• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Boosting Cu(In,Ga)Se2 Thin Film Growth in Low-Temperature Rapid-Deposition Processes:An Improved Design for the Single-Heating Knudsen Effusion Cell

    2021-08-30 07:06:40YunxiangZhangShupingLinShiqingChengZhichaoHeZhaojingHuZhiqiangZhouWeiLiuYunSun
    Engineering 2021年4期

    Yunxiang Zhang ,Shuping Lin ,Shiqing Cheng ,Zhichao He ,Zhaojing Hu ,Zhiqiang Zhou ,Wei Liu ,*,Yun Sun

    a Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin,Institute of Photoelectronic Thin Film and Devices,College of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China

    b Engineering Center of Thin Film Photoelectronic Technology of Ministry of Education,Institute of Photoelectronic Thin Film and Devices,College of Electronic Information and Optical Engineering,Nankai University,Tianjin 300350,China

    Keywords:

    Cu(In,Ga)Se2 Knudsen effusion cell Condensation Droplet ejection Low temperature

    ABSTRACT The Knudsen effusion cell is often used to grow high-quality Cu(In,Ga)Se2(CIGS)thin film in coevaporation processes.However,the traditional single-heating Knudsen effusion cell cannot deliver complete metal selenides during the whole deposition process,particularly for a low-temperature deposition process,which is probably due to the condensation and droplet ejection at the nozzle of the crucible.In this study,thermodynamics analysis is conducted to decipher the reason for this phenomenon.Furthermore,a new single-heating Knudsen effusion is proposed to solve this difficult problem,which leads to an improvement in the quality of CIGS film and a relative increase in conversion efficiency of 29%at a growth rate of about 230 nm·min-1,compared with the traditional efficiency in a lowtemperature rapid-deposition process.

    1.Introduction

    The Knudsen effusion cell is one of the most universal evaporators used to grow high-quality Cu(In,Ga)Se2(CIGS)film in coevaporation processes.Recently,many research institutions,such as Center for Solar Energy and Hydrogen Research Baden-Württemberg[1],National Renewable Energy Laboratory[2],Solibro GmbH[3],and Uppsala University[4],have achieved a record efficiency of above 20%for CIGS devices using this method.However,when traditional single-heating Knudsen effusion cells are used as the evaporators of copper(Cu),indium(In),or gallium(Ga),obvious condensation and droplet ejection can be observed at the nozzle of the crucible[5,6].If these droplets spray onto the substrate,a large amount of incomplete metal selenides form on the CIGS film.In addition,a low substrate temperature will further deteriorate the quality of the CIGS film due to the low diffusion coefficient of the metal elements[7].In order to grow highquality CIGS film,many researchers choose a Knudsen effusion cell that consists of two independent heating systems,which is known as the double-heating Knudsen effusion cell.One heating system is used to evaporate the material in the crucible and the other is applied to keep the nozzle of the crucible at a high temperature in order to avoid the formation of condensation and droplet ejection there[6,8].Although the double-heating Knudsen effusion cell has a more favorable structure than the traditional cell,it requires a more complex control system and has a higher cost.Thus,it is necessary to design a new low-cost single-heating Knudsen effusion cell to grow high-quality CIGS film.

    In this work,we focus on the CIGS film grown in a lowtemperature deposition process.First,we report on our investigation of the surface morphology of CIGS films prepared at different growth rates with traditional single-heating Knudsen effusion cells and our observation of some incomplete metal selenides in the CIGS film.Subsequently,we describe our failed attempts to eliminate these incomplete metal selenides by simply increasing the temperature of the selenium(Se)evaporator.We then attempt to identify the causes of the formation of incomplete metal selenides in CIGS films and analyze these causes using a thermodynamics process.Finally,we propose a new single-heating Knudsen effusion cell.

    2.Experimental process

    2.1.Preparation of films and solar cells

    CIGS films with different growth rates were fabricated onto a molybdenum(Mo)-coated substrate in a three-stage co-evaporation process[9].During the deposition process,the temperature of the Se source was kept at 310°C.After CIGS deposition,a 50 nm thick cadmium sulfide(CdS)buffer layer was prepared by chemical bath deposition at a temperature of 77°C.Sequentially,intrinsic zinc oxide(i-ZnO)and aluminum(Al)-doped zinc oxide(Al-ZnO)layers were deposited with thicknesses of 50 and 500 nm,respectively.Finally,a nickel(Ni)/Al grid with a thickness of about 1.5μm was grown on top of the stacked layers.The active area of the CIGS solar cells is 0.34 cm2with no antireflection coating[10].

    For our baseline co-evaporation process,the deposition times of the three stages were respectively 15,18,and 3 min,and the average growth rate of this process was about 63 nm·min-1(named‘‘Sample L”).We also fabricated two other samples with growth rates of 104 nm·min-1(Sample M)and 231 nm·min-1(Sample H).For the samples prepared by the new single-heating Knudsen effusion cell,the average growth rate of Sample L-N was similar to that of Sample L,and the average growth rate of Sample H-N approached that of Sample H(where‘‘-N”indicates the samples that were fabricated by the new single-heating Knudsen effusion cell).

