的設(shè)計的方法也被大量利用,文獻[11-12]都利用該控制方法獲得了良好的控制效果,但是其應(yīng)用場景較為簡單,只能實現(xiàn)Boost PFC 帶純電阻負載的穩(wěn)定運行。而由于在Boost PFC 變換器與Buck 變換器級聯(lián)的情況下,Boost PFC 變換器的輸出電流不連續(xù),使得該方法在負載為恒功率負載時無法穩(wěn)定運行。
為了解決這個問題,本文以Buck穩(wěn)壓變換器帶一個純電阻負載作為恒功率負載,利用輸入輸出線性化方法構(gòu)造出一種適合恒功率負載的控制方法;并通過研究發(fā)現(xiàn)Boost PFC 變換器輸出電壓紋波與負載功率成一定比例關(guān)系,進而經(jīng)過大量的數(shù)據(jù)測算得到能通過輸出電壓紋波的變化預(yù)測出負載功率的變化的計算關(guān)系;最后將預(yù)測所得到的負載功率代入控制方法,實現(xiàn)了Boost PFC 變換器在輸入輸出線性化方法下帶恒功率負載恒壓輸出。在專業(yè)的電力電子仿真軟件PSIM 中對所得到的控制方法進行了數(shù)字仿真實驗,仿真實驗結(jié)果表明該方法具有良好的動、靜態(tài)特性,輸入電流能精準(zhǔn)跟蹤輸入電壓,電流波形光滑;負載跳變時,動態(tài)響應(yīng)快,輸出穩(wěn)定,表明該方法對負載具有良好的魯棒性。
圖1為Boost PFC變換器的拓撲結(jié)構(gòu)。
圖1 Boost PFC變換器帶恒功率負載的拓撲結(jié)構(gòu)Fig.1 Topology structure of Boost PFC converter with a CPL
圖1 中的恒功率負載(CPL)為一個閉環(huán)穩(wěn)定工作的Buck 穩(wěn)壓變換器接一個純電阻負載。對該Boost PFC 變換器用狀態(tài)空間平均法進行建模,令vin=E(t),iin=iL,vo=uC,μ為MOS 管Q1的占空比。由于負載為非純電阻電路,所以只能用iout來表示Boost PFC 變換器的輸出電流,可以得到如下狀態(tài)空間平均模型:
基于式(1)中的狀態(tài)空間的平均模型,選取狀態(tài)變量x=[x1x2]T=[iLuC]T,輸入變量μ可設(shè)為MOS管Q1的占空比,輸出變量可設(shè)為y=h(x),則可得到Boost PFC 變換器的單輸入單輸出仿射非線性系統(tǒng)的模型:
式(2)對應(yīng)的單輸入單輸出的仿射非線性標(biāo)準(zhǔn)形式為
根據(jù)文獻[11]可知,當(dāng)輸出函數(shù)為h(x)=x1-iref時(iref為設(shè)定的電流參考值),可以得到如下的非線性坐標(biāo)變換,可將原非線性系統(tǒng)轉(zhuǎn)化為新坐標(biāo)系下的線性系統(tǒng):
式中:Φ-1(z)為求逆陣。
可以將式(3)的原非線性系統(tǒng)非精確線性化為一個準(zhǔn)線性系統(tǒng):
由式(7)得到新坐標(biāo)系下控制律與原坐標(biāo)系下控制律關(guān)系如下式所示:
式中:k為e-kx的衰減系數(shù),其值越大,誤差衰減越快,k>0。
根據(jù)能量守恒(忽略該系統(tǒng)中各種開關(guān)管及電感電阻等器件的功率損耗),再根據(jù)功率因數(shù)矯正后的效果就是Boost PFC 變換器的輸入電流可以很好地跟蹤輸入電壓,即輸入電壓與輸入電流電位相同,設(shè)校正后的正弦輸入電壓峰值為Vm,輸入電流的峰值為Im,期望的輸出電壓恒定為Uref,Iout為負載的輸入電流,也就是Boost PFC 變換器的輸出電流,則有下式成立:
鑒于Boost PFC 變換器在與Buck 變換器級聯(lián)時其輸出端直接與MOS 管Q2相連,在Q2斷開時段無法得到連續(xù)的輸出電流Iout,致使在負載發(fā)生擾動時式(12)的計算發(fā)生延遲甚至失效。解決的辦法是將輸出電流通過其他參量計算出來,可利用輸出功率Pout和輸出電壓uout來表示輸出電流:
實際中輸出電壓uout并不等于理想電壓Uref,因為Boost PFC 變換器的輸出電壓帶有紋波,并不是一個定值,采用uout計算占空比可以提高計算精度。
將式(12)代入式(11)可得:
至此可以得出:當(dāng)Pout的數(shù)值與負載功率一致時,便可以得到穩(wěn)定的理想的輸出電壓以及PF值。
在利用PSIM 仿真軟件進行仿真研究時發(fā)現(xiàn),在輸入輸出線性化方法下的Boost PFC 變換器穩(wěn)定運行時,其輸出電壓的紋波大小Vpp跟負載功率Pout有關(guān),且是線性相關(guān)的,圖2 是以基準(zhǔn)輸出電壓為230 V、負載功率分別為100 W,500 W,1 000 W 為例,利用PSIM 仿真軟件得出的Boost PFC變換器輸出電壓的紋波圖。
圖2 基準(zhǔn)輸出電壓為230 V,負載功率分別為100 W,500 W,1 000 W時輸出電壓的波形Fig.2 The output voltage waveforms when the reference output voltage is 230 V and the load power is 100 W,500 W and 1 000W respectively
由圖2 可知,Boost PFC 變換器輸出電壓的紋波隨著負載功率的增大而增大,分別為1.95 V,9.59 V,19.96 V。
在基準(zhǔn)電壓都是230 V 的情況下,從100 W到1 000 W,每隔25 W 測一組紋波大小,可得到如圖3所示的散點圖。
通過觀察圖3 可以發(fā)現(xiàn),Boost PFC 變換器在穩(wěn)定狀態(tài)下運行時的輸出電壓紋波大小Vpp與負載功率Pout呈線性相關(guān)的關(guān)系。于是利用最小二乘法將圖3中的數(shù)據(jù)擬合成一條直線:
圖3 輸出電壓紋波與負載功率的散點圖Fig.3 Scatter diagram of output voltage ripple and load power
即
由此直線可以根據(jù)輸出電壓的紋波大小得到負載的功率。
根據(jù)上文中穩(wěn)定時功率與輸出電壓紋波的關(guān)系可以推斷,當(dāng)負載功率發(fā)生跳變時,其變化的紋波可以用來推算跳變后的負載功率并對代入算法中的Pout進行校正。在經(jīng)過仿真試驗后發(fā)現(xiàn),在跳變后第1 個周期的紋波(第1 個周期波峰與波谷的差的絕對值)會變大。以1 000 W跳變到500 W 為例,取在輸出電壓的波峰、波谷以及平衡點發(fā)生跳變時的輸出電壓紋波,如圖4所示。
由圖4 可知,跳變后的第1 周期內(nèi)的紋波分別為42.46 V,32.61 V,42.21 V??梢钥吹剑涮兒蟮?個周期的紋波大小跟跳變時間有一定關(guān)系,這是穩(wěn)定時電壓的紋波與跳變時電壓的變化疊加所導(dǎo)致的。而到了跳變后第3個周期的峰值分別為294.88 V,294.60 V,295.43 V,幾乎沒有差別,于是為了減小誤差,并且盡量縮短計算時間,取跳變后第3個周期的波峰與跳變前的穩(wěn)定紋波的波谷的差的平均值來對跳變后的功率進行校正,以盡量減少誤差。
圖4 負載功率跳變時輸出電壓紋波變化圖Fig.4 Ripple change of output voltage during load power jump
同理,對于負載功率變大的情況,其輸出電壓會變小,取Vm為跳變后第3 個周期的波谷與跳變前穩(wěn)定紋波波峰之差的平均值。
在基準(zhǔn)電壓是230 V的情況下,以500 W作為初始穩(wěn)定功率為例,統(tǒng)計其Vm與跳變后的功率Pout,將得到的數(shù)據(jù)繪制成散點圖,如圖5和圖6所示。
