• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Boosting Cu(In,Ga)Se2 Thin Film Growth in Low-Temperature Rapid-Deposition Processes:An Improved Design for the Single-Heating Knudsen Effusion Cell

    2021-08-30 07:06:40YunxiangZhangShupingLinShiqingChengZhichaoHeZhaojingHuZhiqiangZhouWeiLiuYunSun
    Engineering 2021年4期

    Yunxiang Zhang ,Shuping Lin ,Shiqing Cheng ,Zhichao He ,Zhaojing Hu ,Zhiqiang Zhou ,Wei Liu ,*,Yun Sun

    a Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin,Institute of Photoelectronic Thin Film and Devices,College of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China

    b Engineering Center of Thin Film Photoelectronic Technology of Ministry of Education,Institute of Photoelectronic Thin Film and Devices,College of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China

    Keywords:

    Cu(In,Ga)Se2 Knudsen effusion cell Condensation Droplet ejection Low temperature

    ABSTRACT The Knudsen effusion cell is often used to grow high-quality Cu(In,Ga)Se2(CIGS)thin film in coevaporation processes.However,the traditional single-heating Knudsen effusion cell cannot deliver complete metal selenides during the whole deposition process,particularly for a low-temperature deposition process,which is probably due to the condensation and droplet ejection at the nozzle of the crucible.In this study,thermodynamics analysis is conducted to decipher the reason for this phenomenon.Furthermore,a new single-heating Knudsen effusion is proposed to solve this difficult problem,which leads to an improvement in the quality of CIGS film and a relative increase in conversion efficiency of 29%at a growth rate of about 230 nm·min-1,compared with the traditional efficiency in a lowtemperature rapid-deposition process.

    1.Introduction

    The Knudsen effusion cell is one of the most universal evaporators used to grow high-quality Cu(In,Ga)Se2(CIGS)film in coevaporation processes.Recently,many research institutions,such as Center for Solar Energy and Hydrogen Research Baden-Württemberg[1],National Renewable Energy Laboratory[2],Solibro GmbH[3],and Uppsala University[4],have achieved a record efficiency of above 20%for CIGS devices using this method.However,when traditional single-heating Knudsen effusion cells are used as the evaporators of copper(Cu),indium(In),or gallium(Ga),obvious condensation and droplet ejection can be observed at the nozzle of the crucible[5,6].If these droplets spray onto the substrate,a large amount of incomplete metal selenides form on the CIGS film.In addition,a low substrate temperature will further deteriorate the quality of the CIGS film due to the low diffusion coefficient of the metal elements[7].In order to grow highquality CIGS film,many researchers choose a Knudsen effusion cell that consists of two independent heating systems,which is known as the double-heating Knudsen effusion cell.One heating system is used to evaporate the material in the crucible and the other is applied to keep the nozzle of the crucible at a high temperature in order to avoid the formation of condensation and droplet ejection there[6,8].Although the double-heating Knudsen effusion cell has a more favorable structure than the traditional cell,it requires a more complex control system and has a higher cost.Thus,it is necessary to design a new low-cost single-heating Knudsen effusion cell to grow high-quality CIGS film.

    In this work,we focus on the CIGS film grown in a lowtemperature deposition process.First,we report on our investigation of the surface morphology of CIGS films prepared at different growth rates with traditional single-heating Knudsen effusion cells and our observation of some incomplete metal selenides in the CIGS film.Subsequently,we describe our failed attempts to eliminate these incomplete metal selenides by simply increasing the temperature of the selenium(Se)evaporator.We then attempt to identify the causes of the formation of incomplete metal selenides in CIGS films and analyze these causes using a thermodynamics process.Finally,we propose a new single-heating Knudsen effusion cell.

    2.Experimental process

    2.1.Preparation of films and solar cells

    CIGS films with different growth rates were fabricated onto a molybdenum(Mo)-coated substrate in a three-stage co-evaporation process[9].During the deposition process,the temperature of the Se source was kept at 310°C.After CIGS deposition,a 50 nm thick cadmium sulfide(CdS)buffer layer was prepared by chemical bath deposition at a temperature of 77°C.Sequentially,intrinsic zinc oxide(i-ZnO)and aluminum(Al)-doped zinc oxide(Al-ZnO)layers were deposited with thicknesses of 50 and 500 nm,respectively.Finally,a nickel(Ni)/Al grid with a thickness of about 1.5μm was grown on top of the stacked layers.The active area of the CIGS solar cells is 0.34 cm2with no antireflection coating[10].

    For our baseline co-evaporation process,the deposition times of the three stages were respectively 15,18,and 3 min,and the average growth rate of this process was about 63 nm·min-1(named‘‘Sample L”).We also fabricated two other samples with growth rates of 104 nm·min-1(Sample M)and 231 nm·min-1(Sample H).For the samples prepared by the new single-heating Knudsen effusion cell,the average growth rate of Sample L-N was similar to that of Sample L,and the average growth rate of Sample H-N approached that of Sample H(where‘‘-N”indicates the samples that were fabricated by the new single-heating Knudsen effusion cell).