    2.2.Characterization

    The composition of the CIGS film was determined by MagixPW2403(Royal Philips NV,the Netherlands)X-ray fluorescence(XRF)analysis.An optical microscope(OM,STM6-LM,Olympus Corporation,Japan)was used to measure the surface morphology of the CIGS films.A scanning electron microscope(SEM)was used to characterize the morphology of the films,and its elemental distribution was measured by energy dispersive spectroscopy(EDS).The site-specific components of the elements were characterized by focused ion beam(FIB).Hall measurement(HL5550PC,Accent Optical Technologies,Inc.,USA)was used to determine the electrical characterizations of the CIGS films at room temperature.The current-voltage(I-V)characteristics of the CIGS solar cells were measured by a Keithley 2420(Keithley,USA)SourceMeter under air mass(AM)1.5G(100 mW·cm-2)illumination.The external quantum efficiency(EQE)of the solar cells was measured by the ratio of the short-circuit photocurrent to the incident illumination intensity in the range of 350-1300 nm.The capacitance-voltage(C-V)and admittance spectroscopy(AS)characterizations were determined by an HP 4284A LCR meter(Agilent Technologies,USA).

    3.Results and discussion

    3.1.Effect of traditional single-heating Knudsen effusion cells on CIGS films

    Table 1 summarizes the components and thickness of the CIGS films prepared at different growth rates by traditional single-heating Knudsen effusion cells.The molar fraction ratios of χGa/(χGa+χIn)(GGI)andχCu/(χGa+χIn)(CGI),and the thickness of these films are roughly similar for all absorbers.

    The surface morphologies of the CIGS films grown at different growth rates were investigated by OM,as shown in Fig.1.The morphology of the CIGS films was strongly affected by the growth rate.When the growth rate was increased from 63 to 231 nm·min-1,a large number of dark spots were observed in the CIGS film.

    Fig.2(a)displays the SEM micrographs of Sample H;an island accumulation can be observed at the location of each dark spot.To determine the composition of the island accumulation,elemental mappings for Cu,In,Ga,and Se in Sample H are shown in Figs.2(b)-(e),respectively.These mappings show that the island accumulation contains a high In content,which appears to be connected to the presence of incomplete metal selenides.In addition,two black dots next to the island accumulation appear in all elemental mappings.This phenomenon may be attributed to highenergy electron beams being blocked by the island accumulation during EDS mapping processes.In order to further distinguish the components of the island accumulation,the FIB result is shown in Fig.3.Three locations in an island accumulation were chosen randomly and labeled 1,2,and 3;their EDS components are summarized in Table 2.Although Cu has an almost uniform distribution in the film due to its high diffusion coefficient[7],the GGI value decreases from 0.692 to 0.255.This suggests the presence of a large amount of In in the island accumulation,which aligns with the elemental mapping results in Fig.2(c).Previous studies have proposed that the expected molar fraction ratio of 2χSe/[χCu+3(χIn+χGa)]in CIGS film should be close to 1[11,12].However,the ratios of the samples located at 1,2,and 3 are 0.447,0.808,and 0.612,respectively,which can be linked to the presence of binary phases.From the result of the Hall measurement shown in Table 3,it is found that Sample H has a higher carrier concentration and lower resistivity than Sample L,which indicates the presence of some metal-like phases in the former[13].

    3.2.The way to eliminate dark spots

    To eliminate these metal-like phases,it is necessary to selenize the CIGS film completely.Previous research has reported that the degree of selenization for CIGS films is correlated with the Se fluxes,with higher Se fluxes promoting the degree of selenization[14].However,regardless of the growth rates of CIGS films,the temperature of the Se evaporator was always kept at 310°C;this indicates that the Se fluxes for Sample H may be insufficient.Therefore,we increased the temperature of the Se evaporator for Sample H from 310 to 320,330,340,and 350°C,respectively;their OMresults are shown in Fig.4.However,these films still contain a large number of dark spots,which confirms that simply increasing the temperature of the Se evaporator is not an effective way to eliminate island accumulation(dark spots)in CIGS film.

    In fact,condensation and droplet ejection can also be observed at the nozzle of the Cu and Ga crucibles,which confirms that the traditional single-heating Knudsen effusion cell is incapable of growing high-quality CIGS film in this experiment.However,in our laboratory,a similar single-heating Knudsen effusion cell has no condensation when the height of the crucible is about 2 cm,implying that the height of the crucible may be a crucial factor in the phenomenon of condensation.

    Table 1 Components of CIGS films at different growth rates,determined by XRF.

    Fig.1.OM images of(a)Sample L,(b)Sample M,and(c)Sample H.

    Fig.2.SEM morphology images of(a)Sample H and its elemental distribution measured by EDS in SEM:(b)Cu,(c)In,(d)Ga,and(e)Se.

    Fig.3.FIB image of Sample H.Locations 1,2,and 3 were selected from different parts of the dark spot.

