• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Boosting Cu(In,Ga)Se2 Thin Film Growth in Low-Temperature Rapid-Deposition Processes:An Improved Design for the Single-Heating Knudsen Effusion Cell

    2021-08-30 07:06:40YunxiangZhangShupingLinShiqingChengZhichaoHeZhaojingHuZhiqiangZhouWeiLiuYunSun
    Engineering 2021年4期

    Yunxiang Zhang ,Shuping Lin ,Shiqing Cheng ,Zhichao He ,Zhaojing Hu ,Zhiqiang Zhou ,Wei Liu ,*,Yun Sun

    a Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin,Institute of Photoelectronic Thin Film and Devices,College of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China

    b Engineering Center of Thin Film Photoelectronic Technology of Ministry of Education,Institute of Photoelectronic Thin Film and Devices,College of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China

    Keywords:

    Cu(In,Ga)Se2 Knudsen effusion cell Condensation Droplet ejection Low temperature

    ABSTRACT The Knudsen effusion cell is often used to grow high-quality Cu(In,Ga)Se2(CIGS)thin film in coevaporation processes.However,the traditional single-heating Knudsen effusion cell cannot deliver complete metal selenides during the whole deposition process,particularly for a low-temperature deposition process,which is probably due to the condensation and droplet ejection at the nozzle of the crucible.In this study,thermodynamics analysis is conducted to decipher the reason for this phenomenon.Furthermore,a new single-heating Knudsen effusion is proposed to solve this difficult problem,which leads to an improvement in the quality of CIGS film and a relative increase in conversion efficiency of 29%at a growth rate of about 230 nm·min-1,compared with the traditional efficiency in a lowtemperature rapid-deposition process.

    1.Introduction

    The Knudsen effusion cell is one of the most universal evaporators used to grow high-quality Cu(In,Ga)Se2(CIGS)film in coevaporation processes.Recently,many research institutions,such as Center for Solar Energy and Hydrogen Research Baden-Württemberg[1],National Renewable Energy Laboratory[2],Solibro GmbH[3],and Uppsala University[4],have achieved a record efficiency of above 20%for CIGS devices using this method.However,when traditional single-heating Knudsen effusion cells are used as the evaporators of copper(Cu),indium(In),or gallium(Ga),obvious condensation and droplet ejection can be observed at the nozzle of the crucible[5,6].If these droplets spray onto the substrate,a large amount of incomplete metal selenides form on the CIGS film.In addition,a low substrate temperature will further deteriorate the quality of the CIGS film due to the low diffusion coefficient of the metal elements[7].In order to grow highquality CIGS film,many researchers choose a Knudsen effusion cell that consists of two independent heating systems,which is known as the double-heating Knudsen effusion cell.One heating system is used to evaporate the material in the crucible and the other is applied to keep the nozzle of the crucible at a high temperature in order to avoid the formation of condensation and droplet ejection there[6,8].Although the double-heating Knudsen effusion cell has a more favorable structure than the traditional cell,it requires a more complex control system and has a higher cost.Thus,it is necessary to design a new low-cost single-heating Knudsen effusion cell to grow high-quality CIGS film.

    In this work,we focus on the CIGS film grown in a lowtemperature deposition process.First,we report on our investigation of the surface morphology of CIGS films prepared at different growth rates with traditional single-heating Knudsen effusion cells and our observation of some incomplete metal selenides in the CIGS film.Subsequently,we describe our failed attempts to eliminate these incomplete metal selenides by simply increasing the temperature of the selenium(Se)evaporator.We then attempt to identify the causes of the formation of incomplete metal selenides in CIGS films and analyze these causes using a thermodynamics process.Finally,we propose a new single-heating Knudsen effusion cell.

    2.Experimental process

    2.1.Preparation of films and solar cells

    CIGS films with different growth rates were fabricated onto a molybdenum(Mo)-coated substrate in a three-stage co-evaporation process[9].During the deposition process,the temperature of the Se source was kept at 310°C.After CIGS deposition,a 50 nm thick cadmium sulfide(CdS)buffer layer was prepared by chemical bath deposition at a temperature of 77°C.Sequentially,intrinsic zinc oxide(i-ZnO)and aluminum(Al)-doped zinc oxide(Al-ZnO)layers were deposited with thicknesses of 50 and 500 nm,respectively.Finally,a nickel(Ni)/Al grid with a thickness of about 1.5μm was grown on top of the stacked layers.The active area of the CIGS solar cells is 0.34 cm2with no antireflection coating[10].

    For our baseline co-evaporation process,the deposition times of the three stages were respectively 15,18,and 3 min,and the average growth rate of this process was about 63 nm·min-1(named‘‘Sample L”).We also fabricated two other samples with growth rates of 104 nm·min-1(Sample M)and 231 nm·min-1(Sample H).For the samples prepared by the new single-heating Knudsen effusion cell,the average growth rate of Sample L-N was similar to that of Sample L,and the average growth rate of Sample H-N approached that of Sample H(where‘‘-N”indicates the samples that were fabricated by the new single-heating Knudsen effusion cell).