    2.2.Characterization

    The composition of the CIGS film was determined by MagixPW2403(Royal Philips NV,the Netherlands)X-ray fluorescence(XRF)analysis.An optical microscope(OM,STM6-LM,Olympus Corporation,Japan)was used to measure the surface morphology of the CIGS films.A scanning electron microscope(SEM)was used to characterize the morphology of the films,and its elemental distribution was measured by energy dispersive spectroscopy(EDS).The site-specific components of the elements were characterized by focused ion beam(FIB).Hall measurement(HL5550PC,Accent Optical Technologies,Inc.,USA)was used to determine the electrical characterizations of the CIGS films at room temperature.The current-voltage(I-V)characteristics of the CIGS solar cells were measured by a Keithley 2420(Keithley,USA)SourceMeter under air mass(AM)1.5G(100 mW·cm-2)illumination.The external quantum efficiency(EQE)of the solar cells was measured by the ratio of the short-circuit photocurrent to the incident illumination intensity in the range of 350-1300 nm.The capacitance-voltage(C-V)and admittance spectroscopy(AS)characterizations were determined by an HP 4284A LCR meter(Agilent Technologies,USA).

    3.Results and discussion

    3.1.Effect of traditional single-heating Knudsen effusion cells on CIGS films

    Table 1 summarizes the components and thickness of the CIGS films prepared at different growth rates by traditional single-heating Knudsen effusion cells.The molar fraction ratios of χGa/(χGa+χIn)(GGI)andχCu/(χGa+χIn)(CGI),and the thickness of these films are roughly similar for all absorbers.

    The surface morphologies of the CIGS films grown at different growth rates were investigated by OM,as shown in Fig.1.The morphology of the CIGS films was strongly affected by the growth rate.When the growth rate was increased from 63 to 231 nm·min-1,a large number of dark spots were observed in the CIGS film.

    Fig.2(a)displays the SEM micrographs of Sample H;an island accumulation can be observed at the location of each dark spot.To determine the composition of the island accumulation,elemental mappings for Cu,In,Ga,and Se in Sample H are shown in Figs.2(b)-(e),respectively.These mappings show that the island accumulation contains a high In content,which appears to be connected to the presence of incomplete metal selenides.In addition,two black dots next to the island accumulation appear in all elemental mappings.This phenomenon may be attributed to highenergy electron beams being blocked by the island accumulation during EDS mapping processes.In order to further distinguish the components of the island accumulation,the FIB result is shown in Fig.3.Three locations in an island accumulation were chosen randomly and labeled 1,2,and 3;their EDS components are summarized in Table 2.Although Cu has an almost uniform distribution in the film due to its high diffusion coefficient[7],the GGI value decreases from 0.692 to 0.255.This suggests the presence of a large amount of In in the island accumulation,which aligns with the elemental mapping results in Fig.2(c).Previous studies have proposed that the expected molar fraction ratio of 2χSe/[χCu+3(χIn+χGa)]in CIGS film should be close to 1[11,12].However,the ratios of the samples located at 1,2,and 3 are 0.447,0.808,and 0.612,respectively,which can be linked to the presence of binary phases.From the result of the Hall measurement shown in Table 3,it is found that Sample H has a higher carrier concentration and lower resistivity than Sample L,which indicates the presence of some metal-like phases in the former[13].

    3.2.The way to eliminate dark spots

    To eliminate these metal-like phases,it is necessary to selenize the CIGS film completely.Previous research has reported that the degree of selenization for CIGS films is correlated with the Se fluxes,with higher Se fluxes promoting the degree of selenization[14].However,regardless of the growth rates of CIGS films,the temperature of the Se evaporator was always kept at 310°C;this indicates that the Se fluxes for Sample H may be insufficient.Therefore,we increased the temperature of the Se evaporator for Sample H from 310 to 320,330,340,and 350°C,respectively;their OMresults are shown in Fig.4.However,these films still contain a large number of dark spots,which confirms that simply increasing the temperature of the Se evaporator is not an effective way to eliminate island accumulation(dark spots)in CIGS film.

    In fact,condensation and droplet ejection can also be observed at the nozzle of the Cu and Ga crucibles,which confirms that the traditional single-heating Knudsen effusion cell is incapable of growing high-quality CIGS film in this experiment.However,in our laboratory,a similar single-heating Knudsen effusion cell has no condensation when the height of the crucible is about 2 cm,implying that the height of the crucible may be a crucial factor in the phenomenon of condensation.

    Table 1 Components of CIGS films at different growth rates,determined by XRF.

    Fig.1.OM images of(a)Sample L,(b)Sample M,and(c)Sample H.

    Fig.2.SEM morphology images of(a)Sample H and its elemental distribution measured by EDS in SEM:(b)Cu,(c)In,(d)Ga,and(e)Se.

    Fig.3.FIB image of Sample H.Locations 1,2,and 3 were selected from different parts of the dark spot.

    Supposing that the effusion cell has no heat loss,its temperature is the same everywhere in the crucible.Here,the mass-loss Knudsen effusion model was employed to explore the relationship between the condensation and the height of the crucible.During the period t,the vapor pressure P can be calculated by Eqs.(1)and(2)[15,16]:

    where m is the mass of the effused metal element,t is the effusion time,T is the temperature,A0is the area of the crucible,ω0is the transmission probability factor of the effusion cell,R is the molar gas constant,r is the radius of the crucible,l is the length of theeffusion orifice,and M is the molar mass.As shown in Fig.5(a),as the radius of the crucible is the same from top to bottom,we can treat the length of the effusion orifice l as the height of the crucible.Moreover,an assumption has been made that vapor pressures are the same in the whole crucible.According to Eqs.(1)and(2),the height of the crucible can be expressed by the following:

    Table 2 Components and GGI values of samples at different locations in the island accumulation.