    Supposing that the effusion cell has no heat loss,its temperature is the same everywhere in the crucible.Here,the mass-loss Knudsen effusion model was employed to explore the relationship between the condensation and the height of the crucible.During the period t,the vapor pressure P can be calculated by Eqs.(1)and(2)[15,16]:

    where m is the mass of the effused metal element,t is the effusion time,T is the temperature,A0is the area of the crucible,ω0is the transmission probability factor of the effusion cell,R is the molar gas constant,r is the radius of the crucible,l is the length of theeffusion orifice,and M is the molar mass.As shown in Fig.5(a),as the radius of the crucible is the same from top to bottom,we can treat the length of the effusion orifice l as the height of the crucible.Moreover,an assumption has been made that vapor pressures are the same in the whole crucible.According to Eqs.(1)and(2),the height of the crucible can be expressed by the following:

    Table 2 Components and GGI values of samples at different locations in the island accumulation.

    Fig.4.OMimages of CIGS films prepared at different Se evaporator temperatures at a growth rate of about 230 nm·min-1 and a substrate temperature of 450°C.Results are provided for the Se evaporator at the temperatures of(a)320°C,(b)330°C,(c)340°C,and(d)350°C.

    where QMis the metal vapor energy taken from the crucible.QT,QB,and QLare the heat loss at the top,bottom,and lateral of the single-heating Knudsen effusion cell,respectively as shown in Fig.5(a).Although the bottom and lateral of the effusion cell haveno obvious effect on the heat change of the crucible,QTand QMwill obviously increase the total heat loss and result in the formation of condensation.Based on the temperature of the nozzle and the bottom of the crucible,QTand QMcan be calculated by the heat radiation rule[17]:

    Table 3 Hall results for Samples H and L.

    whereε,a,and c are the emissivity,radiation constant,and radiation propagation speed in a vacuum,respectively.Here,QLS,T1,and T2are used to characterize the heat loss energy,absolute temperature for radiation,and absolute temperature for the absorber,respectively.With the increase of heat loss energy,the temperature at the nozzle of the crucible will decrease.According to the Maxwell speed distribution function,the mean gas speedˉv is[18]

    Fig.5.Schematic of(a)the traditional single-heating Knudsen effusion cell and(b)the new single-heating Knudsen effusion cell.The heat loss Q M is the metal vapor energy taken from the crucible.Q T,Q B,and Q L are the heat loss at the top,bottom,and lateral of the single-heating Knudsen effusion cell,respectively.1:the insulating layer for the effusion cell;2:the crucible;3:the single-heating coil of the effusion cell;4:the evaporated material in the crucible;5:the insulating layer at the bottom of the effusion;6;the extra heater zone for the cell.

    where k is the Boltzmann constant.As the temperature at the nozzle of the crucible decreases,the speed of the vapor will be reduced.If this metal vapor becomes metal droplets,the speed of these droplets will be further reduced due to the fact that the molar mass for droplets is larger than that of the metal vapor.When these droplets spray onto the substrate,dark spots will form in the CIGS film.Furthermore,a higher evaporation temperature will result in the formation of larger metal droplets,which are caused by the increased molecular collision frequency for metal elements.Thus,more dark spots are present in Sample H than in Sample L.To summarize,serious heat loss at the nozzle of the crucible is the major factor for condensation.

    Based on the theory analysis described above,we propose a new single-heating Knudsen effusion cell,shown in Fig.5(b).In comparison with the traditional effusion cell,the new cell has an extended heater on the upper half of the crucible,which is applied to provide extra energy to compensate for the heat loss at the nozzle of the crucible.The extended heater is part of the single-heating coil,so there is no need to introduce a new heating circuit and change the winding density of the single-heating system.It is only necessary to determine the length of the extended heater from the following equations:

    where ISis the current of the resistance wire of the new Knudsen effusion cell.QS,RS,ρ,S,and LSare the heat energy from the extended heater,resistance,electrical resistivity,sectional area,and length of the heat wire of second layer,respectively.In order to maintain a high temperature at the nozzle of the crucible,QSmust be greater than QLSor QMand QT;the length of the extended heater can be expressed as follows:

    To research the effect of the new single-heating Knudsen effusion cell on CIGS film,different samples prepared by the traditional effusion cell and by the new cell are compared in Fig.6.It is clear that the surface of Sample H-N is smoother than that of Sample H,which indicates that the new cell can effectively reduce condensation and droplet ejection at the nozzle of the effusion cell and improve the quality of the CIGS film.Samples L and L-N,which have a lower growth rate,show a similar result.

    3.3.Solar cell device performances

    Fig.7 shows the I-V and EQE graphs for solar cells made from Samples H,H-N,L,and L-N with the same batch.Obviously,the device performance of solar cells made using the new effusion cell is higher than that of those made from the traditional one,which is mainly attributed to a high-quality CIGS films.In addition,the statistic boxplots for the short-circuit current density(Jsc),opencircuit voltage(Voc),and fill factor(FF)of the cells are shown in Figs.8(a),(b),and(c),respectively.These figures show that the enhanced efficiency of solar cells made using the new singleheating Knudsen effusion cell is mainly derived from both the Vocand FF.However,the Jscof Sample H and that of Sample H-N are slightly larger than those of Samples L and L-N,which may be related to the different growth rates of the samples.According to Ref.[19],a high growth rate in the second stage of the threestage co-evaporation process will result in a smaller minimum GGI value(mini GGI value).Thus,the varied Jsccan be attributed to the mini GGI value of the absorber layer,which absorbs more long-wavelength light[20].