    2.2.Characterization

    The composition of the CIGS film was determined by MagixPW2403(Royal Philips NV,the Netherlands)X-ray fluorescence(XRF)analysis.An optical microscope(OM,STM6-LM,Olympus Corporation,Japan)was used to measure the surface morphology of the CIGS films.A scanning electron microscope(SEM)was used to characterize the morphology of the films,and its elemental distribution was measured by energy dispersive spectroscopy(EDS).The site-specific components of the elements were characterized by focused ion beam(FIB).Hall measurement(HL5550PC,Accent Optical Technologies,Inc.,USA)was used to determine the electrical characterizations of the CIGS films at room temperature.The current-voltage(I-V)characteristics of the CIGS solar cells were measured by a Keithley 2420(Keithley,USA)SourceMeter under air mass(AM)1.5G(100 mW·cm-2)illumination.The external quantum efficiency(EQE)of the solar cells was measured by the ratio of the short-circuit photocurrent to the incident illumination intensity in the range of 350-1300 nm.The capacitance-voltage(C-V)and admittance spectroscopy(AS)characterizations were determined by an HP 4284A LCR meter(Agilent Technologies,USA).

    3.Results and discussion

    3.1.Effect of traditional single-heating Knudsen effusion cells on CIGS films

    Table 1 summarizes the components and thickness of the CIGS films prepared at different growth rates by traditional single-heating Knudsen effusion cells.The molar fraction ratios of χGa/(χGa+χIn)(GGI)andχCu/(χGa+χIn)(CGI),and the thickness of these films are roughly similar for all absorbers.

    The surface morphologies of the CIGS films grown at different growth rates were investigated by OM,as shown in Fig.1.The morphology of the CIGS films was strongly affected by the growth rate.When the growth rate was increased from 63 to 231 nm·min-1,a large number of dark spots were observed in the CIGS film.

    Fig.2(a)displays the SEM micrographs of Sample H;an island accumulation can be observed at the location of each dark spot.To determine the composition of the island accumulation,elemental mappings for Cu,In,Ga,and Se in Sample H are shown in Figs.2(b)-(e),respectively.These mappings show that the island accumulation contains a high In content,which appears to be connected to the presence of incomplete metal selenides.In addition,two black dots next to the island accumulation appear in all elemental mappings.This phenomenon may be attributed to highenergy electron beams being blocked by the island accumulation during EDS mapping processes.In order to further distinguish the components of the island accumulation,the FIB result is shown in Fig.3.Three locations in an island accumulation were chosen randomly and labeled 1,2,and 3;their EDS components are summarized in Table 2.Although Cu has an almost uniform distribution in the film due to its high diffusion coefficient[7],the GGI value decreases from 0.692 to 0.255.This suggests the presence of a large amount of In in the island accumulation,which aligns with the elemental mapping results in Fig.2(c).Previous studies have proposed that the expected molar fraction ratio of 2χSe/[χCu+3(χIn+χGa)]in CIGS film should be close to 1[11,12].However,the ratios of the samples located at 1,2,and 3 are 0.447,0.808,and 0.612,respectively,which can be linked to the presence of binary phases.From the result of the Hall measurement shown in Table 3,it is found that Sample H has a higher carrier concentration and lower resistivity than Sample L,which indicates the presence of some metal-like phases in the former[13].

    3.2.The way to eliminate dark spots

    To eliminate these metal-like phases,it is necessary to selenize the CIGS film completely.Previous research has reported that the degree of selenization for CIGS films is correlated with the Se fluxes,with higher Se fluxes promoting the degree of selenization[14].However,regardless of the growth rates of CIGS films,the temperature of the Se evaporator was always kept at 310°C;this indicates that the Se fluxes for Sample H may be insufficient.Therefore,we increased the temperature of the Se evaporator for Sample H from 310 to 320,330,340,and 350°C,respectively;their OMresults are shown in Fig.4.However,these films still contain a large number of dark spots,which confirms that simply increasing the temperature of the Se evaporator is not an effective way to eliminate island accumulation(dark spots)in CIGS film.

    In fact,condensation and droplet ejection can also be observed at the nozzle of the Cu and Ga crucibles,which confirms that the traditional single-heating Knudsen effusion cell is incapable of growing high-quality CIGS film in this experiment.However,in our laboratory,a similar single-heating Knudsen effusion cell has no condensation when the height of the crucible is about 2 cm,implying that the height of the crucible may be a crucial factor in the phenomenon of condensation.

    Table 1 Components of CIGS films at different growth rates,determined by XRF.

    Fig.1.OM images of(a)Sample L,(b)Sample M,and(c)Sample H.

    Fig.2.SEM morphology images of(a)Sample H and its elemental distribution measured by EDS in SEM:(b)Cu,(c)In,(d)Ga,and(e)Se.

    Fig.3.FIB image of Sample H.Locations 1,2,and 3 were selected from different parts of the dark spot.

    Supposing that the effusion cell has no heat loss,its temperature is the same everywhere in the crucible.Here,the mass-loss Knudsen effusion model was employed to explore the relationship between the condensation and the height of the crucible.During the period t,the vapor pressure P can be calculated by Eqs.(1)and(2)[15,16]:

    where m is the mass of the effused metal element,t is the effusion time,T is the temperature,A0is the area of the crucible,ω0is the transmission probability factor of the effusion cell,R is the molar gas constant,r is the radius of the crucible,l is the length of theeffusion orifice,and M is the molar mass.As shown in Fig.5(a),as the radius of the crucible is the same from top to bottom,we can treat the length of the effusion orifice l as the height of the crucible.Moreover,an assumption has been made that vapor pressures are the same in the whole crucible.According to Eqs.(1)and(2),the height of the crucible can be expressed by the following:

    Table 2 Components and GGI values of samples at different locations in the island accumulation.