由圖5 和圖6 所示的結(jié)果可以發(fā)現(xiàn),跳變后的功率Pout與Vm呈線性相關(guān)關(guān)系,因此可將Pout分別在增大和減小時與Vm的關(guān)系利用最小二乘法各擬合成一條直線:
圖5 跳變后功率下降時Pout與Vm的散點圖Fig.5 Scatter diagram of Pout and Vm when power drops after jump
圖6 跳變后功率上升時Pout與Vm的散點圖Fig.6 Scatter diagram of Pout and Vm when power rises after jump
由式(19)和式(20)可以通過測量Vm的大小來計算出負載跳變后負載的功率即Boost PFC 轉(zhuǎn)換器的輸出功率,由此可以完成一次矯正。
通過測算可以得到初始穩(wěn)定功率從100 W到1 000 W 的跳變后功率與Vm的擬合關(guān)系式并記錄入表1。
表1 不同初始功率的擬合公式Tab.1 Fitting formula of different initial power
在經(jīng)過多組數(shù)據(jù)的測算后可以發(fā)現(xiàn),在某些情況下時,利用上述的擬合公式計算出的Pout會與跳變后的實際功率有較大誤差,會對輸出電壓造成影響,若計算出的Pout大于負載功率,輸出電壓uout的直流分量將高于Uref,反之則uout的直流分量會小于Uref。但是輸出電壓的誤差不會影響到Boost PFC 輸入端的輸入電流跟蹤輸入電壓(后面的仿真實驗會加以驗證)。這些誤差的產(chǎn)生主要原因有兩個:一是算不準(zhǔn),這是本身擬合曲線時的誤差造成的;二是測不準(zhǔn),這是因為隨著負載功率的變大,穩(wěn)定時輸出電壓的紋波也會變大,使得在相同初始穩(wěn)態(tài)功率的情況下,不同的跳變時刻會對Vm的數(shù)值產(chǎn)生較大影響,進而影響到代入擬合公式后計算出的Pout。因此誤差往往會出現(xiàn)在大范圍的功率跳變和初始穩(wěn)定功率較大的情況下,但是根據(jù)實際測算可知,100 W到1 000 W 之內(nèi)的跳變,其誤差不會超過100 W。于是對于某些對輸出電壓要求不高的應(yīng)用場景(例如光伏發(fā)電),一次矯正就可以滿足實際需要,而在某些對輸出電壓要求高的場景,則需引入二次矯正。
根據(jù)大量數(shù)據(jù)測算的經(jīng)驗可知,對于輸出電壓的直流分量V,即輸出電壓每個周期(0.01 s)的最大值與最小值的平均值,當(dāng)|Uref-V|>10 V 時,輸入算法得出的Pout與實際負載功率相差50 W 左右;當(dāng)|Uref-V|>40 V 時,Pout與實際負載功率相差70 W左右;當(dāng)|Uref-V|>80 V 時,Pout與實際負載功率相差100 W 左右。經(jīng)過一次矯正到輸出電壓穩(wěn)定的時間都在0.1 s 左右,負載跳變范圍越大,輸出電壓達到穩(wěn)定的時間越久,因此為了使輸出電壓能更快地穩(wěn)定到230 V,二次矯正的方法需盡量簡單迅速。二次矯正的步驟如圖7所示。
圖7 二次矯正的流程圖Fig.7 Flow chart of secondary correction
至此,可以得到當(dāng)負載發(fā)生跳變時,根據(jù)輸出電壓紋波的變化預(yù)測輸出功率的步驟如圖8所示。
圖8 根據(jù)紋波調(diào)整Pout流程圖Fig.8 Flow chart of Pout adjustment according to ripple
將通過該步驟預(yù)測得到的負載功率Pout代入式(14),便可使Boost PFC 變換器在帶恒功率負載的情形下穩(wěn)定運行。
系統(tǒng)仿真采用專業(yè)的電力電子仿真軟件PSIM進行數(shù)字仿真實驗,仿真系統(tǒng)的設(shè)計圖如圖9所示。