    Fig.4.OMimages of CIGS films prepared at different Se evaporator temperatures at a growth rate of about 230 nm·min-1 and a substrate temperature of 450°C.Results are provided for the Se evaporator at the temperatures of(a)320°C,(b)330°C,(c)340°C,and(d)350°C.

    where QMis the metal vapor energy taken from the crucible.QT,QB,and QLare the heat loss at the top,bottom,and lateral of the single-heating Knudsen effusion cell,respectively as shown in Fig.5(a).Although the bottom and lateral of the effusion cell haveno obvious effect on the heat change of the crucible,QTand QMwill obviously increase the total heat loss and result in the formation of condensation.Based on the temperature of the nozzle and the bottom of the crucible,QTand QMcan be calculated by the heat radiation rule[17]:

    Table 3 Hall results for Samples H and L.

    whereε,a,and c are the emissivity,radiation constant,and radiation propagation speed in a vacuum,respectively.Here,QLS,T1,and T2are used to characterize the heat loss energy,absolute temperature for radiation,and absolute temperature for the absorber,respectively.With the increase of heat loss energy,the temperature at the nozzle of the crucible will decrease.According to the Maxwell speed distribution function,the mean gas speedˉv is[18]

    Fig.5.Schematic of(a)the traditional single-heating Knudsen effusion cell and(b)the new single-heating Knudsen effusion cell.The heat loss Q M is the metal vapor energy taken from the crucible.Q T,Q B,and Q L are the heat loss at the top,bottom,and lateral of the single-heating Knudsen effusion cell,respectively.1:the insulating layer for the effusion cell;2:the crucible;3:the single-heating coil of the effusion cell;4:the evaporated material in the crucible;5:the insulating layer at the bottom of the effusion;6;the extra heater zone for the cell.

    where k is the Boltzmann constant.As the temperature at the nozzle of the crucible decreases,the speed of the vapor will be reduced.If this metal vapor becomes metal droplets,the speed of these droplets will be further reduced due to the fact that the molar mass for droplets is larger than that of the metal vapor.When these droplets spray onto the substrate,dark spots will form in the CIGS film.Furthermore,a higher evaporation temperature will result in the formation of larger metal droplets,which are caused by the increased molecular collision frequency for metal elements.Thus,more dark spots are present in Sample H than in Sample L.To summarize,serious heat loss at the nozzle of the crucible is the major factor for condensation.

    Based on the theory analysis described above,we propose a new single-heating Knudsen effusion cell,shown in Fig.5(b).In comparison with the traditional effusion cell,the new cell has an extended heater on the upper half of the crucible,which is applied to provide extra energy to compensate for the heat loss at the nozzle of the crucible.The extended heater is part of the single-heating coil,so there is no need to introduce a new heating circuit and change the winding density of the single-heating system.It is only necessary to determine the length of the extended heater from the following equations:

    where ISis the current of the resistance wire of the new Knudsen effusion cell.QS,RS,ρ,S,and LSare the heat energy from the extended heater,resistance,electrical resistivity,sectional area,and length of the heat wire of second layer,respectively.In order to maintain a high temperature at the nozzle of the crucible,QSmust be greater than QLSor QMand QT;the length of the extended heater can be expressed as follows:

    To research the effect of the new single-heating Knudsen effusion cell on CIGS film,different samples prepared by the traditional effusion cell and by the new cell are compared in Fig.6.It is clear that the surface of Sample H-N is smoother than that of Sample H,which indicates that the new cell can effectively reduce condensation and droplet ejection at the nozzle of the effusion cell and improve the quality of the CIGS film.Samples L and L-N,which have a lower growth rate,show a similar result.

    3.3.Solar cell device performances

    Fig.7 shows the I-V and EQE graphs for solar cells made from Samples H,H-N,L,and L-N with the same batch.Obviously,the device performance of solar cells made using the new effusion cell is higher than that of those made from the traditional one,which is mainly attributed to a high-quality CIGS films.In addition,the statistic boxplots for the short-circuit current density(Jsc),opencircuit voltage(Voc),and fill factor(FF)of the cells are shown in Figs.8(a),(b),and(c),respectively.These figures show that the enhanced efficiency of solar cells made using the new singleheating Knudsen effusion cell is mainly derived from both the Vocand FF.However,the Jscof Sample H and that of Sample H-N are slightly larger than those of Samples L and L-N,which may be related to the different growth rates of the samples.According to Ref.[19],a high growth rate in the second stage of the threestage co-evaporation process will result in a smaller minimum GGI value(mini GGI value).Thus,the varied Jsccan be attributed to the mini GGI value of the absorber layer,which absorbs more long-wavelength light[20].

    Fig.6.SEM morphology images of CIGS films for(a)Sample H,(b)Sample H-N,(c)Sample L,and(d)Sample L-N,where Samples L-N and H-N were fabricated by the new single-heating Knudsen effusion cell.Insets:OM images of the corresponding films.