    Fig.4.OMimages of CIGS films prepared at different Se evaporator temperatures at a growth rate of about 230 nm·min-1 and a substrate temperature of 450°C.Results are provided for the Se evaporator at the temperatures of(a)320°C,(b)330°C,(c)340°C,and(d)350°C.

    where QMis the metal vapor energy taken from the crucible.QT,QB,and QLare the heat loss at the top,bottom,and lateral of the single-heating Knudsen effusion cell,respectively as shown in Fig.5(a).Although the bottom and lateral of the effusion cell haveno obvious effect on the heat change of the crucible,QTand QMwill obviously increase the total heat loss and result in the formation of condensation.Based on the temperature of the nozzle and the bottom of the crucible,QTand QMcan be calculated by the heat radiation rule[17]:

    Table 3 Hall results for Samples H and L.

    whereε,a,and c are the emissivity,radiation constant,and radiation propagation speed in a vacuum,respectively.Here,QLS,T1,and T2are used to characterize the heat loss energy,absolute temperature for radiation,and absolute temperature for the absorber,respectively.With the increase of heat loss energy,the temperature at the nozzle of the crucible will decrease.According to the Maxwell speed distribution function,the mean gas speedˉv is[18]

    Fig.5.Schematic of(a)the traditional single-heating Knudsen effusion cell and(b)the new single-heating Knudsen effusion cell.The heat loss Q M is the metal vapor energy taken from the crucible.Q T,Q B,and Q L are the heat loss at the top,bottom,and lateral of the single-heating Knudsen effusion cell,respectively.1:the insulating layer for the effusion cell;2:the crucible;3:the single-heating coil of the effusion cell;4:the evaporated material in the crucible;5:the insulating layer at the bottom of the effusion;6;the extra heater zone for the cell.

    where k is the Boltzmann constant.As the temperature at the nozzle of the crucible decreases,the speed of the vapor will be reduced.If this metal vapor becomes metal droplets,the speed of these droplets will be further reduced due to the fact that the molar mass for droplets is larger than that of the metal vapor.When these droplets spray onto the substrate,dark spots will form in the CIGS film.Furthermore,a higher evaporation temperature will result in the formation of larger metal droplets,which are caused by the increased molecular collision frequency for metal elements.Thus,more dark spots are present in Sample H than in Sample L.To summarize,serious heat loss at the nozzle of the crucible is the major factor for condensation.

    Based on the theory analysis described above,we propose a new single-heating Knudsen effusion cell,shown in Fig.5(b).In comparison with the traditional effusion cell,the new cell has an extended heater on the upper half of the crucible,which is applied to provide extra energy to compensate for the heat loss at the nozzle of the crucible.The extended heater is part of the single-heating coil,so there is no need to introduce a new heating circuit and change the winding density of the single-heating system.It is only necessary to determine the length of the extended heater from the following equations:

    where ISis the current of the resistance wire of the new Knudsen effusion cell.QS,RS,ρ,S,and LSare the heat energy from the extended heater,resistance,electrical resistivity,sectional area,and length of the heat wire of second layer,respectively.In order to maintain a high temperature at the nozzle of the crucible,QSmust be greater than QLSor QMand QT;the length of the extended heater can be expressed as follows:

    To research the effect of the new single-heating Knudsen effusion cell on CIGS film,different samples prepared by the traditional effusion cell and by the new cell are compared in Fig.6.It is clear that the surface of Sample H-N is smoother than that of Sample H,which indicates that the new cell can effectively reduce condensation and droplet ejection at the nozzle of the effusion cell and improve the quality of the CIGS film.Samples L and L-N,which have a lower growth rate,show a similar result.

    3.3.Solar cell device performances

    Fig.7 shows the I-V and EQE graphs for solar cells made from Samples H,H-N,L,and L-N with the same batch.Obviously,the device performance of solar cells made using the new effusion cell is higher than that of those made from the traditional one,which is mainly attributed to a high-quality CIGS films.In addition,the statistic boxplots for the short-circuit current density(Jsc),opencircuit voltage(Voc),and fill factor(FF)of the cells are shown in Figs.8(a),(b),and(c),respectively.These figures show that the enhanced efficiency of solar cells made using the new singleheating Knudsen effusion cell is mainly derived from both the Vocand FF.However,the Jscof Sample H and that of Sample H-N are slightly larger than those of Samples L and L-N,which may be related to the different growth rates of the samples.According to Ref.[19],a high growth rate in the second stage of the threestage co-evaporation process will result in a smaller minimum GGI value(mini GGI value).Thus,the varied Jsccan be attributed to the mini GGI value of the absorber layer,which absorbs more long-wavelength light[20].

