• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles study of the growth and diffusion of B and N atoms on the sapphire surface with h-BN as the buffer layer

    2021-08-26 06:47:28JianyunZhaoXuLiTingLiuYongLuandJicaiZhang
    Journal of Semiconductors 2021年8期

    Jianyun Zhao, Xu Li, Ting Liu, Yong Lu,, and Jicai Zhang,

    1College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China

    2State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

    Abstract: Currently, the preparation of large-size and high-quality hexagonal boron nitride is still an urgent problem.In this study, we investigated the growth and diffusion of boron and nitrogen atoms on the sapphire/h-BN buffer layer by first-principles calculations based on density functional theory.The surface of the single buffer layer provides several metastable adsorption sites for free B and N atoms due to exothermic reaction.The adsorption sites at the ideal growth point for B atoms have the lowest adsorption energy, but the N atoms are easily trapped by the N atoms on the surface to form N–N bonds.With the increasing buffer layers, the adsorption process of free atoms on the surface changes from exothermic to endothermic.The diffusion rate of B atoms is much higher than that of the N atoms thus the B atoms play a major role in the formation of B–N bonds.The introduction of buffer layers can effectively shield the negative effect of sapphire on the formation of B–N bonds.This makes the crystal growth on the buffer layer tends to two-dimensional growth, beneficial to the uniform distribution of B and N atoms.These findings provide an effective reference for the h-BN growth.

    Key words: hexagonal boron nitride; buffer layer; first-principles calculations; molecular dynamics

    1.Introduction

    With the advancement of science and technology, the earlier materials can no longer meet the performance requirements of current devices very well.Since the Geim groups successfully separated graphene as a single atomic layer material in 2004[1], a lot of graphene-like materials are drawing people's attention, which exhibit excellent physical and chemical performances.Hexagonal boron nitride (h-BN), as a wide bandgap semiconductor material sharing the similar crystal structure to graphite, is also destined to have great application potential and development prospects.The structure of h-BN is a six-membered cyclic honeycomb composed by B and N atoms alternately arranged, and its atomic layers overlap each other in a close-packed manner of AA'A...to form a crystal[2].The h-BN is called “white graphite” due to its white powder characteristics and the lattice difference between h-BN and graphite is only 1.7%[3,4].It has superior electrical insulation, thermal conductivity, corrosion resistance, good lubricity and chemical stability.

    As a new type of wide-bandgap semiconductor material after gallium nitride (GaN) and aluminum nitride (AlN), h-BN shows excellent performance in many fields.Songet al.proved that the h-BN film exhibits significant deep ultraviolet absorption at a wavelength of 203 nm[5], and Dahalet al.conducted electron beam excitation experiments on h-BN and found that the deep ultraviolet (DUV) region with 225 nm produced laser action[6].These phenomena prove the potential application of single crystal h-BN film in deep ultraviolet materials and as a deep ultraviolet chip-level semiconductor material.In the application of neutron detectors, Jianget al.made metal–semiconductor–metal (MSM) neutrons detector by 0.3μm thick h-BN.An obvious steady-state current response is produced after continuously irradiating the detector with the thermal neutron beam, which corresponds to the effective conversion efficiency of absorbed thermal neutrons close to 80%[7,8].All of this research has shown the great application potential of h-BN in the semiconductor field.However, it is still difficult to grow large-size single crystal h-BN thick films currently.Thus, in-depth research on the adsorption and diffusion of B and N atoms on the surface of the sapphire substrate can help people understand the micro growth mechanism of h-BN.

    In this study, we use thec-plane sapphire (Al2O3) as the substrate, which is often used in the growth of h-BN by the chemical vapor deposition method.The h-BN buffer layer is introduced to improve the crystal growth.In this way, the growth of h-BN tends to be the two-dimensional growth,which can thus reduce the generation of the amorphous to improve the quality of h-BN.We systematically calculated and compared the adsorption energies of the free B and N atoms on the Al2O3/h-BN-buffer-layer models.The diffusion behaviors of free B and N atoms on the buffer layer surface at different temperatures were also simulated to provide an effective guidance for h-BN growth in the experiment.

    2.Calculation method

    The first-principles calculations and molecular dynamics(MD) simulations of the growth and diffusion of B and N atoms on the surface of the Al2O3/h-BN-buffer-layer were carried out based on the density functional theory (DFT) with the projection-enhanced wave (PAW) method as implemented in the VASP package[9].The electron exchange and correlation potential was described with the generalized gradient approximation with Perdew–Burke–Ernzerhof (PBE) form[10].The plane-wave cut-off energy was set to 400 eV.For the self-consistent formation energy calculations with the primitive cell,the 12 × 12 × 1 k point mesh was used for the Brillouin zone integration[11].The convergence accuracies of the energy and force in the calculations are set to 1 × 10–5eV and 0.02 eV/?,respectively.