    Fig.6.SEM morphology images of CIGS films for(a)Sample H,(b)Sample H-N,(c)Sample L,and(d)Sample L-N,where Samples L-N and H-N were fabricated by the new single-heating Knudsen effusion cell.Insets:OM images of the corresponding films.

    Fig.7.(a)I-V curves and(b)EQE responses of the best CIGS solar cells fabricated from different absorber samples.ηis the best efficiency of each batch cells.J sc:short-circuit current density;V oc:open-circuit voltage;FF:fill factor.

    Fig.8.Statistics boxplots of(a)the J sc,(b)the V oc,and(c)the FF of the CIGS solar cells.

    3.4.Defect characteristics in CIGS devices

    In order to further investigate the cause of the improved Vocand FF,the results of C-V measurement are shown in Fig.9.The doping concentration(NA)in the CIGS films is 1.24×1016,1.04×1016,6.46×1015,and 3.72×1015cm-3for Samples H,H-N,L,and L-N,respectively;thus,the new effusion caused the doping level to decrease.According to Refs.[10,21],the relationship between the Vocand NAcan be estimated by Eq.(10):

    where q is the elementary charge.Based on this relationship,a higher doping concentration NAshould lead to a higher Voc[21];however,a higher NAcorresponds to a lower Vocin our samples,so we can deduce that there should be other factors affecting the Vocof these devices.

    To explore the main factor affecting the Voc,AS measurement was applied to determine the defect densities and their distributions for our samples.The results are shown in Fig.S1 in Appendix A.The deduced density spectra derived from the admittance spectra are shown in Fig.10.The concentration of the defect level of Sample H is so high that its device performance clearly deteriorates.In addition,a shallow defect with an energy level of about 33.1 meV can be associated with some incomplete selenized metal elements in the film,which can be verified by Hall measurement.The defect density of Sample H-N decreased from 3.17×1016to 1.05×1016cm-3·eV-1and the defect level increased from 33.1 to 173.1 meV,as shown in Fig.10(b).This indicates that the quality of CIGS films with high growth rates is improved by the new effusion cell.Moreover,samples with normal growth rates have a similar variation trend,as shown in Figs.10(c)and(d).Therefore,we can conclude that the new single-heating Knudsen effusion cell can improve the quality of the films.

    Based on all of the analysis described above,we deduced that the difference in defect density and its distributions will contribute to the Vocand FF.A comparison of all samples in Fig.6 shows that there are dark spots in Samples H,L,and H-N,whose Vochas decreased significantly compared with that of Sample L-N.These defects appear to be related to the shallow defect(the so-called N1 defect),which can obviously deteriorate the Voc[22,23].Thus,dark spots in the CIGS film will lead to higher defect density and a deeper defect level.In addition,the N2 is often observed at about 250-300 meV and has no obvious effect on the device performance[23].Therefore,the defects of Sample L-N may be attributed to the N2 defect.

    4.Conclusions

    Fig.9.Carrier concentration distributions for(a)Sample H,(b)Sample H-N,(c)Sample L,and(d)Sample L-N.

    Fig.10.Deduced density spectra derived from the admittance spectra for(a)Sample H,(b)Sample H-N,(c)Sample L,and(d)Sample L-N.E t is the corresponding defect energy level and N t is the density of defect states.

    This work examined the effect of the traditional single-heating Knudsen effusion cell on CIGS films with different growth rates.A comparison of samples with different growth rates showed that the quality of CIGS film is significantly influenced by the growth rate,with a higher rate often producing film with a large number of dark spots.Moreover,the dark spots appear to enhance the metal characteristic of the film due to the existence of some metal-like phase.Only increasing the temperature of the Se evaporator does not eliminate the dark spots,indicating that the Se flux is not responsible for the complete metal selenides.Considering the structure of the traditional single-heating Knudsen cell,serious heat loss is observed at the nozzle of the crucible,which is likely to be the reason for the formation of dark spots.Based on thermodynamic analysis,we designed a new single-heating Knudsen effusion cell that can compensate for the thermal loss at the nozzle of the crucible to prevent condensation.Eventually,using the new single-heating Knudsen effusion cell,we obtained the best solar cells with a conversion efficiency of 16.1%and 13.3%at growth rates of about 60 and 230 nm·min-1,and a substrate temperature of 450°C,respectively.In addition,the results of AS measurement show that the dark spots are related to N1 defects,where a large number of dark spots results in higher defect density and a lower defect level,which obviously deteriorates the device performance.We hope that this work will be helpful for the preparation of high-quality CIGS film by means of a low-cost single-heating Knudsen effusion cell.

    Acknowledgements

    The work was supported by the National Key R&D Program of China(2018YFB1500200),the National Natural Science Foundation of China(61774089 and 61974076),and the Natural Science Foundation of Tianjin(18JCZDJC31200).

    Compliance with ethics guidelines

    Yunxiang Zhang,Shuping Lin,Shiqing Cheng,Zhichao He,Zhaojing Hu,Zhiqiang Zhou,Wei Liu,and Yun Sun declare that they have no conflict of interest or financial conflicts to disclose.

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.eng.2020.01.016.