    Fig.6.SEM morphology images of CIGS films for(a)Sample H,(b)Sample H-N,(c)Sample L,and(d)Sample L-N,where Samples L-N and H-N were fabricated by the new single-heating Knudsen effusion cell.Insets:OM images of the corresponding films.

    Fig.7.(a)I-V curves and(b)EQE responses of the best CIGS solar cells fabricated from different absorber samples.ηis the best efficiency of each batch cells.J sc:short-circuit current density;V oc:open-circuit voltage;FF:fill factor.

    Fig.8.Statistics boxplots of(a)the J sc,(b)the V oc,and(c)the FF of the CIGS solar cells.

    3.4.Defect characteristics in CIGS devices

    In order to further investigate the cause of the improved Vocand FF,the results of C-V measurement are shown in Fig.9.The doping concentration(NA)in the CIGS films is 1.24×1016,1.04×1016,6.46×1015,and 3.72×1015cm-3for Samples H,H-N,L,and L-N,respectively;thus,the new effusion caused the doping level to decrease.According to Refs.[10,21],the relationship between the Vocand NAcan be estimated by Eq.(10):

    where q is the elementary charge.Based on this relationship,a higher doping concentration NAshould lead to a higher Voc[21];however,a higher NAcorresponds to a lower Vocin our samples,so we can deduce that there should be other factors affecting the Vocof these devices.

    To explore the main factor affecting the Voc,AS measurement was applied to determine the defect densities and their distributions for our samples.The results are shown in Fig.S1 in Appendix A.The deduced density spectra derived from the admittance spectra are shown in Fig.10.The concentration of the defect level of Sample H is so high that its device performance clearly deteriorates.In addition,a shallow defect with an energy level of about 33.1 meV can be associated with some incomplete selenized metal elements in the film,which can be verified by Hall measurement.The defect density of Sample H-N decreased from 3.17×1016to 1.05×1016cm-3·eV-1and the defect level increased from 33.1 to 173.1 meV,as shown in Fig.10(b).This indicates that the quality of CIGS films with high growth rates is improved by the new effusion cell.Moreover,samples with normal growth rates have a similar variation trend,as shown in Figs.10(c)and(d).Therefore,we can conclude that the new single-heating Knudsen effusion cell can improve the quality of the films.

    Based on all of the analysis described above,we deduced that the difference in defect density and its distributions will contribute to the Vocand FF.A comparison of all samples in Fig.6 shows that there are dark spots in Samples H,L,and H-N,whose Vochas decreased significantly compared with that of Sample L-N.These defects appear to be related to the shallow defect(the so-called N1 defect),which can obviously deteriorate the Voc[22,23].Thus,dark spots in the CIGS film will lead to higher defect density and a deeper defect level.In addition,the N2 is often observed at about 250-300 meV and has no obvious effect on the device performance[23].Therefore,the defects of Sample L-N may be attributed to the N2 defect.

    4.Conclusions

    Fig.9.Carrier concentration distributions for(a)Sample H,(b)Sample H-N,(c)Sample L,and(d)Sample L-N.

    Fig.10.Deduced density spectra derived from the admittance spectra for(a)Sample H,(b)Sample H-N,(c)Sample L,and(d)Sample L-N.E t is the corresponding defect energy level and N t is the density of defect states.

    This work examined the effect of the traditional single-heating Knudsen effusion cell on CIGS films with different growth rates.A comparison of samples with different growth rates showed that the quality of CIGS film is significantly influenced by the growth rate,with a higher rate often producing film with a large number of dark spots.Moreover,the dark spots appear to enhance the metal characteristic of the film due to the existence of some metal-like phase.Only increasing the temperature of the Se evaporator does not eliminate the dark spots,indicating that the Se flux is not responsible for the complete metal selenides.Considering the structure of the traditional single-heating Knudsen cell,serious heat loss is observed at the nozzle of the crucible,which is likely to be the reason for the formation of dark spots.Based on thermodynamic analysis,we designed a new single-heating Knudsen effusion cell that can compensate for the thermal loss at the nozzle of the crucible to prevent condensation.Eventually,using the new single-heating Knudsen effusion cell,we obtained the best solar cells with a conversion efficiency of 16.1%and 13.3%at growth rates of about 60 and 230 nm·min-1,and a substrate temperature of 450°C,respectively.In addition,the results of AS measurement show that the dark spots are related to N1 defects,where a large number of dark spots results in higher defect density and a lower defect level,which obviously deteriorates the device performance.We hope that this work will be helpful for the preparation of high-quality CIGS film by means of a low-cost single-heating Knudsen effusion cell.

    Acknowledgements

    The work was supported by the National Key R&D Program of China(2018YFB1500200),the National Natural Science Foundation of China(61774089 and 61974076),and the Natural Science Foundation of Tianjin(18JCZDJC31200).

    Compliance with ethics guidelines

    Yunxiang Zhang,Shuping Lin,Shiqing Cheng,Zhichao He,Zhaojing Hu,Zhiqiang Zhou,Wei Liu,and Yun Sun declare that they have no conflict of interest or financial conflicts to disclose.

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.eng.2020.01.016.