    Fig.1.(Color online) The top view of free B atoms at different adsorption sites with one h-BN buffer layer.(a–e) show the initial adsorption sites and (f–j) show the final configurations after optimization.

    The lattice parameters area= 4.81 ? andc= 13.11 ? for Al2O3anda= 2.51 ? andc= 7.19 ? for h-BN, consisting well with the experimental results ofa= 4.76 ? andc= 12.99 ? for Al2O3anda= 2.504 ? andc= 6.669 ? for h-BN[12,13].After optimizing the h-BN and Al2O3primitive cells, we constructed (001) h-BN and (001) Al2O3with different layers and combined them into a heterojunction structure, and h-BN was using the 2 × 2 × 1 supercell.In order to prevent the influence on the surface and the bottom caused by the periodicity of the model, a vacuum layer of 15 and 10 ? was introduced on the surface and the bottom respectively.Since h-BN and graphite have a very similar hexagonal structure, we selected four adsorption sites based on the high symmetry point of graphite when selecting the adsorption sites of free B and N atoms,and we also selected the fifth adsorption site considering other adsorption possibilities[14,15].The adsorption energy of the B and N atoms on the adsorption sites can be calculated by the following formula[16–18]:

    whereEadsis the adsorption energy of atoms at the adsorption site,EallandEpartare the total energy of the overall model and the total energy of the model without free atoms.Eatomis the single-atom energy of free B and N atoms, and the smaller theEadsvalue, the easier to adsorb at this site.In the simulation process, we used different adsorption sites and different numbers of buffer layer to calculate the formation energy.The atomic positions and cell volume of Al2O3/h-BN-buffer-layer were fixed, and only the free B or N atoms on the surface were optimized.

    For the first-principles molecular dynamics (MD) simulations of the adsorption and diffusion of B and N atoms on the surface, the simulated temperature were set to the room temperature (~300 K) and the high temperature of 1300 °C(1573 K), respectively.The canonical ensemble (NVT) was used for all the MD simulations and the temperature was controlled by Nosé thermostat[19].The simulation time is 10 ps with the time step of 1 fs.The process can be monitored by the atomic coordinates generated by the MD simulations.We can characterize the diffusion behavior of free B and N atoms by calculating the mean square displacement (MSD) and diffusion coefficientD[20,21].

    Fig.2.(Color online) The top view of free N atoms at different adsorption sites with one h-BN buffer layer.(a–e) show the initial adsorption sites and (f–j) show the final configurations after optimization.

    Table 1.The formation energies (eV) of free B or N atoms at the surface sites of the Al2O3/h-BN-buffer-layer model.

    wheredis the dimensionality of the system (integer, 1 ≤d≤ 3).

    3.Results and discussions

    The initial absorption models of the free state B and N atoms at different absorption sites and the structures after the relaxation optimization of the surface atomic positions are shown in Fig.1 and Fig.2, respectively, where the five potential adsorption sites, i.e., S1–S5, are marked with numbers.All models adopt the heterojunction composed of Al2O3(0001) plane with the same thickness and the single layer h-BN along the normal direction.After optimizing the positions of the free B and N atoms on the surface, three final adsorption sites were obtained for both cases.As shown in Table 1, for the free B atoms, the top site of N (SN-top) with the adsorption energy of –1.11 eV is the most stable adsorption site, which is the ideal growth site for the close packed structure of h-BN.The central site of the h-BN six-membered ring(SC) and the top site of B (SB-top) are two meta-stable sites with the adsorption energies of –0.87 and –0.76 eV, respectively.We note that the SCcorresponds to the growth site of rhombohedral structure boron nitride (r-BN)[25].The formation energies are all negative, indicating the exothermic process of the adsorption of B atoms on these sites.For the free N atoms, the most stable adsorption site is the top site of N with a small deviation towards to one of the neighbor B atom (SN-top’), as shown in Figs.2(f)–2(h).The adsorption energy of SN-top’is –2.05 eV, which is slightly lower than that of–2.02 eV for the ideal top site of N (SN-top).In the SN-top’site,the free N atom bonds with the N atoms in the buffer layer to form N–N bond with a bond length of 1.502 ?, which restricts the diffusion of the surface N atom to other growth sites.The ideal growth site for h-BN is the top site of B (SB-top),which is a meta-stable site with the adsorption energy of–0.77 eV.By comparing the formation energies of free B and N atoms on the surface, the N atoms are more easily to be adsorbed on the SN-top’ site, which plays a negative role in the growth of h-BN.In contrast, although the adsorption capacity of B atoms is weaker than that of N atoms, they tend to combine into h-BN structure.