圖9 Boost PFC帶恒功率負載輸入輸出線性化方案圖Fig.9 Scheme of input and output linearization of Boost PFC with constant power load
圖9 中,輸入電壓vac=150sin(ωt);Boost PFC變換器的期望輸出電壓Uref=230 V;MOS 管Q1的頻率f1=80 kHz;MOS 管Q2的頻率f2=20 kHz;電感L1=3 mH;電感L2=5 mH;電容C1=700 μF;電容C2=1 000 μF;k=30。與Boost 電路級聯(lián)的Buck 電路采用電壓單閉環(huán)控制,再接入一個純電阻負載可視為一個恒功率負載,通過控制接入Buck 電路的純電阻負載的阻值控制該恒功率負載功率的大小。MOS 管Q3接一個脈沖信號的作用是控制負載功率的跳變,當(dāng)電阻R1并聯(lián)一個電阻R2時,負載的功率會提升,當(dāng)電阻R1和R2并聯(lián)時,斷開R2支路,負載功率會下降,據(jù)此可以控制跳變時間以及跳變前后的負載功率。例如:當(dāng)電阻R1=5 Ω 時,該恒功率負載的功率為500 W,當(dāng)電阻R1=5 Ω,電阻R2=5 Ω 時,Q3由關(guān)斷到接通時,該恒功率負載的功率由500 W 跳變到1 000 W;當(dāng)電阻R1=10 Ω,電阻R2=10 Ω 時,Q3由接通到關(guān)斷,該恒功率負載的功率由500 W 跳變到250 W。
負載功率不變時的穩(wěn)態(tài)運行是為了觀察該算法在帶恒功率負載時是否能穩(wěn)定運行、啟動調(diào)節(jié)時間以及輸出電壓在啟動時是否有超調(diào)。圖10 為該算法下Boost PFC 變換器帶恒功率負載的輸入電壓、輸入電流以及輸出電壓。
圖10 Boost PFC變換器帶恒功率負載的輸入電壓、輸入電流與輸出電壓的啟動波形Fig.10 Input voltage,input current and output voltage waveforms of Boost PFC converter with CPL
從圖10 可知,啟動調(diào)節(jié)時間僅為5 ms,此后輸入電流精準(zhǔn)跟蹤輸入電壓,輸出電壓也能穩(wěn)定在230 V,并且整個調(diào)節(jié)過程幾乎沒有超調(diào)。
圖11、圖12 所示為功率跳變跨度很大時Boost PFC 變換器的輸出電壓,當(dāng)發(fā)生突變后的第3 個周期的輸出電壓的峰值為193.63 V,則Vm=94.87 V,代入擬合公式可得跳變后的功率Pout=1 045.90 W,經(jīng)過二次矯正,Pout=995.90 W。
圖11 負載從500 W跳變到1 000 W時輸出電壓波形(無二次矯正)Fig.11 The output voltage waveform of load from 500 Wto 1 000 W(without secondary correction)
圖12 負載從500 W跳變到1 000 W時輸出電壓波形(有二次矯正)Fig.12 The output voltage waveform of load from 500 W to 1 000 W(with secondary correction)
由圖11、圖12 可知,輸出電壓在經(jīng)過短暫調(diào)整后,在未經(jīng)過二次矯正時的直流分量明顯高于經(jīng)過二次矯正后的直流分量。
圖13、圖14 為負載跳變時,輸入電壓、電流波形(無/有二次矯正)。根據(jù)圖13、圖14 所示的結(jié)果可以看到,負載突變不影響輸入電壓,輸入電流在負載跳變時變化平滑,幾乎沒有過渡過程。并且是否加入二次矯正并不影響輸入電流跟蹤輸入電壓。