    久久久久久九九精品二区国产| 亚洲国产色片| 我的老师免费观看完整版| 怎么达到女性高潮| 三级毛片av免费| 久久6这里有精品| 国产黄a三级三级三级人| 两个人的视频大全免费| 亚洲专区国产一区二区| 亚洲欧美日韩东京热| 国产大屁股一区二区在线视频| 欧美色欧美亚洲另类二区| 一级毛片久久久久久久久女| 一区福利在线观看| 人人妻,人人澡人人爽秒播| 成熟少妇高潮喷水视频| 国产黄色小视频在线观看| 真人做人爱边吃奶动态| 色视频www国产| 在现免费观看毛片| 国产黄色小视频在线观看| 久久99热这里只有精品18| 亚洲美女黄片视频| 999久久久精品免费观看国产| 精品福利观看| 美女被艹到高潮喷水动态| 99久久成人亚洲精品观看| 无人区码免费观看不卡| 欧美日韩福利视频一区二区| 两个人视频免费观看高清| 国产av不卡久久| 色吧在线观看| 日本 av在线| 国产男靠女视频免费网站| 国产高清视频在线播放一区| 亚洲成人免费电影在线观看| 国产伦一二天堂av在线观看| 丁香六月欧美| 色尼玛亚洲综合影院| 久久99热6这里只有精品| 日韩欧美精品免费久久 | 午夜福利视频1000在线观看| 天美传媒精品一区二区| 国产一区二区三区在线臀色熟女| 久久精品影院6| 国产精品,欧美在线| 色噜噜av男人的天堂激情| 少妇人妻一区二区三区视频| 精品人妻1区二区| 亚洲乱码一区二区免费版| .国产精品久久| 国产精品人妻久久久久久| 国产av一区在线观看免费| 国产精品亚洲av一区麻豆| 午夜精品在线福利| 麻豆国产av国片精品| 国产精品久久久久久人妻精品电影| 在线观看美女被高潮喷水网站 | 亚洲精华国产精华精| 69人妻影院| 国产精品三级大全| 久久久久久国产a免费观看| 最新中文字幕久久久久| 亚洲欧美日韩无卡精品| 中文字幕av成人在线电影| 国产高潮美女av| 在线天堂最新版资源| 成年版毛片免费区| 天天一区二区日本电影三级| 看黄色毛片网站| 亚洲中文日韩欧美视频| 天堂影院成人在线观看| 国产精品永久免费网站| 亚洲精品乱码久久久v下载方式| 国产69精品久久久久777片| 精品无人区乱码1区二区| 少妇人妻精品综合一区二区 | 999久久久精品免费观看国产| 久久久久久久久久成人| netflix在线观看网站| 国产精品一区二区免费欧美| 真实男女啪啪啪动态图| 观看免费一级毛片| 久久久精品大字幕| 怎么达到女性高潮| 国产午夜精品论理片| 欧美激情久久久久久爽电影| 99国产精品一区二区三区| 伦理电影大哥的女人| 亚洲经典国产精华液单 | 免费人成视频x8x8入口观看| 亚洲七黄色美女视频| 91在线精品国自产拍蜜月| 欧美成人a在线观看| 欧美黑人巨大hd| 桃红色精品国产亚洲av| 久久久久国内视频| 欧美成狂野欧美在线观看| 国产亚洲精品久久久com| 国产人妻一区二区三区在| 久久久国产成人免费| 一进一出抽搐动态| 99热这里只有是精品在线观看 | 精品人妻1区二区| 久久人人精品亚洲av| 婷婷色综合大香蕉| 丰满的人妻完整版| 欧美黑人欧美精品刺激| 琪琪午夜伦伦电影理论片6080| 亚洲av电影在线进入| 亚洲av一区综合| 亚洲精华国产精华精| 在现免费观看毛片| 亚洲欧美激情综合另类| 女人被狂操c到高潮| 99久国产av精品| 亚洲美女搞黄在线观看 | 欧美精品国产亚洲| 99在线人妻在线中文字幕| 国产黄色小视频在线观看| 在线观看午夜福利视频| 成人性生交大片免费视频hd| 成年女人毛片免费观看观看9| 亚洲国产精品久久男人天堂| 久久精品国产亚洲av天美| 夜夜躁狠狠躁天天躁| 精品久久久久久久人妻蜜臀av| 久久久久久久久久成人| 亚洲经典国产精华液单 | 两个人视频免费观看高清| 亚洲aⅴ乱码一区二区在线播放| 久久久久国内视频| 99精品久久久久人妻精品| 非洲黑人性xxxx精品又粗又长| 国产精品久久久久久久久免 | 久久久久国产精品人妻aⅴ院| 午夜两性在线视频| 久久热精品热| 日韩成人在线观看一区二区三区| 亚洲乱码一区二区免费版| 亚洲成人中文字幕在线播放| 我的女老师完整版在线观看| 久久久久久大精品| 乱人视频在线观看| 少妇裸体淫交视频免费看高清| 日本 欧美在线| 欧美在线一区亚洲| 日韩亚洲欧美综合| 日韩有码中文字幕| 亚洲一区高清亚洲精品| 精品日产1卡2卡| 啦啦啦观看免费观看视频高清| 国产精品99久久久久久久久| 一级黄色大片毛片| 