    Fig.7.(a)I-V curves and(b)EQE responses of the best CIGS solar cells fabricated from different absorber samples.ηis the best efficiency of each batch cells.J sc:short-circuit current density;V oc:open-circuit voltage;FF:fill factor.

    Fig.8.Statistics boxplots of(a)the J sc,(b)the V oc,and(c)the FF of the CIGS solar cells.

    3.4.Defect characteristics in CIGS devices

    In order to further investigate the cause of the improved Vocand FF,the results of C-V measurement are shown in Fig.9.The doping concentration(NA)in the CIGS films is 1.24×1016,1.04×1016,6.46×1015,and 3.72×1015cm-3for Samples H,H-N,L,and L-N,respectively;thus,the new effusion caused the doping level to decrease.According to Refs.[10,21],the relationship between the Vocand NAcan be estimated by Eq.(10):

    where q is the elementary charge.Based on this relationship,a higher doping concentration NAshould lead to a higher Voc[21];however,a higher NAcorresponds to a lower Vocin our samples,so we can deduce that there should be other factors affecting the Vocof these devices.

    To explore the main factor affecting the Voc,AS measurement was applied to determine the defect densities and their distributions for our samples.The results are shown in Fig.S1 in Appendix A.The deduced density spectra derived from the admittance spectra are shown in Fig.10.The concentration of the defect level of Sample H is so high that its device performance clearly deteriorates.In addition,a shallow defect with an energy level of about 33.1 meV can be associated with some incomplete selenized metal elements in the film,which can be verified by Hall measurement.The defect density of Sample H-N decreased from 3.17×1016to 1.05×1016cm-3·eV-1and the defect level increased from 33.1 to 173.1 meV,as shown in Fig.10(b).This indicates that the quality of CIGS films with high growth rates is improved by the new effusion cell.Moreover,samples with normal growth rates have a similar variation trend,as shown in Figs.10(c)and(d).Therefore,we can conclude that the new single-heating Knudsen effusion cell can improve the quality of the films.

    Based on all of the analysis described above,we deduced that the difference in defect density and its distributions will contribute to the Vocand FF.A comparison of all samples in Fig.6 shows that there are dark spots in Samples H,L,and H-N,whose Vochas decreased significantly compared with that of Sample L-N.These defects appear to be related to the shallow defect(the so-called N1 defect),which can obviously deteriorate the Voc[22,23].Thus,dark spots in the CIGS film will lead to higher defect density and a deeper defect level.In addition,the N2 is often observed at about 250-300 meV and has no obvious effect on the device performance[23].Therefore,the defects of Sample L-N may be attributed to the N2 defect.

    4.Conclusions

    Fig.9.Carrier concentration distributions for(a)Sample H,(b)Sample H-N,(c)Sample L,and(d)Sample L-N.

    Fig.10.Deduced density spectra derived from the admittance spectra for(a)Sample H,(b)Sample H-N,(c)Sample L,and(d)Sample L-N.E t is the corresponding defect energy level and N t is the density of defect states.

    This work examined the effect of the traditional single-heating Knudsen effusion cell on CIGS films with different growth rates.A comparison of samples with different growth rates showed that the quality of CIGS film is significantly influenced by the growth rate,with a higher rate often producing film with a large number of dark spots.Moreover,the dark spots appear to enhance the metal characteristic of the film due to the existence of some metal-like phase.Only increasing the temperature of the Se evaporator does not eliminate the dark spots,indicating that the Se flux is not responsible for the complete metal selenides.Considering the structure of the traditional single-heating Knudsen cell,serious heat loss is observed at the nozzle of the crucible,which is likely to be the reason for the formation of dark spots.Based on thermodynamic analysis,we designed a new single-heating Knudsen effusion cell that can compensate for the thermal loss at the nozzle of the crucible to prevent condensation.Eventually,using the new single-heating Knudsen effusion cell,we obtained the best solar cells with a conversion efficiency of 16.1%and 13.3%at growth rates of about 60 and 230 nm·min-1,and a substrate temperature of 450°C,respectively.In addition,the results of AS measurement show that the dark spots are related to N1 defects,where a large number of dark spots results in higher defect density and a lower defect level,which obviously deteriorates the device performance.We hope that this work will be helpful for the preparation of high-quality CIGS film by means of a low-cost single-heating Knudsen effusion cell.

    Acknowledgements

    The work was supported by the National Key R&D Program of China(2018YFB1500200),the National Natural Science Foundation of China(61774089 and 61974076),and the Natural Science Foundation of Tianjin(18JCZDJC31200).

    Compliance with ethics guidelines

    Yunxiang Zhang,Shuping Lin,Shiqing Cheng,Zhichao He,Zhaojing Hu,Zhiqiang Zhou,Wei Liu,and Yun Sun declare that they have no conflict of interest or financial conflicts to disclose.

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.eng.2020.01.016.