    97人妻精品一区二区三区麻豆| 国国产精品蜜臀av免费| 网址你懂的国产日韩在线| 色综合色国产| 国产午夜福利久久久久久| 成人av一区二区三区在线看| 2021天堂中文幕一二区在线观| 草草在线视频免费看| 波多野结衣高清作品| 国产欧美日韩精品亚洲av| 午夜a级毛片| 五月伊人婷婷丁香| 国产真实伦视频高清在线观看| 国产真实伦视频高清在线观看| 免费看a级黄色片| 成人三级黄色视频| 国产午夜精品久久久久久一区二区三区 | 97超视频在线观看视频| 精品乱码久久久久久99久播| 22中文网久久字幕| 欧美+亚洲+日韩+国产| 亚洲人与动物交配视频| 女人十人毛片免费观看3o分钟| 最近中文字幕高清免费大全6| 日本爱情动作片www.在线观看 | 精品日产1卡2卡| 免费黄网站久久成人精品| 校园春色视频在线观看| 成人鲁丝片一二三区免费| 日本欧美国产在线视频| 最后的刺客免费高清国语| 久久国内精品自在自线图片| 成人无遮挡网站| 国产高清有码在线观看视频| 九九热线精品视视频播放| 国产成人福利小说| 国产一区二区激情短视频| 一级毛片电影观看 | 日本撒尿小便嘘嘘汇集6| 成人无遮挡网站| 99久久精品国产国产毛片| 国模一区二区三区四区视频| 夜夜爽天天搞| 中国国产av一级| 亚洲18禁久久av| 亚州av有码| 久久久精品94久久精品| 深夜精品福利| 国产高清视频在线观看网站| 国产亚洲91精品色在线| 亚洲av一区综合| 女人十人毛片免费观看3o分钟| 美女内射精品一级片tv| 日韩av在线大香蕉| 欧美zozozo另类| 亚洲av熟女| 99国产精品一区二区蜜桃av| 精品人妻熟女av久视频| 国产单亲对白刺激| 久久久久国内视频| 欧美精品国产亚洲| 99九九线精品视频在线观看视频| 禁无遮挡网站| 校园春色视频在线观看| 日韩大尺度精品在线看网址| 国产视频一区二区在线看| 亚洲国产精品sss在线观看| 国产av不卡久久| 校园人妻丝袜中文字幕| 俺也久久电影网| 国产v大片淫在线免费观看| 日韩大尺度精品在线看网址| 一个人看视频在线观看www免费| 不卡一级毛片| 精品人妻视频免费看| 久久久久久久久久黄片| 成人漫画全彩无遮挡| 一边摸一边抽搐一进一小说| 国产精品女同一区二区软件| 一本一本综合久久| 女人被狂操c到高潮| 亚洲天堂国产精品一区在线| 黄色一级大片看看| 国内少妇人妻偷人精品xxx网站| 久久久午夜欧美精品| 国产精品av视频在线免费观看| 国产av不卡久久| 国产精品免费一区二区三区在线| 高清日韩中文字幕在线| 国产成人福利小说| 亚洲最大成人av| 黄色视频,在线免费观看| 观看美女的网站| 天堂√8在线中文| 99久久中文字幕三级久久日本| 在线观看一区二区三区| 久久国产乱子免费精品| 搡老岳熟女国产| 亚洲av美国av| 校园人妻丝袜中文字幕| 成人av在线播放网站| 在线免费观看不下载黄p国产| 美女高潮的动态| 最近最新中文字幕大全电影3| 国产在线男女| 国产极品精品免费视频能看的| 久久精品国产自在天天线| or卡值多少钱| 亚洲最大成人手机在线| 国产单亲对白刺激| 国产探花在线观看一区二区| 99久久九九国产精品国产免费| 国产精品一区二区性色av| 97人妻精品一区二区三区麻豆| 在线观看一区二区三区| 精品一区二区免费观看| 色吧在线观看| 亚洲av美国av| 亚洲熟妇中文字幕五十中出| 国产国拍精品亚洲av在线观看| 免费av毛片视频| 日韩制服骚丝袜av| 国产淫片久久久久久久久| 久久天躁狠狠躁夜夜2o2o| 欧美在线一区亚洲| 丝袜美腿在线中文| 六月丁香七月| 日本一二三区视频观看| 亚洲欧美清纯卡通| 高清毛片免费观看视频网站| 久久午夜福利片| 日韩欧美精品免费久久| 亚洲va在线va天堂va国产| 久久久国产成人免费| 免费观看的影片在线观看| 99久久精品国产国产毛片| 久久久久九九精品影院| 最近的中文字幕免费完整| 精品无人区乱码1区二区| 亚洲av电影不卡..在线观看| 日本在线视频免费播放| 青春草视频在线免费观看| 精品久久久久久久人妻蜜臀av| 精品少妇黑人巨大在线播放 | 国产av在哪里看| 久久这里只有精品中国| 久久这里只有精品中国| 久久精品久久久久久噜噜老黄 | 国产精品久久电影中文字幕| 麻豆一二三区av精品| 蜜桃亚洲精品一区二区三区| 又黄又爽又刺激的免费视频.