久久精品人妻少妇| 搡老岳熟女国产| 国产国拍精品亚洲av在线观看| 丰满乱子伦码专区| 欧美激情在线99| 欧美色视频一区免费| 桃色一区二区三区在线观看| 天堂影院成人在线观看| 99热精品在线国产| 人人妻人人看人人澡| 中文资源天堂在线| 欧美三级亚洲精品| 嫩草影视91久久| 欧美日韩亚洲国产一区二区在线观看| 亚洲人与动物交配视频| 国产69精品久久久久777片| 蜜桃久久精品国产亚洲av| 欧美最黄视频在线播放免费| 一个人看视频在线观看www免费| 女同久久另类99精品国产91| 三级男女做爰猛烈吃奶摸视频| 在线观看免费视频日本深夜| 大型黄色视频在线免费观看| 草草在线视频免费看| 国产一区二区三区在线臀色熟女| 一个人免费在线观看电影| 一本久久中文字幕| 精品日产1卡2卡| 成人欧美大片| 精品福利观看| 我的老师免费观看完整版| 少妇丰满av| 哪里可以看免费的av片| 天天躁日日操中文字幕| x7x7x7水蜜桃| 高潮久久久久久久久久久不卡| 老司机深夜福利视频在线观看| 亚洲第一区二区三区不卡| 欧美又色又爽又黄视频| 国产蜜桃级精品一区二区三区| 麻豆国产97在线/欧美| 亚洲精华国产精华精| 麻豆av噜噜一区二区三区| 国产在视频线在精品| 窝窝影院91人妻| 两性午夜刺激爽爽歪歪视频在线观看| 又紧又爽又黄一区二区| 自拍偷自拍亚洲精品老妇| 亚洲av免费在线观看| 岛国在线免费视频观看| 午夜激情福利司机影院| 午夜久久久久精精品| 色综合婷婷激情| 午夜福利在线观看免费完整高清在 | 最好的美女福利视频网| 久久亚洲精品不卡| 美女xxoo啪啪120秒动态图 | 亚洲av五月六月丁香网| 人人妻人人澡欧美一区二区| 亚洲熟妇中文字幕五十中出| 久久天躁狠狠躁夜夜2o2o| 国产69精品久久久久777片| 蜜桃久久精品国产亚洲av| 看免费av毛片| 黄色日韩在线| 亚洲欧美日韩无卡精品| 男女床上黄色一级片免费看| 18禁在线播放成人免费| av女优亚洲男人天堂| 最近最新中文字幕大全电影3| 99久久精品一区二区三区| 亚洲专区国产一区二区| 无遮挡黄片免费观看| 波多野结衣高清作品| 禁无遮挡网站| av在线老鸭窝| 亚洲欧美日韩东京热| 成人国产一区最新在线观看| 国产免费av片在线观看野外av| 国产一区二区三区在线臀色熟女| 美女cb高潮喷水在线观看| 成熟少妇高潮喷水视频| 人人妻人人看人人澡| 日本黄色视频三级网站网址| www日本黄色视频网| 99热只有精品国产| а√天堂www在线а√下载| 国产精品嫩草影院av在线观看 | 亚洲av日韩精品久久久久久密| 97热精品久久久久久| 亚洲一区高清亚洲精品| 国产色婷婷99| 婷婷精品国产亚洲av| 精品久久久久久久久亚洲 | or卡值多少钱| 久9热在线精品视频| 国产精品久久电影中文字幕| 一本综合久久免费| 亚洲国产精品sss在线观看| 欧美性猛交黑人性爽| 精品人妻熟女av久视频| 怎么达到女性高潮| 波野结衣二区三区在线| 美女大奶头视频| 黄色视频,在线免费观看| 国产精品美女特级片免费视频播放器| 真实男女啪啪啪动态图| 一级黄色大片毛片| eeuss影院久久| 男女之事视频高清在线观看| 欧美色欧美亚洲另类二区| a级一级毛片免费在线观看| 亚洲精品色激情综合| 欧美日韩乱码在线| 97超级碰碰碰精品色视频在线观看| 欧美潮喷喷水| 亚洲精品在线美女| 搡女人真爽免费视频火全软件 | 久久伊人香网站| 国产精品一区二区三区四区免费观看 | 欧美一区二区国产精品久久精品| 国产亚洲av嫩草精品影院| 蜜桃久久精品国产亚洲av| 一个人看视频在线观看www免费| 国产av在哪里看| 综合色av麻豆| 能在线免费观看的黄片| 国产精品电影一区二区三区| 亚洲成人久久性| www.999成人在线观看| 俺也久久电影网| 别揉我奶头 嗯啊视频| 757午夜福利合集在线观看| av天堂在线播放| 亚洲最大成人av| 99久久精品国产亚洲精品| 窝窝影院91人妻| 大型黄色视频在线免费观看| 90打野战视频偷拍视频| 一级黄片播放器| 99久久99久久久精品蜜桃| 午夜福利18| 69人妻影院| 色视频www国产| 亚洲成av人片在线播放无| 男人舔奶头视频| 舔av片在线| 91九色精品人成在线观看| 精品福利观看| 他把我摸到了高潮在线观看| 性色av乱码一区二区三区2| 极品教师在线视频| 国产午夜精品论理片| 