    After calculating the relationship between the adsorption sites and the formation energy, we investigated the influence of the number of h-BN buffer layer on the formation energy.The Al2O3/h-BN-buffer-layer models with different numbers of buffer layer are shown in Fig.3 for B and Fig.4 for N atoms respectively.The SCsite is chosen as the initial absorption site for the free B and N atoms.By structural relaxation,the adsorption energies with different buffer layers were gathered in Table 2, and the final adsorption positions of B and N atoms on the surface were shown in Fig.3 and Fig.4, respectively.In general, the formation energy increases as the number of buffer layer increases.For B atom, the adsorption site after relaxation is not changed as the number of buffer layer increases from 1 to 3.But for the N atom, the final adsorption site for the N atom is changed to the SN-top’ site only with 1 buffer layer.As the buffer layer increases to 2 or 3, the initial SCsite for N atom is not changed.Both for the B and N atoms, the adsorption energy increases gradually as the number of buffer layer increases.When the number of h-BN buffer layer increases to 3, the adsorption process changes from an exothermic reaction to an endothermic reaction.As is known, during the growth process of h-BN, adjacent B and Natoms in the same atomic layer are combined to form a B–N bond by sp2 hybridization, and the inter layers are combined by van der Waals forces[2].According to the calculated results, it can be seen that the free B or N atom is affected by the coupling of Al2O3and h-BN buffer layer.This coupling effect will be sharply weakened when the distance between ad-sorption atom and the substrate increases.In previous experimental studies, it was found that N atoms can bond with Al and O atoms in the substrate when the nitriding process is applied to the surface of the sapphire substrate[26,27].This indicates that Al2O3has a strong adsorption effect on N atoms,which may cause the competition for forming an Al–N bond and B–N bond.

    Fig.3.(Color online) (a–c) The top view and (d–f)front view of the optimized adsorption positions for B atom on the surface with different buffer layers.The SC site is chosen as the initial absorption site for the B atom.

    Fig.4.(Color online) (a–c) The top view and (d–f)front view of the optimized adsorption positions for the N atom on the surface with different buffer layers.The SC site is chosen as the initial absorption site for the B atom.

    Table 2.The formation energies of free B and N atoms at the same position on the surface of the Al2O3/h-BN-buffer-layer model in a different number of buffer layers.

    Fig.5.(Color online) The probability distribution functions of atomic displacements projected onto the xy plane for (a) the B atom at 300 K, (b)the N atom at 300 K, (c) the B atom at 1573 K and (d) the N atom at 1573 K, respectively.The color scale indicates the distribution probability.The positions of B and N atoms of the buffer layer are marked.

    In addition to calculating the formation energy of one isolate B or N atom on the surface, we also set up a pair of free B and N atoms on the surface with one h-BN buffer layer.The calculated formation energy is –3.11 eV.Compared to the formation energies of isolate B and N atoms at their adsorption site, the formation energy of the coexisting B and N atoms are much lower, indicating that B and N atoms can interact with each other on the surface to form B–N bond.Namely,the free B and N atoms firstly bond with each other and then combine with the adsorption sites of the h-BN buffer layer.

    The diffusion of free B and N atoms on the buffer layer surface was simulated by the first-principles molecular dynamics.The probability distribution functions of atomic displacements projected onto thexyplane is shown in Fig.5 to trace the diffusion of B and N atoms in the surface.At room temperature, the B and N atoms both show a relative localization distribution.In general, the B and N atoms tend to diffuse around the SN-topsite and SB-topsite respectively by overcoming the energy barrier between the adjacent adsorption sites.As shown in Figs.5(a) and 5(b), the trajectory of the N atom is more localized than that of B atom, which is more likely to jump between two adjacent adsorption sites.This can be compared quantitatively by calculating the MSD and diffusion coefficient of B and N atoms according to Eqs.(2) and (3).According to Fig.6 and Table 3, the B atom has a larger MSD with respect to the N atom.As a result, the diffusion coefficient of B atom is 1.07 × 10–9m2/s at 300 K, much higher than 0.35 ×10–9m2/s of N atom.As temperature increases to 1573 K, the activity of B and N atom are both increased and the distribution range is obviously expanded, as shown in Figs.5(c) and 5(d).The diffusion of B atom is delocalized, which can diffuse freely on the surface by overcoming the energy barrier between the most stable and meta-stable sites.Although the distribution of N atom also shows delocalization characteristics, the trajectory is limited between specific adsorption sites.The N atom tends to diffuse across the sites around the B–N bond, increasing the probability of N bonding with N and B atoms in the buffer layer.The MSD of B atom is still larger than that of the N atom.The diffusion coefficients of B and N atoms at 1573 K increase to 17.04 × 10–9and 7.18 × 10–9m2/s,respectively.The diffusion rate of B atom is much higher than that of the N atom.It can thus be concluded that B atoms play a leading role in the growth process of h-BN.At high temperature, B atoms distribute uniformly at the growth sites by diffusion, then promoting N atoms to the break away from the localization to form B–N bonds.