| 成熟少妇高潮喷水视频| 日本在线视频免费播放| 国产 一区 欧美 日韩| 校园春色视频在线观看| 十八禁国产超污无遮挡网站| 赤兔流量卡办理| 看免费成人av毛片| 国内精品一区二区在线观看| 色5月婷婷丁香| 国产伦在线观看视频一区| 亚洲精华国产精华液的使用体验 | 亚洲欧美日韩高清在线视频| 免费黄网站久久成人精品| 老师上课跳d突然被开到最大视频| 国产在线精品亚洲第一网站| 小蜜桃在线观看免费完整版高清| 成人高潮视频无遮挡免费网站| 成人av一区二区三区在线看| 亚洲18禁久久av| 99riav亚洲国产免费| 九九爱精品视频在线观看| 老熟妇乱子伦视频在线观看| 寂寞人妻少妇视频99o| 久久久午夜欧美精品| 美女大奶头视频| 菩萨蛮人人尽说江南好唐韦庄 | 性欧美人与动物交配| 日韩大尺度精品在线看网址| 小蜜桃在线观看免费完整版高清| 久久亚洲国产成人精品v| 国产成人freesex在线 | 中国国产av一级| 日本a在线网址| 亚洲aⅴ乱码一区二区在线播放| av卡一久久| 午夜免费激情av| 最近在线观看免费完整版| 亚洲欧美日韩高清专用| 精品人妻熟女av久视频| 国产v大片淫在线免费观看| 观看免费一级毛片| 午夜视频国产福利| 少妇熟女aⅴ在线视频| av在线蜜桃| 午夜影院日韩av| 少妇的逼好多水| 69人妻影院| 欧美xxxx性猛交bbbb| 欧美高清性xxxxhd video| 精品一区二区三区av网在线观看| 午夜日韩欧美国产| 大香蕉久久网| 欧美一区二区精品小视频在线| 亚洲乱码一区二区免费版| 97超视频在线观看视频| 在线观看美女被高潮喷水网站| 久久国内精品自在自线图片| 欧美成人免费av一区二区三区| 联通29元200g的流量卡| 伦理电影大哥的女人| 12—13女人毛片做爰片一| 在线观看一区二区三区| 色综合站精品国产| 69av精品久久久久久| 午夜精品在线福利| 亚洲av成人精品一区久久| 看十八女毛片水多多多| 神马国产精品三级电影在线观看| 99热只有精品国产| 男女之事视频高清在线观看| 久久午夜亚洲精品久久| 最近的中文字幕免费完整| 在线播放国产精品三级| 久久精品国产亚洲av涩爱 | 国产精品乱码一区二三区的特点| 亚洲中文字幕日韩| 午夜福利在线在线| 久久99热这里只有精品18| 嫩草影院精品99| 国产精品久久视频播放| 亚洲人与动物交配视频| 欧美高清性xxxxhd video| 欧美日韩国产亚洲二区| 久久精品91蜜桃| 久久人人精品亚洲av| 高清日韩中文字幕在线| 一级毛片久久久久久久久女| 99久久精品国产国产毛片| 亚洲精品乱码久久久v下载方式| 国产亚洲精品av在线| 成人特级黄色片久久久久久久| 欧美日韩在线观看h| 久久精品影院6| 97热精品久久久久久| 非洲黑人性xxxx精品又粗又长| 精品日产1卡2卡| a级一级毛片免费在线观看| 色综合色国产| 欧美日本亚洲视频在线播放| 亚洲熟妇熟女久久| 简卡轻食公司| 最近最新中文字幕大全电影3| 亚洲电影在线观看av| 床上黄色一级片| 成熟少妇高潮喷水视频| 日本成人三级电影网站| 久久国产乱子免费精品| 综合色丁香网| 夜夜夜夜夜久久久久| 免费av观看视频| 亚洲精品在线观看二区| 乱人视频在线观看| 99热这里只有是精品在线观看| 国产精品不卡视频一区二区| 日本-黄色视频高清免费观看| 日韩成人伦理影院| 久久精品久久久久久噜噜老黄 | 少妇人妻一区二区三区视频| 一边摸一边抽搐一进一小说| 人人妻人人看人人澡| 日本色播在线视频| 六月丁香七月| 99精品在免费线老司机午夜| 最好的美女福利视频网| 成人无遮挡网站| 国产欧美日韩精品一区二区| 最新中文字幕久久久久| 国产一区二区亚洲精品在线观看| 国产精品嫩草影院av在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 色综合亚洲欧美另类图片| 国产人妻一区二区三区在| 欧美一级a爱片免费观看看| 色哟哟哟哟哟哟| 五月玫瑰六月丁香| 国产日本99.免费观看| 日本熟妇午夜| www.