亚洲国产精品sss在线观看| 国产精品一及| 日日干狠狠操夜夜爽| 性欧美人与动物交配| 久久久久国产精品人妻aⅴ院| 精品不卡国产一区二区三区| 午夜影院日韩av| 美女黄网站色视频| а√天堂www在线а√下载| 久久久国产成人精品二区| 亚洲无线观看免费| 村上凉子中文字幕在线| 舔av片在线| 日本黄色片子视频| 91九色精品人成在线观看| 精品人妻视频免费看| 51午夜福利影视在线观看| 午夜福利成人在线免费观看| 757午夜福利合集在线观看| 丰满的人妻完整版| 日韩高清综合在线| 亚洲在线自拍视频| 国产高潮美女av| 欧美日韩中文字幕国产精品一区二区三区| 熟女人妻精品中文字幕| 丁香六月欧美| 国产精品影院久久| 美女xxoo啪啪120秒动态图 | 精品人妻1区二区| 日本免费a在线| 日本在线视频免费播放| 一区二区三区激情视频| 亚洲精品粉嫩美女一区| 少妇人妻精品综合一区二区 | 丰满人妻熟妇乱又伦精品不卡| 女同久久另类99精品国产91| 日本精品一区二区三区蜜桃| 很黄的视频免费| 99精品在免费线老司机午夜| 精品人妻1区二区| 欧美日韩乱码在线| 亚洲男人的天堂狠狠| 婷婷精品国产亚洲av| 国产成年人精品一区二区| 国产美女午夜福利| 91狼人影院| 九九久久精品国产亚洲av麻豆| 午夜福利视频1000在线观看| 丁香六月欧美| 午夜福利18| 欧美一区二区亚洲| 亚洲美女搞黄在线观看 | 亚洲人与动物交配视频| 色5月婷婷丁香| 亚洲片人在线观看| 国产亚洲精品久久久com| 久久久久久久久中文| 久久国产乱子伦精品免费另类| 免费搜索国产男女视频| 日本一本二区三区精品| 欧美一区二区精品小视频在线| or卡值多少钱| 欧美日韩亚洲国产一区二区在线观看| 熟女电影av网| 久久久久久久午夜电影| 女人被狂操c到高潮| 国语自产精品视频在线第100页| 88av欧美| 99久久精品国产亚洲精品| 又黄又爽又免费观看的视频| 丰满人妻一区二区三区视频av| 欧美日韩福利视频一区二区| 国产免费男女视频| 亚洲激情在线av| 精品人妻熟女av久视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品免费一区二区三区在线| 午夜激情欧美在线| 少妇高潮的动态图| 国产高清视频在线观看网站| xxxwww97欧美| 又紧又爽又黄一区二区| 成年女人永久免费观看视频| 中文字幕精品亚洲无线码一区| 老司机深夜福利视频在线观看| 亚洲片人在线观看| 国产真实乱freesex| 久久精品国产亚洲av涩爱 | www.999成人在线观看| 久久久久性生活片| 欧美日韩瑟瑟在线播放| 精品乱码久久久久久99久播| 国产中年淑女户外野战色| 婷婷亚洲欧美| 精品久久国产蜜桃| 成人亚洲精品av一区二区| 欧美日韩黄片免| 露出奶头的视频| 精品一区二区三区视频在线| 亚洲精品乱码久久久v下载方式| 天天一区二区日本电影三级| 人人妻,人人澡人人爽秒播| 国产黄a三级三级三级人| 久久天躁狠狠躁夜夜2o2o| 欧美在线一区亚洲| 老司机午夜福利在线观看视频| 青草久久国产| 一级毛片久久久久久久久女| 成人特级av手机在线观看| 舔av片在线| 国产伦人伦偷精品视频| 国产精品女同一区二区软件 | 一本一本综合久久| 看片在线看免费视频| 国产91精品成人一区二区三区| 老司机午夜十八禁免费视频| 黄色一级大片看看| 色哟哟·www| 国内久久婷婷六月综合欲色啪| 国内少妇人妻偷人精品xxx网站| 嫩草影院新地址| 可以在线观看毛片的网站| 久久亚洲精品不卡| 美女 人体艺术 gogo| 变态另类成人亚洲欧美熟女| 成人特级av手机在线观看| 高清在线国产一区| 国产男靠女视频免费网站| 最近最新免费中文字幕在线| 中文字幕高清在线视频| 久久99热这里只有精品18| 精品人妻熟女av久视频| 国产乱人伦免费视频| 午夜福利免费观看在线| 蜜桃亚洲精品一区二区三区| 亚洲中文字幕一区二区三区有码在线看| 最近视频中文字幕2019在线8| 国产精品一区二区免费欧美| 男人舔女人下体高潮全视频| 少妇人妻精品综合一区二区 | 精品人妻一区二区三区麻豆 | 一级毛片久久久久久久久女| 乱码一卡2卡4卡精品| 欧美+亚洲+日韩+国产| 亚洲欧美日韩东京热| 久久久久免费精品人妻一区二区| 亚洲精品色激情综合| 如何舔出高潮| 1000部很黄的大片| 亚洲精品久久国产高清桃花| 