    4.Conclusion

    In summary, we studied the growth and diffusion of B and N atoms on the surface of the Al2O3/h-BN-buffer-layer through first-principles calculations based on the density functional theory.The results show that the surface of single-buffer-layer h-BN provides several metastable adsorption sites for free B and N atoms due to the exothermic reaction.The free B atoms have the lowest adsorption energy at the adsorption site of the ideal growth point for h-BN, but the free N atoms are most easily to be trapped by the N atoms on the h-BN buffer layer to form the N–N bonds.As the number of buffer layer increases, the binding capacity of the surface of the buffer layer with free B and N atoms decreases.When the number of the h-BN buffer layer increases to three, the adsorption of the free B and N atoms on the surface changes from an exothermic reaction to an endothermic reaction.The influ-ence of the Al2O3substrate on the surface atoms is largely weakened.As temperature increases from 300 to 1573 K, the activity and diffusion range of B and N atoms increase significantly.The B atoms can diffuse freely on the buffer layer surface by overcoming the energy barrier between the adsorption sites.But the diffusion trajectory of N atoms is restricted in the specific adsorption sites around the B–N bonds of buffer layer.The B atoms play a major role in the formation of B–N bonds on the surface, the diffusion rate of which is much higher than that of the N atom.The introduction of buffer layers make the crystal growth have the characteristics of two-dimensional growth, which can effectively shield the negative effect of the substrate on the formation of B–N bonds.Also,they are conducive to the uniform diffusion surface B and N atoms, which can thus reduce the generation of the amorphous to improve the growth quality of h-BN.

    Fig.6.The MSD curves of (a) B atoms and (b) N atoms on the buffer layer surface at different temperatures.

    Table 3.Diffusion coefficients of free atoms on the surface of the model at different temperatures.

    Acknowledgements

    This work was partly supported by the National Natural Science Foundation of China (61874007, 12074028), the Beijing Municipal Natural Science Foundation (4182046), Shandong Provincial Major Scientific and Technological Innovation Project (2019JZZY010209), Key-area research and the development program of Guangdong Province (2020B010172001),and the Fundamental Research Funds for the Central Universities (buctrc201802, buctrc201830, buctrc202127).