圖13 負載從500 W跳變到1 000 W時輸入電壓和輸入電流波形(無二次矯正)Fig.13 Input voltage and input current waveforms of load from 500 W to 1 000 W(without secondary correction)
圖14 負載從500 W跳變到1 000 W時輸入電壓和輸入電流波形(有二次矯正)Fig.14 Input voltage and input current waveforms of load from 500 W to 1 000 W(with secondary correction)
圖15 所示為功率跳變跨度很小時Boost PFC變換器的輸出電壓,發(fā)生突變后第3個周期輸出電壓的峰值為228.07 V,則Vm=6.44 V,代入式(19)可得跳變后的功率Pout=590.04 W。圖16為功率跳變跨度很小時Boost PFC變換器的輸入電壓、電流波形。由圖16可知,在跳變前、后輸入電流都能很好地跟蹤輸入電壓,并且電流變化平滑。
圖15 負載從500 W跳變到590 W時輸出電壓波形Fig.15 The output voltage waveform of load from 500 W to 590 W
圖16 負載從500 W跳變到590 W時輸入電壓和輸入電流波形Fig.16 Input voltage and input current waveforms of load from 500 W to 590 W
圖17 所示為功率跳變跨度很大時的Boost PFC 變換器的輸出電壓,發(fā)生突變后的第3 個周期的輸出電壓的峰值為268.03 V,則Vm=43.36 V,代入式(19)可得跳變后的功率Pout=245.28 W。
圖17 負載從500 W跳變到250 W時輸出電壓波形Fig.17 The output voltage waveform of load from 500 W to 250 W
圖18 所示為功率跳變跨度很小時Boost PFC變換器的輸出電壓,發(fā)生突變后的第3 個周期的輸出電壓的峰值為246.84 V,則Vm=22.16 V,代入式(19)可得跳變后的功率Pout=408.21 W。
圖18 負載從500 W跳變到410 W時輸出電壓波形Fig.18 The output voltage waveform of load from 500 W to 410 W
由圖17、圖18 所示的結(jié)果可知,輸出電壓在經(jīng)過短暫調(diào)整后,除了紋波有相應(yīng)的變化外,其直流分量幾乎不變,在0.63 s 時沒有觸發(fā)二次矯正。
圖19、圖20 所示為Boost PFC 變換器在負載跳變前后整流前的輸入電壓與電流,可以看到,負載突變不影響輸入電流跟蹤輸入電壓,輸入電流在負載跳變時變化平滑,幾乎沒有過渡過程。
圖19 負載從500 W跳變到250 W時輸入電壓和輸入電流波形Fig.19 Input voltage and input current waveforms of load from 500 W to 250 W
由上述仿真結(jié)果可知,該算法在多種負載跳變的情況下都有良好的表現(xiàn)。
本文實現(xiàn)了利用Boost PFC 輸出電壓的紋波對負載功率的變化進行預(yù)測,利用經(jīng)過輸入輸出線性化方法得到的控制方法來實現(xiàn)負載為恒功率負載的穩(wěn)定運行。PSIM軟件仿真表明:該方法啟動入穩(wěn)時間快,在帶恒功率負載時幾乎無超調(diào),穩(wěn)態(tài)時能夠保持輸入電流對于輸入電壓的精準(zhǔn)跟蹤,輸出電壓亦保持恒定。在負載跳變的情況下依然可以穩(wěn)定運行,輸出電壓能在經(jīng)過短暫的調(diào)整后穩(wěn)定在理想電壓值,電流變化響應(yīng)迅速,電流波形光滑,能一直保持穩(wěn)定運行,顯示出所提供的方法具有良好靜態(tài)性能與迅速的動態(tài)響應(yīng),以及對負載擾動的強魯棒性。