    1000部很黄的大片| 淫秽高清视频在线观看| 99在线视频只有这里精品首页| 99热这里只有精品一区| 久久久久久久久久成人| 美女大奶头视频| 综合色av麻豆| 99热全是精品| 看黄色毛片网站| av女优亚洲男人天堂| 中文字幕亚洲精品专区| 少妇高潮的动态图| 国产亚洲5aaaaa淫片| 国产黄a三级三级三级人| 一本久久精品| 99热这里只有是精品50| 成年女人看的毛片在线观看| 中文精品一卡2卡3卡4更新| 国产成人a∨麻豆精品| 国产精品伦人一区二区| 看免费成人av毛片| 国内揄拍国产精品人妻在线| 69人妻影院| 色视频www国产| 看黄色毛片网站| 日本免费一区二区三区高清不卡| 中文字幕熟女人妻在线| 三级毛片av免费| 欧美97在线视频| 一级黄色大片毛片| 亚州av有码| 丰满少妇做爰视频| 丝袜喷水一区| 亚洲av日韩在线播放| 成人国产麻豆网| 一个人免费在线观看电影| 日韩 亚洲 欧美在线| 黄色欧美视频在线观看| 成人毛片a级毛片在线播放| 亚洲精品乱久久久久久| 午夜老司机福利剧场| 国产精品久久电影中文字幕| 亚洲经典国产精华液单| 国产精品一及| 亚洲四区av| 日韩欧美国产在线观看| 日本黄色视频三级网站网址| 亚洲自偷自拍三级| 人妻少妇偷人精品九色| 久久亚洲国产成人精品v| 久久久午夜欧美精品| 久久久久久大精品| 免费看av在线观看网站| 亚洲色图av天堂| eeuss影院久久| 免费观看性生交大片5| 蜜桃亚洲精品一区二区三区| 三级经典国产精品| 亚州av有码| 国内精品宾馆在线| 欧美潮喷喷水| 日韩人妻高清精品专区| 99九九线精品视频在线观看视频| 国产69精品久久久久777片| 在线播放无遮挡| 日日啪夜夜撸| 欧美性猛交╳xxx乱大交人| 秋霞在线观看毛片| 国产午夜精品论理片| 日日啪夜夜撸| 国产精品人妻久久久影院| 岛国在线免费视频观看| 青春草国产在线视频| 直男gayav资源| 亚洲av二区三区四区| 搡女人真爽免费视频火全软件| 99久久无色码亚洲精品果冻| 国产色爽女视频免费观看| 亚洲国产高清在线一区二区三| 日韩大片免费观看网站 | 又爽又黄a免费视频| www.av在线官网国产| 国产一区二区在线观看日韩| 一本久久精品| 久久久久久久久中文| 午夜福利在线在线| 天美传媒精品一区二区| 久久久久久久久久久丰满| 在线a可以看的网站| 色吧在线观看| 亚洲四区av| 啦啦啦韩国在线观看视频| 成人毛片a级毛片在线播放| 久久久久久久午夜电影| 久久草成人影院| 亚洲最大成人中文| 热99在线观看视频| 在现免费观看毛片| 看片在线看免费视频| 亚洲精品aⅴ在线观看| 丰满人妻一区二区三区视频av| av卡一久久| 别揉我奶头 嗯啊视频| 国产精品国产高清国产av| 欧美日韩精品成人综合77777| 超碰av人人做人人爽久久| 一级黄片播放器| 国产精品电影一区二区三区| 婷婷色麻豆天堂久久 | 国产伦精品一区二区三区四那| 国产成人精品久久久久久| 久久久久久久久久黄片| 成人无遮挡网站| av黄色大香蕉| 九九在线视频观看精品| 天堂√8在线中文| 99久国产av精品国产电影| 乱码一卡2卡4卡精品| 国产精品1区2区在线观看.| 久久婷婷人人爽人人干人人爱| 美女内射精品一级片tv| 亚洲天堂国产精品一区在线| 插逼视频在线观看| 一边亲一边摸免费视频| 日韩一区二区三区影片| 黄色配什么色好看| www.色视频.com| 成人无遮挡网站| 国产又黄又爽又无遮挡在线| 国产高潮美女av| 精品久久久久久久久av| 建设人人有责人人尽责人人享有的 | 亚洲av免费高清在线观看| 久久久a久久爽久久v久久| av天堂中文字幕网| 久久久成人免费电影| 男人的好看免费观看在线视频| 国产免费又黄又爽又色| 亚洲欧美日韩无卡精品| 丰满少妇做爰视频| 亚洲,欧美,日韩| 欧美日韩精品成人综合77777| 午夜老司机福利剧场| 国产精品电影一区二区三区| 国产精品国产三级专区第一集| 偷拍熟女少妇极品色| 欧美成人午夜免费资源| 中文天堂在线官网| 卡戴珊不雅视频在线播放| 亚洲人成网站高清观看| 村上凉子中文字幕在线| 大香蕉97超碰在线| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产欧美在线一区| 成年免费大片在线观看| 欧美日韩综合久久久久久| 亚洲精品乱久久久久久| 久久草成人影院| 九九在线视频观看精品| 