色视频.com| 成人午夜高清在线视频| 亚洲无线在线观看| 国产成人影院久久av| 国产综合懂色| 一进一出抽搐gif免费好疼| 日本精品一区二区三区蜜桃| 六月丁香七月| 观看免费一级毛片| 国产免费一级a男人的天堂| 99热只有精品国产| 高清毛片免费观看视频网站| 精品久久久久久久久久久久久| 午夜福利在线观看免费完整高清在 | 最新在线观看一区二区三区| 国产在线男女| 男女啪啪激烈高潮av片| 丰满乱子伦码专区| 欧美色欧美亚洲另类二区| 亚洲性久久影院| 亚洲欧美日韩无卡精品| 欧美zozozo另类| 国产在视频线在精品| 变态另类成人亚洲欧美熟女| 亚洲av.av天堂| 亚洲最大成人手机在线| 波多野结衣巨乳人妻| www日本黄色视频网| 99久久无色码亚洲精品果冻| 国产色爽女视频免费观看| 亚洲成人久久性| 99九九线精品视频在线观看视频| 少妇人妻精品综合一区二区 | 啦啦啦啦在线视频资源| 特级一级黄色大片| 亚洲成人精品中文字幕电影| 亚洲av熟女| 欧美国产日韩亚洲一区| 国产精品久久久久久久电影| 午夜a级毛片| 久久午夜福利片| 国产色婷婷99| 日本色播在线视频| 日韩av在线大香蕉| 午夜久久久久精精品| 永久网站在线| or卡值多少钱| 国产精品久久久久久久久免| 亚洲,欧美,日韩| 午夜a级毛片| 日韩欧美精品免费久久| 黄色欧美视频在线观看| 国产三级中文精品| 国产黄色小视频在线观看| 尤物成人国产欧美一区二区三区| 悠悠久久av| 欧美日韩乱码在线| 亚洲人成网站在线播| 亚洲国产高清在线一区二区三| 97在线视频观看| 久久99热6这里只有精品| 精品少妇黑人巨大在线播放 | 精品久久久久久成人av| 三级男女做爰猛烈吃奶摸视频| 99热只有精品国产| 亚洲欧美日韩高清专用| 日日摸夜夜添夜夜添小说| 3wmmmm亚洲av在线观看| 日韩 亚洲 欧美在线| 伦精品一区二区三区| 国产精品无大码| 亚洲七黄色美女视频| 亚洲人成网站在线播| 寂寞人妻少妇视频99o| 亚洲内射少妇av| 欧美色欧美亚洲另类二区| 人妻制服诱惑在线中文字幕| 一进一出好大好爽视频| 一区二区三区免费毛片| 国产色婷婷99| 欧美日韩在线观看h| 国内精品宾馆在线| 午夜日韩欧美国产| 国产三级在线视频| av视频在线观看入口| 亚洲av不卡在线观看| 看十八女毛片水多多多| 亚洲内射少妇av| 欧美成人精品欧美一级黄| 成人亚洲欧美一区二区av| 色综合亚洲欧美另类图片| 美女内射精品一级片tv| 中文在线观看免费www的网站| 成人亚洲欧美一区二区av| 日韩欧美三级三区| 老司机午夜福利在线观看视频| 1000部很黄的大片| 色哟哟·www| 国产单亲对白刺激| 欧美激情国产日韩精品一区| 日日撸夜夜添| 成人性生交大片免费视频hd| 亚洲国产日韩欧美精品在线观看| 五月伊人婷婷丁香| 俺也久久电影网| 成人欧美大片| 亚洲乱码一区二区免费版| 插阴视频在线观看视频| 欧美日本视频| 欧美日韩精品成人综合77777| 亚洲五月天丁香| 99久国产av精品| 白带黄色成豆腐渣| 国产黄a三级三级三级人| 秋霞在线观看毛片| 99久久九九国产精品国产免费| 亚洲国产欧洲综合997久久,| 最新在线观看一区二区三区| 三级男女做爰猛烈吃奶摸视频| 亚洲熟妇熟女久久| 少妇熟女欧美另类| 搞女人的毛片| 波多野结衣高清作品| 欧美xxxx性猛交bbbb| 国产成人freesex在线 | 免费在线观看成人毛片| 在线观看66精品国产| 俄罗斯特黄特色一大片| 淫妇啪啪啪对白视频| 日韩精品青青久久久久久| 俺也久久电影网| 免费av观看视频| 热99在线观看视频| 午夜老司机福利剧场| 中文字幕久久专区| 亚洲美女黄片视频| 色播亚洲综合网| 精品久久久久久久久久免费视频| 99久久久亚洲精品蜜臀av| 我要看日韩黄色一级片| 老司机福利观看| 九九在线视频观看精品| 亚洲熟妇熟女久久| 日本在线视频免费播放| 天天躁夜夜躁狠狠久久av| 毛片一级片免费看久久久久| 亚洲在线观看片| 人人妻,人人澡人人爽秒播| 亚洲欧美日韩卡通动漫| 丝袜喷水一区| 久久欧美精品欧美久久欧美| 欧美zozozo另类| 99热这里只有是精品50| 午夜福利在线在线| 少妇猛男粗大的猛烈进出视频 | 草草在线视频免费看| 在现免费观看毛片| 国产亚洲精品av在线| 久久精品夜夜夜夜夜久久蜜豆| 午夜精品在线福利| 日韩成人伦理影院| 久久精品国产亚洲av香蕉五月| 日本欧美国产在线视频| 国产亚洲精品综合一区在线观看| 欧美bdsm另类| 免费一级毛片在线播放高清视频| 亚洲真实伦在线观看| 69av精品久久久久久| 天堂网av新在线| 少妇人妻一区二区三区视频| 俺也久久电影网| 亚洲精华国产精华液的使用体验 | 亚洲精品一区av在线观看| 