    热99久久久久精品小说推荐| 人妻久久中文字幕网| 精品一区在线观看国产| 超碰成人久久| 飞空精品影院首页| 亚洲,欧美精品.| 欧美激情高清一区二区三区| 女人精品久久久久毛片| 日日夜夜操网爽| 亚洲五月色婷婷综合| 少妇精品久久久久久久| 国产欧美亚洲国产| 精品熟女少妇八av免费久了| 一区二区三区四区激情视频| 国产一级毛片在线| 国产主播在线观看一区二区| 精品福利永久在线观看| 法律面前人人平等表现在哪些方面 | 亚洲精品在线美女| 蜜桃在线观看..| 高清黄色对白视频在线免费看| 久久这里只有精品19| 各种免费的搞黄视频| 日韩一卡2卡3卡4卡2021年| 国产成人一区二区三区免费视频网站| 亚洲欧美成人综合另类久久久| 中文字幕人妻熟女乱码| 首页视频小说图片口味搜索| 午夜成年电影在线免费观看| 国产精品 欧美亚洲| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲第一欧美日韩一区二区三区 | a在线观看视频网站| 十八禁人妻一区二区| 免费高清在线观看视频在线观看| 十八禁人妻一区二区| 午夜精品久久久久久毛片777| 亚洲天堂av无毛| 女人精品久久久久毛片| 亚洲欧美一区二区三区久久| 无遮挡黄片免费观看| 黑丝袜美女国产一区| 视频区图区小说| 日日夜夜操网爽| 飞空精品影院首页| 免费高清在线观看日韩| 亚洲精品乱久久久久久| 一边摸一边抽搐一进一出视频| 国产野战对白在线观看| 欧美xxⅹ黑人| √禁漫天堂资源中文www| 免费日韩欧美在线观看| 精品一品国产午夜福利视频| a级毛片在线看网站| 日本wwww免费看| 亚洲 欧美一区二区三区| 亚洲国产精品999| 国产在线免费精品| 亚洲伊人久久精品综合| 99九九在线精品视频| 少妇粗大呻吟视频| 日韩欧美一区二区三区在线观看 | 成人手机av| 波多野结衣一区麻豆| 成年人黄色毛片网站| 亚洲精品久久久久久婷婷小说| 欧美日韩成人在线一区二区| 国产av又大| 精品国产乱码久久久久久小说| 亚洲伊人久久精品综合| 18禁裸乳无遮挡动漫免费视频| 日本猛色少妇xxxxx猛交久久| 法律面前人人平等表现在哪些方面 | av电影中文网址| 亚洲专区国产一区二区| 日韩精品免费视频一区二区三区| 啪啪无遮挡十八禁网站| 午夜免费鲁丝| 久久久久久免费高清国产稀缺| 人妻一区二区av| 国产欧美日韩一区二区精品| 日日摸夜夜添夜夜添小说| 女人被躁到高潮嗷嗷叫费观| 国内毛片毛片毛片毛片毛片| 桃花免费在线播放| 国产精品久久久久久精品电影小说| 国产xxxxx性猛交| 亚洲七黄色美女视频| av又黄又爽大尺度在线免费看| 国产亚洲精品一区二区www | 亚洲精品一区蜜桃| 免费观看av网站的网址| 国产精品亚洲av一区麻豆| 高清欧美精品videossex| tube8黄色片| 亚洲欧美精品自产自拍| 亚洲欧洲精品一区二区精品久久久| 国产精品国产三级国产专区5o| 国产一卡二卡三卡精品| 美女主播在线视频| 欧美 亚洲 国产 日韩一| 在线观看一区二区三区激情| 永久免费av网站大全| 国产亚洲午夜精品一区二区久久| 国产无遮挡羞羞视频在线观看| 精品人妻熟女毛片av久久网站| 波多野结衣一区麻豆| 日日摸夜夜添夜夜添小说| 久久精品国产a三级三级三级| 亚洲性夜色夜夜综合| 精品久久蜜臀av无| 性色av一级| 啦啦啦 在线观看视频| 国产国语露脸激情在线看| 午夜91福利影院| 涩涩av久久男人的天堂| 电影成人av| 国产人伦9x9x在线观看| 91字幕亚洲| 美女脱内裤让男人舔精品视频| 国产成人欧美在线观看 | 亚洲成人手机| 日韩 欧美 亚洲 中文字幕| 一级,二级,三级黄色视频| 国产人伦9x9x在线观看| 亚洲精品一区蜜桃| 国产黄色免费在线视频| 久久久久久久精品精品| 亚洲 国产 在线| 香蕉丝袜av| 一级片'在线观看视频| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲欧洲日产国产| 国产无遮挡羞羞视频在线观看| 成人免费观看视频高清| 2018国产大陆天天弄谢| 免费在线观看影片大全网站| 欧美xxⅹ黑人| 午夜免费鲁丝| 精品亚洲成a人片在线观看| 男女免费视频国产| 久久影院123| 亚洲国产欧美日韩在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 女性生殖器流出的白浆| 欧美人与性动交α欧美精品济南到| 国产成人a∨麻豆精品| 免费黄频网站在线观看国产| 日韩大码丰满熟妇| 国产亚洲精品一区二区www | 欧美黑人精品巨大| 