少妇裸体淫交视频免费看高清| 中文字幕亚洲精品专区| 男女啪啪激烈高潮av片| 18禁在线无遮挡免费观看视频| 一级爰片在线观看| 97人妻精品一区二区三区麻豆| 美女内射精品一级片tv| 欧美日韩国产亚洲二区| 天堂√8在线中文| 欧美丝袜亚洲另类| 国产白丝娇喘喷水9色精品| 丰满人妻一区二区三区视频av| 三级毛片av免费| 九草在线视频观看| 日本猛色少妇xxxxx猛交久久| 国产单亲对白刺激| 麻豆久久精品国产亚洲av| 色综合站精品国产| 中文在线观看免费www的网站| 一区二区三区高清视频在线| 美女内射精品一级片tv| 国产又色又爽无遮挡免| 我的女老师完整版在线观看| 欧美3d第一页| 两个人的视频大全免费| 免费搜索国产男女视频| 国产又色又爽无遮挡免| 亚洲综合色惰| 成人鲁丝片一二三区免费| 黄色一级大片看看| 最近视频中文字幕2019在线8| 亚洲无线观看免费| 亚洲成av人片在线播放无| 日韩,欧美,国产一区二区三区 | 一夜夜www| 能在线免费看毛片的网站| 国产视频内射| 国产伦一二天堂av在线观看| 一级黄色大片毛片| 国产午夜精品久久久久久一区二区三区| 亚洲精品影视一区二区三区av| 久久精品熟女亚洲av麻豆精品 | 国产欧美另类精品又又久久亚洲欧美| 蜜桃亚洲精品一区二区三区| 91午夜精品亚洲一区二区三区| av视频在线观看入口| 一级爰片在线观看| 热99在线观看视频| 秋霞在线观看毛片| av在线蜜桃| 我要搜黄色片| 国产欧美日韩精品一区二区| 亚洲综合色惰| 亚洲av不卡在线观看| 国产极品精品免费视频能看的| 少妇裸体淫交视频免费看高清| 国产色爽女视频免费观看| 欧美日韩在线观看h| 亚洲va在线va天堂va国产| 看片在线看免费视频| 久久精品夜夜夜夜夜久久蜜豆| 中文乱码字字幕精品一区二区三区 | 日日摸夜夜添夜夜添av毛片| 国产精品一区二区三区四区久久| 亚洲人成网站在线播| 国产乱人视频| 久久国内精品自在自线图片| 岛国毛片在线播放| 国产亚洲最大av| 久久久久久久久久久丰满| 午夜福利在线在线| 国产人妻一区二区三区在| 岛国毛片在线播放| 一级毛片久久久久久久久女| 免费一级毛片在线播放高清视频| 婷婷六月久久综合丁香| 久久草成人影院| 亚洲精品aⅴ在线观看| 丝袜美腿在线中文| 日日摸夜夜添夜夜添av毛片| 国产高清视频在线观看网站| 国产精品永久免费网站| 3wmmmm亚洲av在线观看| 成人鲁丝片一二三区免费| 久久精品91蜜桃| 日本av手机在线免费观看| 国产日韩欧美在线精品| 亚洲怡红院男人天堂| 韩国av在线不卡| 插逼视频在线观看| 国产免费视频播放在线视频 | 国产精品国产三级专区第一集| 最近手机中文字幕大全| 免费无遮挡裸体视频| 成人特级av手机在线观看| 久久精品国产鲁丝片午夜精品| 只有这里有精品99| 能在线免费观看的黄片| 成年女人看的毛片在线观看| 亚洲五月天丁香| 免费av观看视频| 国产一区亚洲一区在线观看| 在线播放国产精品三级| 免费播放大片免费观看视频在线观看 | 久久久久久久久久久丰满| 国产三级在线视频| 中文字幕精品亚洲无线码一区| 99视频精品全部免费 在线| 少妇裸体淫交视频免费看高清| 欧美一级a爱片免费观看看| 黄片wwwwww| 久久久久网色| 国产一级毛片七仙女欲春2| 99国产精品一区二区蜜桃av| 亚洲性久久影院| 中文精品一卡2卡3卡4更新| 九九爱精品视频在线观看| 波野结衣二区三区在线| 国产av码专区亚洲av| eeuss影院久久| 亚洲国产欧美人成| 国产精品嫩草影院av在线观看| 99久久成人亚洲精品观看| 国产免费福利视频在线观看| 中文精品一卡2卡3卡4更新| 男女视频在线观看网站免费| 成年女人永久免费观看视频| 热99re8久久精品国产| 熟女电影av网| av国产久精品久网站免费入址| 久久久久久久久中文| 七月丁香在线播放| 亚洲国产精品久久男人天堂| 黄片wwwwww| 建设人人有责人人尽责人人享有的 | 九九久久精品国产亚洲av麻豆| 国产精品一二三区在线看| 大话2 男鬼变身卡| 亚洲av免费高清在线观看| 久久久久国产网址| or卡值多少钱| 精品国内亚洲2022精品成人| 五月玫瑰六月丁香| 国产高清三级在线| 最近最新中文字幕免费大全7| 欧美成人精品欧美一级黄| 亚洲精品日韩在线中文字幕| av女优亚洲男人天堂| 你懂的网址亚洲精品在线观看 | av在线蜜桃| 午夜老司机福利剧场| 免费无遮挡裸体视频| 