国产精品99久久久久久久久| www.999成人在线观看| 久久伊人香网站| 日本与韩国留学比较| 精品欧美国产一区二区三| h日本视频在线播放| 少妇裸体淫交视频免费看高清| 精品久久久久久久人妻蜜臀av| 国产私拍福利视频在线观看| 亚洲欧美日韩无卡精品| 久久亚洲真实| 在线播放无遮挡| 久久人人爽人人爽人人片va | 亚洲一区二区三区不卡视频| 久久精品夜夜夜夜夜久久蜜豆| 老司机午夜十八禁免费视频| 动漫黄色视频在线观看| 男女视频在线观看网站免费| 亚洲午夜理论影院| 国产av不卡久久| 亚洲第一电影网av| 精华霜和精华液先用哪个| 好男人在线观看高清免费视频| 国产毛片a区久久久久| 国产精品自产拍在线观看55亚洲| 成人亚洲精品av一区二区| 男人舔奶头视频| 亚洲国产色片| 亚洲人成网站在线播放欧美日韩| 淫秽高清视频在线观看| 久久久精品大字幕| 丰满的人妻完整版| 成熟少妇高潮喷水视频| 2021天堂中文幕一二区在线观| 熟女人妻精品中文字幕| 国产午夜福利久久久久久| 在线观看午夜福利视频| 久久精品国产亚洲av涩爱 | 成年女人永久免费观看视频| 日本一本二区三区精品| 久久久成人免费电影| 精品日产1卡2卡| 精品人妻视频免费看| 在线看三级毛片| 又粗又爽又猛毛片免费看| 久久久国产成人免费| 亚洲中文字幕一区二区三区有码在线看| 免费搜索国产男女视频| 久久精品国产亚洲av涩爱 | 日日干狠狠操夜夜爽| 搞女人的毛片| 乱人视频在线观看| 99久久精品一区二区三区| 十八禁网站免费在线| 精品久久久久久久久久久久久| 久久精品国产自在天天线| 蜜桃亚洲精品一区二区三区| 亚洲精品一区av在线观看| 亚洲成人久久爱视频| 欧美日韩黄片免| 久久性视频一级片| 欧美日韩综合久久久久久 | 久久国产乱子伦精品免费另类| 午夜激情欧美在线| 老熟妇仑乱视频hdxx| 午夜精品在线福利| 国产老妇女一区| 亚洲精品久久国产高清桃花| h日本视频在线播放| 国产精品久久视频播放| 国产白丝娇喘喷水9色精品| 丝袜美腿在线中文| 免费看光身美女| 91在线精品国自产拍蜜月| 国产探花极品一区二区| 亚洲av电影在线进入| 赤兔流量卡办理| АⅤ资源中文在线天堂| 亚洲在线观看片| 亚州av有码| 久久国产精品人妻蜜桃| 国产欧美日韩一区二区三| 别揉我奶头 嗯啊视频| 男女做爰动态图高潮gif福利片| 欧美极品一区二区三区四区| eeuss影院久久| 特大巨黑吊av在线直播| 91av网一区二区| 蜜桃亚洲精品一区二区三区| 国产午夜精品久久久久久一区二区三区 | 国产精华一区二区三区| 免费看光身美女| 精品免费久久久久久久清纯| 亚洲最大成人中文| 亚洲av第一区精品v没综合| 成人永久免费在线观看视频| 欧美性感艳星| 好看av亚洲va欧美ⅴa在| 日本免费a在线| 欧美绝顶高潮抽搐喷水| 欧美激情在线99| 免费无遮挡裸体视频| 欧美黑人巨大hd| 国语自产精品视频在线第100页| 欧美黑人巨大hd| 欧美日韩综合久久久久久 | 五月玫瑰六月丁香| 亚洲在线观看片| 九色成人免费人妻av| 可以在线观看毛片的网站| 久久久久久大精品| 在线播放无遮挡| 日韩欧美免费精品| 内射极品少妇av片p| 一个人免费在线观看电影| 久久久久久久久久成人| 九九热线精品视视频播放| 色5月婷婷丁香| 亚洲七黄色美女视频| 99国产精品一区二区三区| 国产三级黄色录像| 中文字幕高清在线视频| 舔av片在线| 757午夜福利合集在线观看| 夜夜爽天天搞| 亚洲人成网站在线播放欧美日韩| 久久性视频一级片| 91久久精品电影网| 欧美xxxx性猛交bbbb| 精品人妻1区二区| 国产精品伦人一区二区| 欧美bdsm另类| 久久久久精品国产欧美久久久| 波多野结衣高清作品| 亚洲av中文字字幕乱码综合| 欧美性猛交╳xxx乱大交人| 搞女人的毛片| 中亚洲国语对白在线视频| 变态另类成人亚洲欧美熟女| a在线观看视频网站| 国产精品一区二区性色av| 午夜激情欧美在线| 久久人人精品亚洲av| 亚洲人成网站在线播| 国产精品久久久久久精品电影| av黄色大香蕉| 国产av不卡久久| 成人一区二区视频在线观看| 一个人免费在线观看的高清视频| 亚洲,欧美,日韩| 嫩草影院入口| 在线天堂最新版资源| 99精品久久久久人妻精品| 最好的美女福利视频网| 国产成人欧美在线观看| 黄色女人牲交| 国产色婷婷99| 国产精品自产拍在线观看55亚洲|