国产极品粉嫩免费观看在线| 热99国产精品久久久久久7| 午夜福利一区二区在线看| 如日韩欧美国产精品一区二区三区| 国产免费视频播放在线视频| 天天影视国产精品| 成人黄色视频免费在线看| 亚洲av片天天在线观看| 亚洲成人国产一区在线观看| 夜夜夜夜夜久久久久| 国产老妇伦熟女老妇高清| a级片在线免费高清观看视频| av福利片在线| 五月天丁香电影| 美女高潮喷水抽搐中文字幕| 一本—道久久a久久精品蜜桃钙片| 黄色视频在线播放观看不卡| 亚洲精品美女久久久久99蜜臀| 久久久精品国产亚洲av高清涩受| 岛国在线观看网站| 99re6热这里在线精品视频| 老司机午夜十八禁免费视频| 韩国高清视频一区二区三区| 国产精品av久久久久免费| 国产精品免费大片| 黄片播放在线免费| 涩涩av久久男人的天堂| 欧美日韩视频精品一区| a级毛片黄视频| 中文字幕人妻丝袜一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 丰满饥渴人妻一区二区三| 日本精品一区二区三区蜜桃| 亚洲av男天堂| 狂野欧美激情性bbbbbb| 欧美日韩亚洲综合一区二区三区_| 法律面前人人平等表现在哪些方面 | 国产成人精品在线电影| 欧美精品av麻豆av| 国产一区有黄有色的免费视频| 亚洲av国产av综合av卡| 亚洲av成人一区二区三| 久久亚洲精品不卡| 性少妇av在线| 九色亚洲精品在线播放| 黑丝袜美女国产一区| www.熟女人妻精品国产| 亚洲全国av大片| 亚洲黑人精品在线| 99久久99久久久精品蜜桃| 日韩欧美一区视频在线观看| 少妇人妻久久综合中文| 丰满饥渴人妻一区二区三| 久久中文字幕一级| 国产99久久九九免费精品| 欧美av亚洲av综合av国产av| 日本一区二区免费在线视频| 建设人人有责人人尽责人人享有的| 午夜福利免费观看在线| 亚洲国产精品一区三区| h视频一区二区三区| 精品熟女少妇八av免费久了| 国产精品国产三级国产专区5o| 亚洲性夜色夜夜综合| 久久ye,这里只有精品| 乱人伦中国视频| 色精品久久人妻99蜜桃| 啦啦啦视频在线资源免费观看| 少妇精品久久久久久久| 亚洲熟女精品中文字幕| 少妇 在线观看| 黑丝袜美女国产一区| 青春草亚洲视频在线观看| 精品人妻一区二区三区麻豆| 精品熟女少妇八av免费久了| 亚洲中文字幕日韩| 男女之事视频高清在线观看| 亚洲中文日韩欧美视频| 男女床上黄色一级片免费看| 男女高潮啪啪啪动态图| 日韩视频在线欧美| 国产麻豆69| 久热爱精品视频在线9| 美女高潮到喷水免费观看| 夫妻午夜视频| 国产亚洲av片在线观看秒播厂| 亚洲人成电影观看| a级毛片黄视频| 久久久国产精品麻豆| 搡老乐熟女国产| 波多野结衣av一区二区av| 制服诱惑二区| 欧美日韩精品网址| 国产伦人伦偷精品视频| 啦啦啦中文免费视频观看日本| 亚洲欧美色中文字幕在线| 美女主播在线视频| 热re99久久精品国产66热6| 精品免费久久久久久久清纯 | av天堂久久9| videos熟女内射| 后天国语完整版免费观看| 在线 av 中文字幕| 肉色欧美久久久久久久蜜桃| 国产免费视频播放在线视频| 一二三四社区在线视频社区8| 亚洲综合色网址| 韩国精品一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 久久精品久久久久久噜噜老黄| 久久久久国产精品人妻一区二区| 大型av网站在线播放| 少妇猛男粗大的猛烈进出视频| 少妇被粗大的猛进出69影院| 亚洲国产欧美在线一区| 女人高潮潮喷娇喘18禁视频| 免费在线观看黄色视频的| 97精品久久久久久久久久精品| 精品久久久久久久毛片微露脸 | h视频一区二区三区| 精品久久久久久电影网| 国产欧美日韩一区二区三区在线| 欧美日韩视频精品一区| 亚洲熟女毛片儿| 国产免费福利视频在线观看| 搡老熟女国产l中国老女人| www.999成人在线观看| 久久久国产一区二区| 国产精品影院久久| 日本一区二区免费在线视频| 国产高清视频在线播放一区 | 韩国精品一区二区三区| 99热国产这里只有精品6| 亚洲专区国产一区二区| 电影成人av| 我要看黄色一级片免费的| 国产精品.