偷拍熟女少妇极品色| 天堂av国产一区二区熟女人妻| 97超视频在线观看视频| 观看免费一级毛片| 亚洲精品乱久久久久久| 国产一区有黄有色的免费视频 | 国产精品日韩av在线免费观看| 丝袜喷水一区| 亚洲精品色激情综合| 又爽又黄a免费视频| 精品国产三级普通话版| 成人亚洲精品av一区二区| av在线观看视频网站免费| 国产黄色视频一区二区在线观看 | 99热这里只有是精品在线观看| 日韩人妻高清精品专区| 三级毛片av免费| 边亲边吃奶的免费视频| 麻豆成人午夜福利视频| 日韩人妻高清精品专区| 午夜激情福利司机影院| 欧美又色又爽又黄视频| 99热这里只有是精品在线观看| 久久久亚洲精品成人影院| 国产精品熟女久久久久浪| 精品不卡国产一区二区三区| 亚洲综合精品二区| 熟女电影av网| 亚洲av免费高清在线观看| 全区人妻精品视频| 亚洲欧美清纯卡通| 国产一级毛片七仙女欲春2| 亚洲精品国产av成人精品| 国产白丝娇喘喷水9色精品| 岛国在线免费视频观看| 三级经典国产精品| 亚洲国产最新在线播放| 人体艺术视频欧美日本| av国产久精品久网站免费入址| 久久久久久久久久久免费av| 国模一区二区三区四区视频| 精品不卡国产一区二区三区| 大香蕉97超碰在线| 纵有疾风起免费观看全集完整版 | 免费看av在线观看网站| 哪个播放器可以免费观看大片| 又爽又黄无遮挡网站| 中文欧美无线码| 麻豆av噜噜一区二区三区| 亚洲精品日韩在线中文字幕| 美女高潮的动态| 日本与韩国留学比较| 免费在线观看成人毛片| 日韩欧美精品v在线| 国产精品一二三区在线看| 蜜臀久久99精品久久宅男| 久久精品国产亚洲网站| 中文欧美无线码| 欧美3d第一页| 26uuu在线亚洲综合色| 18禁动态无遮挡网站| www日本黄色视频网| 嘟嘟电影网在线观看| 国产精品无大码| 国产精品伦人一区二区| 国内揄拍国产精品人妻在线| 又爽又黄a免费视频| 99热网站在线观看| 国产免费又黄又爽又色| 欧美一区二区国产精品久久精品| 国产午夜精品一二区理论片| 美女xxoo啪啪120秒动态图| 高清视频免费观看一区二区 | 免费看日本二区| 欧美日韩在线观看h| 蜜桃亚洲精品一区二区三区| 亚洲欧美成人综合另类久久久 | 变态另类丝袜制服| 成人午夜精彩视频在线观看| 免费大片18禁| 看免费成人av毛片| 久久午夜福利片| av天堂中文字幕网| 在现免费观看毛片| 国产三级中文精品| 男人狂女人下面高潮的视频| 久久精品夜夜夜夜夜久久蜜豆| 99久久人妻综合| 高清日韩中文字幕在线| 亚洲在线观看片| 国产精品一区二区三区四区久久| 麻豆一二三区av精品| 国产高清国产精品国产三级 | 男女视频在线观看网站免费| 亚洲中文字幕日韩| 成人性生交大片免费视频hd| 免费看a级黄色片| 亚洲精品456在线播放app| 国产一区二区在线观看日韩| 精品人妻一区二区三区麻豆| 黑人高潮一二区| 国产免费又黄又爽又色| 91久久精品国产一区二区三区| 国产又色又爽无遮挡免| 久久综合国产亚洲精品| 免费无遮挡裸体视频| videossex国产| 国产av码专区亚洲av| 日韩亚洲欧美综合| 男女啪啪激烈高潮av片| 久久精品国产99精品国产亚洲性色| 91av网一区二区| 亚洲不卡免费看| 亚洲国产精品专区欧美| 黄色欧美视频在线观看| 激情 狠狠 欧美| 国产伦在线观看视频一区| 搡老妇女老女人老熟妇| 九草在线视频观看| 男人的好看免费观看在线视频| 午夜福利网站1000一区二区三区| 麻豆精品久久久久久蜜桃| 国产真实伦视频高清在线观看| 午夜福利成人在线免费观看| 高清日韩中文字幕在线| 免费一级毛片在线播放高清视频| 免费观看人在逋| 国产精品.久久久| 久久久久九九精品影院| 91午夜精品亚洲一区二区三区| 韩国高清视频一区二区三区| 亚洲欧美成人综合另类久久久 | 青春草亚洲视频在线观看| 天天一区二区日本电影三级| 欧美xxxx黑人xx丫x性爽| 国产午夜福利久久久久久| 国产精品久久久久久精品电影小说 | 日韩高清综合在线| 永久免费av网站大全| 最近的中文字幕免费完整| 少妇人妻一区二区三区视频| 久久精品国产鲁丝片午夜精品| 亚洲国产欧美在线一区| 中文资源天堂在线| 天天躁日日操中文字幕| 纵有疾风起免费观看全集完整版 | 久久久精品欧美日韩精品| 中国美白少妇内射xxxbb| 日本爱情动作片www.