岛国在线免费视频观看| 久久久精品大字幕| 久久国产乱子免费精品| 久久国内精品自在自线图片| 尾随美女入室| 日日撸夜夜添| 亚洲av免费高清在线观看| aaaaa片日本免费| 日本熟妇午夜| 亚洲熟妇中文字幕五十中出| 又爽又黄无遮挡网站| 免费观看在线日韩| 国产精品女同一区二区软件| 国内久久婷婷六月综合欲色啪| 日本免费一区二区三区高清不卡| 欧美激情在线99| 国产色婷婷99| 黄片wwwwww| 最近2019中文字幕mv第一页| 久久久久国产精品人妻aⅴ院| 日韩欧美三级三区| 午夜激情福利司机影院| 一级黄色大片毛片| 我要看日韩黄色一级片| 久久人妻av系列| 亚洲美女黄片视频| 午夜精品在线福利| 人妻制服诱惑在线中文字幕| 天堂√8在线中文| 国产久久久一区二区三区| 我的老师免费观看完整版| 99国产精品一区二区蜜桃av| 日韩一区二区视频免费看| 男女下面进入的视频免费午夜| 国产黄色视频一区二区在线观看 | 天美传媒精品一区二区| 黄色欧美视频在线观看| 在线观看一区二区三区| 国产成人aa在线观看| 色综合色国产| 久久久精品欧美日韩精品| 成人美女网站在线观看视频| 最新中文字幕久久久久| 热99re8久久精品国产| 国产午夜福利久久久久久| 久久6这里有精品| 在线播放无遮挡| 亚洲国产欧洲综合997久久,| 国产精品久久电影中文字幕| av在线观看视频网站免费| 国产中年淑女户外野战色| av在线蜜桃| 欧美xxxx黑人xx丫x性爽| 搡老熟女国产l中国老女人| 精品午夜福利在线看| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣高清无吗| 毛片女人毛片| 欧美三级亚洲精品| 嫩草影院入口| 国产白丝娇喘喷水9色精品| 男女之事视频高清在线观看| 精品国内亚洲2022精品成人| 日本 av在线| 又爽又黄无遮挡网站| 日本与韩国留学比较| 1024手机看黄色片| 日韩,欧美,国产一区二区三区 | 久久久久免费精品人妻一区二区| 亚洲av成人av| 中文在线观看免费www的网站| 精品一区二区免费观看| 如何舔出高潮| 精华霜和精华液先用哪个| 麻豆乱淫一区二区| 嫩草影视91久久| 少妇人妻精品综合一区二区 | 亚洲精华国产精华液的使用体验 | 亚洲精品粉嫩美女一区| av黄色大香蕉| 最新中文字幕久久久久| 91精品国产九色| 亚洲精品成人久久久久久| 精品一区二区三区视频在线| 国产黄片美女视频| 精品久久久久久久久亚洲| a级毛色黄片| 亚洲精品日韩在线中文字幕 | 1024手机看黄色片| 99视频精品全部免费 在线| 一区二区三区四区激情视频 | 久久鲁丝午夜福利片| 嫩草影院精品99| a级一级毛片免费在线观看| 国产亚洲91精品色在线| 欧美潮喷喷水| 有码 亚洲区| 黄色欧美视频在线观看| 十八禁网站免费在线| av专区在线播放| 九九热线精品视视频播放| 国产伦精品一区二区三区四那| 日韩欧美三级三区| 99热这里只有是精品50| 国产精品一及| 亚洲在线自拍视频| 亚洲av成人av| 免费人成在线观看视频色| 国产亚洲91精品色在线| 亚洲欧美日韩高清在线视频| 精品午夜福利在线看| 成人欧美大片| 久久精品影院6| 日韩大尺度精品在线看网址| 日本精品一区二区三区蜜桃| 亚洲天堂国产精品一区在线| 免费不卡的大黄色大毛片视频在线观看 | 毛片一级片免费看久久久久| 国产成人一区二区在线| av在线播放精品| 日本熟妇午夜| 两个人视频免费观看高清| 人人妻人人澡人人爽人人夜夜 | eeuss影院久久| 中出人妻视频一区二区| 午夜影院日韩av| 久久久国产成人精品二区| 少妇人妻一区二区三区视频| 国产亚洲欧美98| 国产精品无大码| 中出人妻视频一区二区| 精品人妻视频免费看| 又爽又黄无遮挡网站| 亚洲精品日韩av片在线观看| 老司机福利观看| 亚洲乱码一区二区免费版| 亚洲欧美清纯卡通| 少妇高潮的动态图| 久久韩国三级中文字幕| 在线播放无遮挡| 日本精品一区二区三区蜜桃| 欧美一级a爱片免费观看看| 免费电影在线观看免费观看| 国产大屁股一区二区在线视频| 91麻豆精品激情在线观看国产| 天堂影院成人在线观看| 免费不卡的大黄色大毛片视频在线观看 | 最近在线观看免费完整版| 人妻夜夜爽99麻豆av| 少妇人妻精品综合一区二区 | 搞女人的毛片| 丝袜美腿在线中文| 你懂的网址亚洲精品在线观看 |