久久久| 青春草亚洲视频在线观看| 欧美97在线视频| 日韩制服骚丝袜av| 天天躁夜夜躁狠狠躁躁| 别揉我奶头~嗯~啊~动态视频 | 国产麻豆69| 不卡一级毛片| 成年人黄色毛片网站| 一本大道久久a久久精品| 搡老岳熟女国产| 久久精品亚洲av国产电影网| 精品少妇一区二区三区视频日本电影| 电影成人av| 我要看黄色一级片免费的| kizo精华| 三级毛片av免费| 天堂俺去俺来也www色官网| 天堂中文最新版在线下载| 夫妻午夜视频| 国产亚洲av片在线观看秒播厂| 精品熟女少妇八av免费久了| 少妇粗大呻吟视频| 国产黄频视频在线观看| 黄网站色视频无遮挡免费观看| 精品福利永久在线观看| 曰老女人黄片| 亚洲av欧美aⅴ国产| 久久精品国产综合久久久| 国产欧美亚洲国产| 亚洲精品av麻豆狂野| 久久av网站| 午夜激情久久久久久久| 久久国产精品男人的天堂亚洲| 日本vs欧美在线观看视频| 亚洲全国av大片| 波多野结衣一区麻豆| 亚洲中文字幕日韩| 91国产中文字幕| 亚洲精品一卡2卡三卡4卡5卡 | 黑人操中国人逼视频| 国产在线免费精品| av国产精品久久久久影院| h视频一区二区三区| 久久久久国产一级毛片高清牌| 精品人妻一区二区三区麻豆| 桃花免费在线播放| 免费黄频网站在线观看国产| 国产国语露脸激情在线看| 国产成人欧美| 最黄视频免费看| 欧美日韩黄片免| 日韩大码丰满熟妇| 丰满饥渴人妻一区二区三| 最近最新免费中文字幕在线| 水蜜桃什么品种好| 中国美女看黄片| 国产精品99久久99久久久不卡| 亚洲一码二码三码区别大吗| 下体分泌物呈黄色| 午夜福利在线观看吧| 色老头精品视频在线观看| 天堂中文最新版在线下载| 一本综合久久免费| 51午夜福利影视在线观看| 日韩免费高清中文字幕av| 女性生殖器流出的白浆| 色播在线永久视频| 亚洲人成77777在线视频| 亚洲精品久久午夜乱码| 人妻一区二区av| 精品第一国产精品| 欧美激情 高清一区二区三区| 男女国产视频网站| 久久天堂一区二区三区四区| 伦理电影免费视频| 新久久久久国产一级毛片| 一级,二级,三级黄色视频| 一级片'在线观看视频| 亚洲国产欧美在线一区| 黄色 视频免费看| av超薄肉色丝袜交足视频| 日本av手机在线免费观看| 精品亚洲乱码少妇综合久久| 美女主播在线视频| 欧美精品亚洲一区二区| 色94色欧美一区二区| 久久久精品94久久精品| 精品亚洲成a人片在线观看| 国产色视频综合| 一级黄色大片毛片| 国产成人精品久久二区二区91| 亚洲av片天天在线观看| 他把我摸到了高潮在线观看 | 如日韩欧美国产精品一区二区三区| 精品福利观看| 久久人妻福利社区极品人妻图片| 久久综合国产亚洲精品| 国产精品久久久av美女十八| 亚洲熟女精品中文字幕| 欧美精品啪啪一区二区三区 | 国产人伦9x9x在线观看| 99精品欧美一区二区三区四区| 青青草视频在线视频观看| 99re6热这里在线精品视频| 精品国产乱子伦一区二区三区 | 国产在视频线精品| 天堂中文最新版在线下载| 成人国产一区最新在线观看| 菩萨蛮人人尽说江南好唐韦庄| 人人妻,人人澡人人爽秒播| 久久久精品国产亚洲av高清涩受| 久久久国产欧美日韩av| 777米奇影视久久| 少妇精品久久久久久久| 国产亚洲午夜精品一区二区久久| 91麻豆精品激情在线观看国产 | 大陆偷拍与自拍| netflix在线观看网站| 欧美日韩亚洲综合一区二区三区_| 国产成+人综合+亚洲专区| 男女之事视频高清在线观看| 九色亚洲精品在线播放| 国产色视频综合| 欧美 日韩 精品 国产| 亚洲欧美成人综合另类久久久| 99国产极品粉嫩在线观看| 国产成人免费观看mmmm| 国产淫语在线视频| 青春草亚洲视频在线观看| 99re6热这里在线精品视频| 国产av国产精品国产| 岛国毛片在线播放| netflix在线观看网站| 肉色欧美久久久久久久蜜桃| 欧美精品亚洲一区二区| 成年人黄色毛片网站| 亚洲精品国产av蜜桃| 国产成人一区二区三区免费视频网站| 国产亚洲av片在线观看秒播厂| av又黄又爽大尺度在线免费看| 精品一品国产午夜福利视频| 9色porny在线观看| 91成年电影在线观看| 夜夜骑夜夜射夜夜干| 男女下面插进去视频免费观看| 亚洲欧美精品综合一区二区三区| 亚洲精品第二区| 香蕉丝袜av| 一边摸一边抽搐一进一出视频| 中文字幕人妻丝袜制服| av免费在线观看网站| 免费人妻精品一区二区三区视频| 婷婷成人精品国产| 国产麻豆69| 亚洲第一av免费看| 亚洲精品国产色婷婷电影| 久久亚洲国产成人精品v| 啦啦啦中文免费视频观看日本| 国产成人精品在线电影| 欧美激情久久久久久爽电影 | 青春草亚洲视频在线观看| 国产在线视频一区二区| 丰满少妇做爰视频| 纵有疾风起免费观看全集完整版| 激情视频va一区二区三区| 久久精品久久久久久噜噜老黄| 涩涩av久久男人的天堂| √禁漫天堂资源中文www| 亚洲男人天堂网一区| 国产免费视频播放在线视频| 亚洲欧美精品自产自拍| 