在线观看| 大香蕉久久网| 国产精华一区二区三区| 久久久午夜欧美精品| 欧美成人一区二区免费高清观看| 日韩成人伦理影院| 日韩强制内射视频| 18禁动态无遮挡网站| av在线老鸭窝| 国产精品久久久久久精品电影| 国产在线一区二区三区精 | 国产高清国产精品国产三级 | 午夜福利高清视频| 国产成人a∨麻豆精品| 看黄色毛片网站| 97超视频在线观看视频| 精品久久久久久成人av| 自拍偷自拍亚洲精品老妇| 国产亚洲精品久久久com| 精品不卡国产一区二区三区| av卡一久久| 女人久久www免费人成看片 | 免费看光身美女| 午夜亚洲福利在线播放| 色5月婷婷丁香| 最近视频中文字幕2019在线8| 国产成人午夜福利电影在线观看| 国产亚洲午夜精品一区二区久久 | av国产久精品久网站免费入址| 免费无遮挡裸体视频| 丝袜美腿在线中文| 大香蕉久久网| 日韩av在线大香蕉| 岛国毛片在线播放| 日韩av在线大香蕉| 成年版毛片免费区| 欧美zozozo另类| 欧美区成人在线视频| 最近的中文字幕免费完整| 色噜噜av男人的天堂激情| 亚洲av成人精品一区久久| 听说在线观看完整版免费高清| 黄色一级大片看看| av女优亚洲男人天堂| 91av网一区二区| 久久久久久久亚洲中文字幕| 日韩强制内射视频| 成人亚洲欧美一区二区av| 国产黄色视频一区二区在线观看 | 联通29元200g的流量卡| 精品免费久久久久久久清纯| 亚洲中文字幕一区二区三区有码在线看| 国产精品国产三级国产专区5o | 久久这里有精品视频免费| 日日干狠狠操夜夜爽| 国产免费福利视频在线观看| 国产一级毛片在线| 国产成人精品婷婷| 亚洲最大成人中文| 国产老妇伦熟女老妇高清| 久久国产乱子免费精品| 黄色欧美视频在线观看| 两个人视频免费观看高清| 欧美三级亚洲精品| 麻豆av噜噜一区二区三区| 国产成人免费观看mmmm| 中文字幕av在线有码专区| 亚洲五月天丁香| 91午夜精品亚洲一区二区三区| 蜜桃久久精品国产亚洲av| 爱豆传媒免费全集在线观看| 熟妇人妻久久中文字幕3abv| 男人和女人高潮做爰伦理| 亚洲精品日韩av片在线观看| 国产成人a区在线观看| 国产黄色小视频在线观看| 亚洲电影在线观看av| 又爽又黄无遮挡网站| 亚洲自偷自拍三级| 亚洲最大成人中文| 成人av在线播放网站| 午夜a级毛片| 免费一级毛片在线播放高清视频| 国产精品久久久久久av不卡| 又粗又爽又猛毛片免费看| 国产精品久久电影中文字幕| 丰满乱子伦码专区| 国产老妇女一区| 桃色一区二区三区在线观看| 亚洲精品色激情综合| 日本熟妇午夜| 能在线免费观看的黄片| 久久久成人免费电影| 91精品一卡2卡3卡4卡| 亚洲高清免费不卡视频| 波多野结衣高清无吗| videos熟女内射| 99九九线精品视频在线观看视频| 亚洲丝袜综合中文字幕| 久久久久久久久大av| 日本一本二区三区精品| 国产精品综合久久久久久久免费| 男人舔女人下体高潮全视频| 如何舔出高潮| 国产精品人妻久久久影院| 久久久久免费精品人妻一区二区| 一二三四中文在线观看免费高清| 国产av码专区亚洲av| 久99久视频精品免费| 91aial.com中文字幕在线观看| 久久久久久久国产电影| 爱豆传媒免费全集在线观看| 亚洲国产日韩欧美精品在线观看| 久久韩国三级中文字幕| 你懂的网址亚洲精品在线观看 | 精品酒店卫生间| 好男人视频免费观看在线| 国内精品美女久久久久久| 国产美女午夜福利| 91av网一区二区| 男女那种视频在线观看| 嫩草影院精品99| 国语自产精品视频在线第100页| 欧美成人一区二区免费高清观看| 日韩人妻高清精品专区| 亚洲久久久久久中文字幕| 国产成人福利小说| 国产精品99久久久久久久久| 午夜免费激情av| 国产成人精品久久久久久| 国产精品一二三区在线看| 久久这里只有精品中国| 精品久久久久久久久久久久久| a级毛片免费高清观看在线播放| www.av在线官网国产| 亚洲av免费高清在线观看| 91aial.com中文字幕在线观看| 中文在线观看免费www的网站| 国产av不卡久久| 欧美日韩国产亚洲二区| 性色avwww在线观看| 欧美又色又爽又黄视频| 精品99又大又爽又粗少妇毛片| 午夜a级毛片| av专区在线播放| 最近中文字幕高清免费大全6| 永久网站在线| 色视频www国产| 国产精品国产三级国产av玫瑰| 日韩在线高清观看一区二区三区| 男女视频在线观看网站免费| 人妻夜夜爽99麻豆av| 麻豆精品久久久久久蜜桃| 久久这里只有精品中国| 亚洲丝袜综合中文字幕| 观看美女的网站|