久久久久国产精品人妻一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 在线观看人妻少妇| 亚洲欧洲精品一区二区精品久久久| 精品少妇黑人巨大在线播放| 免费一级毛片在线播放高清视频 | 爱豆传媒免费全集在线观看| 久久精品aⅴ一区二区三区四区| 免费久久久久久久精品成人欧美视频| 男人添女人高潮全过程视频| 亚洲免费av在线视频| 99久久综合免费| 18禁裸乳无遮挡动漫免费视频| 男女午夜视频在线观看| 国产国语露脸激情在线看| 黄色 视频免费看| 国产成人影院久久av| 秋霞在线观看毛片| 汤姆久久久久久久影院中文字幕| 欧美精品亚洲一区二区| 电影成人av| 国产精品1区2区在线观看. | 日本精品一区二区三区蜜桃| 黑人猛操日本美女一级片| 两个人免费观看高清视频| 中文字幕人妻熟女乱码| 亚洲精品第二区| 久久九九热精品免费| 12—13女人毛片做爰片一| 精品国产乱码久久久久久小说| 欧美 日韩 精品 国产| 日本av免费视频播放| 欧美日韩黄片免| bbb黄色大片| 女人高潮潮喷娇喘18禁视频| 中文字幕色久视频| 午夜福利视频在线观看免费| 两人在一起打扑克的视频| 乱人伦中国视频| 亚洲精品乱久久久久久| 99国产极品粉嫩在线观看| 精品国产一区二区久久| 日本五十路高清| 波多野结衣一区麻豆| 欧美日韩亚洲高清精品| 岛国毛片在线播放| 青青草视频在线视频观看| 国产精品久久久久久精品古装| 最近最新免费中文字幕在线| 777久久人妻少妇嫩草av网站| 国产福利在线免费观看视频| 精品少妇内射三级| 精品国产一区二区三区久久久樱花| 国产精品亚洲av一区麻豆| 乱人伦中国视频| 一本色道久久久久久精品综合| videos熟女内射| 欧美黄色淫秽网站| 日本欧美视频一区| svipshipincom国产片| 18禁国产床啪视频网站| 国产激情久久老熟女| 久热这里只有精品99| 丰满迷人的少妇在线观看| 国产在线免费精品| av电影中文网址| 久久人妻熟女aⅴ| 亚洲欧美清纯卡通| 欧美日韩亚洲综合一区二区三区_| 亚洲专区字幕在线| 高清黄色对白视频在线免费看| 国产精品1区2区在线观看. | 无限看片的www在线观看| 天天操日日干夜夜撸| 日韩一区二区三区影片| 桃红色精品国产亚洲av| 悠悠久久av| 国产成人av教育| 亚洲精品一区蜜桃| 欧美日韩亚洲国产一区二区在线观看 | 成年美女黄网站色视频大全免费| 99国产精品一区二区三区| 99国产精品一区二区蜜桃av | 成年人黄色毛片网站| 久久久久久免费高清国产稀缺| 国产欧美日韩一区二区精品| 亚洲国产成人一精品久久久| 别揉我奶头~嗯~啊~动态视频 | 国产男人的电影天堂91| 精品一区二区三卡| 日本猛色少妇xxxxx猛交久久| 高清视频免费观看一区二区| 50天的宝宝边吃奶边哭怎么回事| 国产成人精品在线电影| 在线十欧美十亚洲十日本专区| 美女大奶头黄色视频| 麻豆乱淫一区二区| 国产欧美日韩一区二区精品| 国产野战对白在线观看| svipshipincom国产片| 国产精品二区激情视频| 久久午夜综合久久蜜桃| 久久中文看片网| 色视频在线一区二区三区| 国产av一区二区精品久久| 欧美国产精品一级二级三级| h视频一区二区三区| 国产人伦9x9x在线观看| 欧美黑人欧美精品刺激| 少妇猛男粗大的猛烈进出视频| 99精国产麻豆久久婷婷| 欧美 亚洲 国产 日韩一| 一级片免费观看大全| 超碰97精品在线观看| 99热国产这里只有精品6| videos熟女内射| 2018国产大陆天天弄谢| 欧美激情 高清一区二区三区| 啦啦啦中文免费视频观看日本| 国产精品一区二区在线观看99| av不卡在线播放| a级毛片在线看网站| 国产无遮挡羞羞视频在线观看| 视频区图区小说| 搡老岳熟女国产| www.熟女人妻精品国产| 免费在线观看完整版高清| 久久 成人 亚洲| 黄色视频,在线免费观看| 亚洲国产精品成人久久小说| 一级,二级,三级黄色视频| 免费在线观看影片大全网站| 久久精品久久久久久噜噜老黄| 精品一品国产午夜福利视频| 黑人操中国人逼视频| 欧美日韩视频精品一区| 精品人妻在线不人妻| 国产亚洲精品一区二区www | 久久久久久久久久久久大奶| 丝瓜视频免费看黄片| 9色porny在线观看| 纵有疾风起免费观看全集完整版| 久久精品国产a三级三级三级| 91老司机精品| 电影成人av| av在线老鸭窝| 日日爽夜夜爽网站| 久久久久国内视频| 国产又爽黄色视频| 亚洲av片天天在线观看| 如日韩欧美国产精品一区二区三区| 国产主播在线观看一区二区| 国产亚洲精品一区二区www | 一区二区三区精品91| 久久狼人影院| 精品久久久精品久久久|